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Introduction

“nDCG produces scores between 0 and 1.”

(iff gain values are positive)

2 © GIENAPP/FRÖBE/HAGEN/POTTHAST 2020



Introduction

“nDCG produces scores between 0 and 1.”

(iff gain values are positive)

Negative gain values (qrels) are prevalent:

q Commonly used at TREC, other venues

q Denote spam, inappropriate documents

q Same amount as “key documents”

TREC Qrels
Web Track Negative

2010 5%
2011 6%
2012 5%
2013 2%
2014 6%
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Boundedness is necessary:

q Ensures nDCG’s statistical properties
nDCG is convergent, top-weighted, realizable, monotonous, localized, complete, scale
invariant

Ü How to handle negative gain values?
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Strategies

(1) Original nDCG

q Use orig. nDCG formula on neg. gain values

q Problem: boundedness not guaranteed
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q Negative relevance values are treated as 0

q This is current practice of most eval tools

q Problem: loss of information

6 © GIENAPP/FRÖBE/HAGEN/POTTHAST 2020



Strategies

(1) Original nDCG

q Use orig. nDCG formula on neg. gain values

q Problem: boundedness not guaranteed

(2) Ignoring negative values

q Negative relevance values are treated as 0

q This is current practice of most eval tools

q Problem: loss of information

(3) Min-Max normalization

q Adopt full min-max-normalization by also
including worst possible ranking

q Problem: unknown properties
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Frequency and Impact
TREC Web Tracks 2010–2014

How often is boundedness violated?

q Between 70% and 100% of topics violate the boundedness property (neg.
scores possible) when using Original nDCG

q Between 8% and 68% of topics may even score below −1

How do the two proposed solutions impact system rankings?

q Ignoring negative labels affects the rankings slightly (ρ ≈ 0.89)

q Min-Max nearly reproduces rankings given by Original in full (ρ ≈ 0.98)

Conclusions:

q Unboundedness is a widespread issue and needs to be addressed.

q The current best practice seems unsuitable, as it affects system rankings.

Ü Investigation of reliability, sensitivity, and stability of the three strategies.
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Reliability

A measure’s ability to reflect the actual performance differences of systems.

Strategy TREC 2011 TREC 2012
Original 0.937 0.930
Ignoring 0.973 0.975
Min-Max 0.993 0.995

q Min-Max is most reliable, followed by ignoring negative labels, and Original

q Unboundedness increases the measurements’ variance for Original
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Sensitivity

A measure’s ability to successfully tell two systems apart at significance level.
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q Min-Max performs best, followed by Original

q Ignoring negative values is disfavorable, as it negatively impacts sensitivity.
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Stability

A measure’s dependence on number of topics.
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q Min-Max performs much better, likely due to reduced cross-topic variance.

q Even with more topics, other strategies can’t match the improved error rate.
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Conclusion

Identified Problem:

q Negative gain values can lead to boundedness violation for nDCG.

q Many evaluation experiments use negative relevance judgments.

q Current strategy is not equipped to adequately address these issues.

Proposed Solution:

q Adopting full min-max normalization.

q Restores boundedness while preserving system rankings.

q Yields additional benefits with increased stability, reliablity, and sensitivity.
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Conclusion

Identified Problem:

q Negative gain values can lead to boundedness violation for nDCG.

q Many evaluation experiments use negative relevance judgments.

q Current strategy is not equipped to adequately address these issues.

Proposed Solution:

q Adopting full min-max normalization.

q Restores boundedness while preserving system rankings.

q Yields additional benefits with increased stability, reliablity, and sensitivity.

Thank you!
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