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Boundedness is necessary:

o Ensures nDCG’s statistical properties

nDCG is convergent, top-weighted, realizable, monotonous, localized, complete, scale

invariant

How to handle negative gain values?
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o Negative relevance values are treated as 0O
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o Problem: loss of information

(3) Min-Max normalization

o Adopt full min-max-normalization by also
including worst possible ranking

o Problem: unknown properties
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Frequency and Impact
TREC Web Tracks 2010-2014

How often is boundedness violated?

o Between 70% and 100% of topics violate the boundedness property (neg.
scores possible) when using Original nDCG

o Between 8% and 68% of topics may even score below —1

How do the two proposed solutions impact system rankings?

o Ignoring negative labels affects the rankings slightly (p ~ 0.89)

o Min-Max nearly reproduces rankings given by Original in full (p ~ 0.98)

Conclusions:

o Unboundedness is a widespread issue and needs to be addressed.
o The current best practice seems unsuitable, as it affects system rankings.

Investigation of reliability, sensitivity, and stability of the three strategies.



Reliability

A measure’s ability to reflect the actual performance differences of systems.

Strategy  TREC 2011 TREC 2012

Original 0.937 0.930
Ilgnoring 0.973 0.975
Min-Max 0.993 0.995

o Min-Max is most reliable, followed by ignoring negative labels, and Original

o Unboundedness increases the measurements’ variance for Original



Sensitivity

A measure’s ability to successfully tell two systems apart at significance level.
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o Min-Max performs best, followed by Original

o Ignoring negative values is disfavorable, as it negatively impacts sensitivity.



Stability

A measure’s dependence on number of topics.
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o Min-Max performs much better, likely due to reduced cross-topic variance.

o Even with more topics, other strategies can’t match the improved error rate.
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o Negative gain values can lead to boundedness violation for nDCG.
o Many evaluation experiments use negative relevance judgments.

o Current strategy is not equipped to adequately address these issues.

Proposed Solution:

o Adopting full min-max normalization.
o Restores boundedness while preserving system rankings.

0 Yields additional benefits with increased stability, reliablity, and sensitivity.
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Thank you!



