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Model

o Given a learning task and ground truth within WARC files, train a model.

o Goal: Training at web scale
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o Given a mining task and a trained (classification) model, collect relevant data.
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Web Archive Processing
Mining

- Preprocessing Model
and filtering inference

o Given a mining task and a trained (classification) model, collect relevant data.
Only a fraction of the records within the WARC files are relevant.

Relevant
data

o Goal: Mining at web scale (billions of WARC files)

Observations:

a Mining / filtering WARC files is “embarrassingly parallel”.
Decompressing WARC files, and processing WARC records are CPU bound.

The preprocessing step results in a variable data flow.
Training of neural networks is GPU bound and presumes constant data flow.
WARC storage, parallel processing, and GPU bound processing are on separate clusters.
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Webis Data Center (pigital Bauhaus Lab)
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Typical research:

a-Web.
#-Web. Web mining (map reduce), CPU parallelization

~v-Web. Machine learning (embedding, deep learning), Language modeling
0-Web. Web archive storage (10 PB from Internet Archive and Common Crawl)

e-Web.
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Web Archive Processing
WARC-DL.: Pipeline for Processing at Petabyte Scale

Storage CPU cluster
3
WARC — Decompression — | Filter
~—
A
N . .
WARC!| — Decompression — | Filter
~_

PySpark FastWARC

parallelize

1. PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization
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Web Archive Processing
WARC-DL.: Pipeline for Processing at Petabyte Scale
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PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization
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3. Pickled record streams

Pickled
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Web Archive Processing
WARC-DL.: Pipeline for Processing at Petabyte Scale
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PySpark distributes WARCs among workers
2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization

3. Pickled record streams

4. Conversion to TensorFlow datasets and source interleaving

5. Inference: Batched processing by a Keras model
and second filtering based on classification results

Storage
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Web Archive Processing
WARC-DL.: Pipeline for Processing at Petabyte Scale
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PySpark distributes WARCs among workers

2. FastWARC decompresses and iterates records
CPU-bound filtering, feature extraction, tokenization

3. Pickled record streams

4. Conversion to TensorFlow datasets and source interleaving

5. Inference: Batched processing by a Keras model
and second filtering based on classification results

6. Optional filtering (e.g., deduplication) and model training
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Application: Building Large-Scale Multimodal Datasets
For Training Generative Text-To-Image Models

o CompVis group created the Latent Diffusion model

o LAION created a dataset of text-image pairs
Consists of image urls and img alt attribute texts from Common Crawl

o Stability Al finetuned Latent Diffusion on this dataset to create Stable Diffusion

Image generated by Stable Diffusion with the prompt

“award-winning cake shaped like the Swiss Alps”
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Application: Building Large-Scale Multimodal Datasets
For Training Generative Text-To-Image Models

o CompVis group created the Latent Diffusion model

o LAION created a dataset of text-image pairs
o Stability Al finetuned Latent Diffusion on this dataset to create Stable Diffusion

o Next target together with LAION: Building a better multimodal dataset

o Obtaining such a dataset requires preprocessing,
rule-based and DL-based filtering (e.g., NSFW filtering)

o Include text, images, videos and audio

o Extract more context from around the media links



Conclusion

WARC-DL can be used for petascale web archive processing:
o Training and applying domain-specific models for web mining
o Dataset extraction

0o (Multimodal) Search engines
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Thank you!



