Retrieval-Technologien fur die Plagiaterkennung in
Programmen

Fabian Loose, Steffen Becker, Martin Potthast, Benno Stein @ webis.de
Bauhaus University Weimar

Outline - Overview
- Retrieval Models for Source Code
- Hash-based Search

http://webis.de

Fabian Loose Steffen Becker Martin Potthast

2 webis@LWA October 6, 2008

Overview

Overview

Plagiarism is the practice of claiming, or implying, original authorship
of someone else’s written or creative work, in whole or in part, into

one’s own without adequate acknowledgment.
[Wikipedia: Plagiarism]

o Plagiarism is observed in literature, music, software, scientific articles,
newspaper, advertisement, Web sites, etc.

o A study among 18 000 university students in the United States shows that
almost 40% of them have plagiarized at least once. [1]

[1] D. McCabe. Research Report of the Center for Academic Integrity.
http://www.academicintegrity.org, 2005.

Overview
Taxonomy of Plagiarism Offenses

Large part of document
Global identity analysis: Document model comparison (suffix-tree)

_ Accurate copy
Identity analysis with reference corpus:

Small part of document Chunk identity (MD5-Hash)

Local identity analysis

Plagiarism offence w/o reference corpus:
Detection method Style analysis

_ Language translation
Structure analysis

| Modified _Large part of document
copy Global analysis: Document model comparison (VSM)

L Transformation

Similarity analysis with reference corpus:
Fuzzy-fingerprinting

| Small part of document
Local similarity analysis

w/o reference corpus:
Style analysis

5 webis@LWA October 6, 2008

Paragraph detection

Knowledge-based
post processing

6 webis@LWA October 6, 2008

e Paragraph detection ~

e External analysis ~N
/—Heuristic retrieval (focused search) ~N Ve Comparison —\
. J . J

- J

Suspicious

paragraphs

- J

v

Knowledge-based
post processing

7 webis@LWA October 6, 2008

Paragraph detection
External analysis

Heuristic retrieval (focused search) Comparison

Keyword- .
Candidate .
Keywqrd ba§ed > Jocuments Chunking —
extraction retrieval

Suspicious
paragraphs

$

Knowledge-based
post processing

Paragraph detection
External analysis

Heuristic retrieval (focused search) Comparison
Fingerprint-
based
K d comparison
eyword- .
Keyword based > &iﬁ%‘ﬁ; ——>{ Chunking f—>--------oeemeeaneaeeees L
extraction retrieval PalrW|se_VSM
comparison
v
Suspicious
paragraphs

$

Knowledge-based
post processing

D_

Paragraph detection
External analysis

Heuristic retrieval (focused search) Comparison
Fingerprint-
based
index y g comparison
eyword- .
Keyword based Candidate | | Chunking —=>----------------mmomeeeee —
: - documents Pairwise VSM
extraction retrieval .
comparison
. Retrieval with precompiled index R
Wikipedia
fingerprint
index
Fingerprint-
Chunking & ba_sed
Fingerprinting retrieval
. J
\ \
Suspicious
paragraphs
\‘/

Knowledge-base
post processing

y

Paragraph detection
External analysis

Heuristic retrieval (focused search) Comparison
Fingerprint-
based
K 4 comparison
eywora- .
Keyword based [—> &iﬂﬁ; =1 Chunking f—------coeoaeeaeeaeeaces —
comparison
. Retrieval with precompiled index R
Wikipedia
fingerprint
index
Fingerprint-
Chunking & ba_sed
Fingerprinting retrieval
. J
\4 \4
Intrinsic Suspicious
analysis paragraphs

$

Knowledge-based
post processing

Paragraph detection

- D
Heuristic retrieval (focused search) Comparison
Fingerprint-
based
K 4 comparison
eywora- .
based Candidate | | Chunking —=>----------------mmomeeeee —
comparison
. Retrieval with precompiled index R
Wikipedia
fingerprint
index
Fingerprint-
Chunking & ba_sed
Fingerprinting retrieval
- /
\4 \4
Intrinsic Suspicious
analysis paragraphs
\‘/

Knowledge-base
post processing

y

Overview
Examples for Identification Technology

o Level 1. Identity analysis for paragraphs.

o Level 2. Synchronized identity analysis for paragraphs.

