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Interactive Bridge Design in Civil Engineering
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Parallel Simulation with Domain Decomposition
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Problem Definition

Problem: Poisson’s Equation
@ A second-order elliptic partial-differential equation (PDE).
@ Has application in modeling stationary heat.
@ Additional applications in Newtonian gravity and electrostatics.
°

Transferable results. E.g: Stress modeling in engineering science.

The Maths
o —e(x)V2u=f(x)on Q; u=g(x)on o0
o : geometry (i.e. a bar). f(x) > 0: heat sources. ¢(x): material
property. g(x): temperatures on the boundary 92 of the domain Q.
Numerical Method: Finite Element Method
@ A standard method in most engineering software solutions.
@ Applied to the unit square. Q = [0,1] x [0, 1].

@ Checkerboard partitioning for a restricted problem space.
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Generating Diffusion Specifications

Diffusion specification: A unique set of material values within the unit
square to solve Poisson’s equation.
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Shapes and sizes are based on a deterministic pseudo random number

generator.
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Generating Domain Specifications

@ Assuming 0.4% global overlap on a 4 x 4 checkerboard, and
@ Three adjustments per sub-domain (-0.2%, +0.0%, +0.2%), gives us
@ 48 domain specifications per diffusion specification.
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Extracting Features from Neighborhoods

Example. Material settings are:
@ Pink: ¢ =10000. Gray: ¢ =1000. Blue: ¢ = 100.
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o Feature sets: FINE (A-D), COARSE (E-F), and COMBINED (A-F).

@ 120 features can be extracted in total.
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The FPO Evaluation Measure

Motivation:
@ Need a theoretical and architecture independent measure.

@ We propose “FPO" (floating point operations).

Notation:
@ Assume a hardware architecture with s computation nodes.
@ s: also number of sub-domains.
@ n;: number of unknowns in a sub-domain.
°

I: number of domain decomposition iterations.
~ NS m 2
FPO~3 i |5 +1-nj.

Note — FPO is only comparable for solutions with:
@ Same number of sub-domains, and

@ Same hardware architecture.
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Machine Learning Methodology

Training. For each diffusion file:
@ Extract features for all 48 permutations of the neighborhoods.
@ Compute FPO for all 48 permutations with simulation.

© Record the mapping from the set of input features to FPO.

Testing. For each diffusion file:
@ Extract features for all 48 permutations of the neighborhoods.
@ Predict FPO for all 48 permutations using a regression model.

© Identify the minimum FPO value for each neighborhood.

Evaluation. For each diffusion file:
@ Compute FPO on the best combined specification with simulation.

@ Compare the predicted FPO score with that of the baseline.
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Baseline Overlap Decision

Global Total overlap for various grid sizes (% of unknowns)

overlap 1x1 2x2 3x3 4x4 5x5 6x6 7x7 8x8

minimum  0.00
0.2% 0.00
0.4% 0.00
0.6% 0.00
0.8% 0.00

0.40
1.19
1.99
2,77
3.56

0.80 119 159
238 356 4.73
395 5.90 7.82
551 8.21 10.87
7.06 10.49 13.85

1.99
5.90
9.73
13.48
17.16

2.38
7.06

2.77
8.21

11.62 13.48
16.06 18.60
20.40 23.57
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Data Analysis
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Region A Feature Invalid  No Diff Default Other Total
Max Value in Region 12000 0 34171 1829 48000
Min Value in Region 12000 0 35990 10 48000
Max Diff in Region 12000 34171 0 1829 48000
Min Diff to Boundary 12000 36000 0 0 48000
Max Diff to Boundary 12000 35361 0 639 43000
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Regression Algorithms and Feature Sets

@ Algorithms: simple linear, nearest neighbor, decision tree, and SVM.
o Feature sets: COMBINED, FINE, and COARSE.
@ Only the nearest neighbor algorithm offered improvement (below).
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FPO (trillions) FPO (trillions) Baseline FPO (trillions)
Evaluation metric COMBINED FINE COARSE
Fraction of baseline 0.9778 0.9791 0.9830
Student's t-test p<22x1071% p<22x1071® p<22x10716
Cohen's d d =0.85 d=0.79 d =0.62
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Forward Plan

© Increase the checkerboard size for more precise learning.

@ Increase the training set size with additional diffusion specifications.
© Apply non-uniform boundary adjustments with sub-domains.

@ Drop the checkerboard constraint in favor of polygonal boundaries.

© Consider three-dimensional problems later.
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Summary

@ We have proposed a method for learning overlap optimization.
@ New feature sets have been developed.
@ The FPO evaluation metric has been developed.

@ Results to date are a step in the right direction.

Thankyou!

Steven Burrows
steven.burrowsQuni-weimar.de
www.webis.de
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