0 Level 3. Tolerant similarity analysis for paragraphs.

o Level 4. Intrinsic (style) analysis without a reference corpus.

o Level 5. Correct citation.

Overview

Current research is corpus-centered, “external plagiarism analysis”.
[Brin et al. 1995, Monostori et al. 2001-2004, Stein et al. 2004-2006, etc.]

External plagiarism analysis formulated as decision problem:

Problem. AVEXTERN

Given. A text d, allegedly written by author A, and set of texis D,
D = {dy,...,d,}, written by an arbitrary number of authors.

Question. Does d contain sections whose similarity to sections in D is above
a threshold 67?

Overview
Basic Principle

o Partition each document in meaningful sections, also called “chunks”.

o Do a pairwise comparison using a similarity function .

suspicious document corpus documents
Complexity:
n documents in corpus, ¢ chunks per document on average

O(n - ¢*) comparisons

Overview
Comparison with Fingerprints (Level 1)

o Partition each document into equidistant sections.
o Compute fingerprints of the chunks using a hash function h.

o Put all hashes into a hash table. A collision indicates matching chunks.

h=9154

S
h=2232

suspicious document corpus documents
Complexity:
n documents in corpus, ¢ chunks per document on average

O(n - ¢) operations (fingerprint generation, hash table operations)

Overview
Comparison with Fingerprints (Level 2)

o Partition each document into synchronized sections.
o Compute fingerprints of the chunks using a hash function h.

o Put all hashes into a hash table. A collision indicates matching chunks.

h=3294

N
h=7439

suspicious document corpus documents
Complexity:
n documents in corpus, ¢ chunks per document on average

O(n - ¢) operations (fingerprint generation, hash table operations)

Overview
Comparison with Fingerprints (Level 3)

Discussion:

o Hashing is fast, but sensitive to smallest changes:

h(01> = h(Cg) = C1 = C9

Current research:

a Focus on fuzzy hash functions h,:

ho(c1) = ho(ca) = Plelc,e) >0) > 1—¢

o Fuzzy hash functions allow for large chunk sizes (speed-up)

o Fuzzy hash functions are not sensitive to small changes

Retrieval Models for Source Code

Retrieval Models for Source Code

//subloop. for each node...

for (int nodeIndex = 0; nodeIndex<n; nodeIndex++) {
int nodeld = nodeldPermutation[nodeIndex];
//System.out .println("node: "+nodeld);

//reset sums.
for (int i=0; i<n; i++) sumOfEdgeWeights([i]=0;

//sum all the edges going out to the same cluster
int[] adjacentNodes = graph.getAdjacentNodes (nodeld) ;
for(int i : adjacentNodes)
{
int clusterId = nodes2cluster[i];
double edgeWeight=graph.getEdgeWeight (nodeld, 1i);
if (edgeWeight >= threshold) {
sumOfEdgeWeights [clusterId] += edgeWeight;
}
}
//and determine the cluster of biggest sum.
int newClusterNumber=nodes2cluster [nodeld];
double maxWeight=0;
for(int i =0; i<sumOfEdgeWeights.length; i++)
{
if ((sumOfEdgeWeights[i])>maxWeight) {
newClusterNumber=i;
maxiWeight=sumOfEdgeWeights[i];

Compilation Runtime
Representation d Sim. measure ¢ level for d for ¢

Retrieval Models for Source Code
Structure-based Graph Models

Cond

Else

Operator

Op2

//subloop. for each node...
for (int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

int nodeld = nodeldPermutation[nodeIndex];
//System.out .println("node: "+nodeld);

//reset sums.
for (int i=0; i<n; i++) sumOfEdgeWeights([i]=0;

//sum all the edges going out to the same cluster
int[] adjacentNodes = graph.getAdjacentNodes (nodeld) ;
for(int i : adjacentNodes)
{

int clusterId = nodes2cluster[i];

double edgeWeight=graph.getEdgeWeight (nodeId, i);

if (edgeWeight >= threshold) {

sumOfEdgeWeights [clusterId] += edgeWeight;
}

//and determine the cluster of biggest sum.
int newClusterNumber=nodes2cluster [nodeId];
double maxWeight=0;
for(int i =0; i<sumOfEdgeWeights.length; i++)
{
if ((sumOfEdgeWeights[i])>maxWeight) {
newClusterNumber=i;
maxiWeight=sumOfEdgeWeights[i];
}
}

Representation d

Compilation

Sim. measure ¢ level for d

Runtime
for ¢

abstract syntax trees

conceptual graphs

program dep. graphs

hash-based subtree syntactical

search

heuristically focused semantic
isomorphic graph search

isomorphic graph search ~ semantic

O(|d])

O(ldF)

NP-complete

[Baxter et al. 1998]

[Mishne et al. 2004]

[Liu et al. 2006]

Retrieval Models for Source Code
Attribute-based Vector Models

Cond

Else

Operator

Op2

//sul
for (

{

bloop. for each node...

int nodelIndex = 0; nodeIndex<n; nodeIndex++) {
int nodeld = nodeldPermutation[nodeIndex];
//System.out .println("node: "+nodeld);

)
//reset sums. = nodeIdPer [nodeIndex
for (int i=0; i<n; i++) sumOfEdgeWeights([i]=0; .
] ; for (
//sum all the edges going out to the same cluster int 1 = 0
int[] adjacentNodes = graph.getAdjacentNodes (nodeld) ; ;1 <n
for(mt i : adjacentNodes) ;i o4+)
int clusterId = nodes2cluster[i]; sumOfEdgeWeights [i]
double edgeWeight=graph.getEdgeWeight (nodeld, 1i); =0 ; int
if (edgeWeight >= threshold) { » . -
sumOfEdgeWeights [clusterId] += edgeWeight; [1 adjacentNodes
} graph . getAdNodes (
}/) . . nodeId) ; for
//and determine the cluster of biggest sum. (int i :

int newClusterNumber=nodes2cluster [nodeld];
double maxWeight=0;
for(int i =0; i<sumOfEdgeWeights.length; i++)

if ((sumOfEdgeWeights[i])>maxWeight) {
newClusterNumber=i;
maxiWeight=sumOfEdgeWeights[i];

}

}

for (int nodeIndex
= 0 ; nodelIndex
< n ; nodelIndex++

{ int nodelId

adjacentNodes) { int
clusterId = nodes2clu [
i] ; double

edgeWeight = graph .
getEdgeWeight (nodeld ,
i) ; 1if

Representation d

Sim. measure ¢

Compilation Runtime
level for d for ¢

software metric features

all n grams

subset of all n grams

n<>Hy

cosine
Jaccard
Jaccard

none
lexical
lexical

o(|dl)
o(|dl)
O(|dl)

[Ottenstein 1976]
[Clough et al. 2002]
[Schleimer et al. 2003]

Retrieval Models for Source Code
Structure-based String Models

Cond

Else

Operator

Op2

//subloop. for each node...

for (int nodeIndex = 0; nodeIndex<n; nodeIndex++) {
int nodeld = nodeldPermutation[nodeIndex];
//System.out .println("node: "+nodeld);

//reset sums.
for (int i=0; i<n; i++) sumOfEdgeWeights([i]=0;

//sum all the edges going out to the same cluster
int[] adjacentNodes = graph.getAdjacentNodes (nodeld) ;
for(int i : adjacentNodes)
{
int clusterId = nodes2cluster([i];
double edgeWeight=graph.getEdgeWeight (nodeld, 1i);
if (edgeWeight >= threshold) { »
sumOfEdgeWeights [clusterId] += edgeWeight;
}
}
//and determine the cluster of biggest sum.
int newClusterNumber=nodes2cluster [nodeld];
double maxWeight=0;
for(int i =0; i<sumOfEdgeWeights.length; i++)
{
if ((sumOfEdgeWeights[i])>maxWeight) {
newClusterNumber=i;
maxiWeight=sumOfEdgeWeights[i];
}
}

for (int nodeIndex
= 0 ; nodelIndex
< n ; nodelIndex++
{ int nodelId
nodeIdPer [nodelIndex
; for (

i=0

< n

)

]
int

;1

;o1 o+t)
sumOfEdgeWeights [i
=0 ; int

[] adjacentNodes =
graph . getAdNodes (

BEGINFOR VARDEF BEGINFOR ASSIGN
VARDEF ASSIGN BEGINFOR ASSIGn
ENDFOR ASSIGN ENDFOR ...

-)

nodelId) ; for

(int 1 :

adjacentNodes) { int
clusterId = nodes2clu [
i] ; double

edgeWeight = graph .
getEdgeWeight (nodeld ,
i) ; 1if

Representation d

Compilation Runtime

Sim. measure ¢

level for d for

string of token types
string of token types
string of token types

string of token types

compression ratio
greedy string tiling
longest common substring

longest common subseq.

lexical
lexical
lexical

[Chen et al. 2004]
[Prechelt et al. 2000]
[Burrows et al. 2000]

JSESHSS:
JoSgoNgY
= 33

=
[\

lexical [new]

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR|VARDEF BEGINFOR ASSIGN VARDEEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEFEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR|VARDEF BEGINFOR ASSIGN VARDEEF ASSIGN BEGINFOR ASSIGN

BEGINFOR|VARDEF VARDEFEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR VARDEF [BEGINFOR ASSIGN VARDEEF ASSIGN BEGINFOR ASSIGN

BEGINFOR|VARDEF VARDEFEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR VARDEF [BEGINFOR ASSIGN VARDEEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF |VARDEEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR VARDEF;B%%%@%@%EASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF |VARDEEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR VARDEF [BEGINFOR ASSIGN |VARDEF ASSIGN|[BEGINFOR ASSIGN

BEGINFOR VARDEF ||[VARDEEF ASSIGN|CASE BEGINSWITCH |BEGINFOR ASSIGN

29 webis@LWA October 6, 2008

Retrieval Models for Source Code
Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ¢ is substring maximization.

BEGINFOR VARDEF |BEGINFOR ASSIGN [VARDEF ASSIGN|BEGINFOR ASSIGN

BEGINFOR VARDEF ||[VARDEEF ASSIGN|CASE BEGINSWITCH |BEGINFOR ASSIGN

Longest common subsequence:

2 - |lcs(sy, s,)]
Sq + [s2

W(SCN Sx) —

30 webis@LWA October 6, 2008

Retrieval Models for Source Code
Comparison of Structure-based String Models

Corpus:

0 open source project JNode, (Java New Operating System Design Effort)
o 18 subsequent release versions, 80 091 documents
o 121215 methods

Experiment (plot below): sample of 50 000 method pairs, drawn i.i.d.

100 1 greedy string tiling

T longest common
subsequence

—_
o

—

0.1

0.01 7

Fraction at all similarities [%]

0.001 ™
0 01 02 03 04 05 06 07 08 09 1.0

Similarity interval

31 webis@LWA October 6, 2008

Retrieval Models for Source Code
Fingerprint-based Models

//subloop. for each node... for (int nodeIndex
for (int nodeIndex = 0; nodeIndex<n; nodeIndex++) { = 0 ; nodelIndex

int nodeld = nodeldPermutation[nodelIndex]; .
//System.out .println("node: "+nodeld); <n 4 nodeIndex++
) { int nodeId
//reset sums. = nodelIdPer [nodelndex
for (int i=0; i<n; i++) sumOfEdgeWeights([i]=0;] ; for (
;
//sum all the edges going out to the same cluster int 1 = 0
int[] adjacentNodes = graph.getAdjacentNodes (nodeld); ;1 <n
for(int i : adjacentNodes) ;i)
{ ! . .
int clusterId = nodes2cluster[i]; sumOfEdgeWeights [i]
double edgeWeight=graph.getEdgeWeight (nodeld, 1i); =0 ; int
1% (cdgeiieraht oo chreenold) =] idjacentodes = {2323753332,345256745}
sumOfEdgeWeights [clusterId] += edgeWeight;
} graph . getAdNodes (
} nodeId) ; for
//and determine the cluster of biggest sum. (int i :
int newClusterNumber=nodes2cluster [nodeld]; A g A
double maxWeight=0; adjacentNodes) { int
for(int i =0; i<sumOfEdgeWeights.length; i++) clusterId = nodes2clu [
{ $.
if ((sumOfEdgeWeights[i])>maxWeight) { il c.iouble
newClusterNumber=i; edgeWeight = graph .
maxWeight=sumOfEdgeWeights[i]; getEdgeWeight (nodeld ,

} L
} i) ; if

Rationale:

0 the inherent quadratic situation becomes linear
0 code repositories become extremely large

0 because of the problem structure we are interested in plagiarism
candidates; a human inspection is always necessary

Hash-based Search: Motivation

Hash-based Search: Motivation
Nearest Neighbor Search

.................................. O O
O o 50
O o ‘ O
%‘ Xdg O
O O O
O O O

Applications:
0 elimination of duplicates / near duplicates
0 identification of versioned and plagiarized documents
0 retrieval of similar documents

0 identification of source code plagiarism

34 webis@LWA October 6, 2008

Hash-based Search: Motivation
Nearest Neighbor Search

Ol o

O

Indexing with space partitioning methods:

0 Quad-tree.
Split the space recursively into sub-squares until only a few points left.

Space exponential in dimension; time exponential in dimension.

o Kd-tree. Linear space; exponential query time is still possible.

35 webis@LWA

October 6, 2008

Hash-based Search: Motivation
Nearest Neighbor Search

@ e i

Indexing with data partitioning methods:

o R-tree.
Bottom-up; heuristically construct minimum bounding regions for points
Works well for low dimensions (< 10).

o Rf-tree, X-tree, ...

36 webis@LWA October 6, 2008

Hash-based Search: Motivation
Document Representation and Search

The nearest neighbor problem cannot be solved efficiently in high dimensions by
partitioning methods.

“Existing methods are outperformed on average by a simple
sequential scan, if the number of dimensions exceeds around 10.”

[Weber 99, Gionis/Indyk/Motwani 99-04]

Hash-based Search: Motivation
Document Representation and Search

The nearest neighbor problem cannot be solved efficiently in high dimensions by
partitioning methods.

“Existing methods are outperformed on average by a simple
sequential scan, if the number of dimensions exceeds around 10.”

[Weber 99, Gionis/Indyk/Motwani 99-04]

English Wikipedia: 102 105, 1080 107} 108!
Dictionary Number of dimensions ﬁ
1-gram space 3921588 f: 5 5 5 5
4-gram space 274101016 Embedding , , ,
8-gram space 373795734 — i

o i Projectin
Shingling space 75659 644 101i 102 103

' ' | Size of document
: representation x

Hash-based Search: Motivation
Document Representation and Search

Given the representation x,, of a query document and a collection D.

0 Linear comparison under some BOW representation
Similarity ranking (baseline)

0.02 0.1 0.07 0.0 0.02 0.0 0.04 0.0
0.0 0.2 0.0 0.0 0.0 0.01 0.0 0.0
0.01 0.0 0.0 0.05 0.01 0.06 0.0 0.01
0.0 0.1 0.1 0.1 0.0 0.0 0.0 0.0
0.0 0.2 0.0 0.0 0.0 0.01 0.05 0.0
0.0 0.1 0.01 0.08 0.0 0.0 0.01 0.0
0.02 0.3 0.02 0.0 0.06 0.0 0.02 0.02
0.07 0.0 0.03 0.0 0.09 0.0 0.03 0.06
0.0 0.0 0.0 0.0 0.0 0.03 0.0 0.0

Hash-based Search: Motivation

Document Representation and Search

Given the representation x,, of a query document and a collection D.

0 Linear comparison under some BOW representation
Similarity ranking (baseline)

o Linear comparison under some compact representation
Acceptable similarity ranking (85% recall at » > 0.5)

0.07 0.0 0.02 0.0 0.04 0.0
0.0 0.0 0.0 0.01 0.0 0.0
0.0 0.05 0.01 0.06 0.0 0.01
0.1 0.1 0.0 0.0

0.0 0.0

|/

Hash-based Search: Motivation
Document Representation and Search

Given the representation x,, of a query document and a collection D.

0 Linear comparison under some BOW representation
Similarity ranking (baseline)

o Linear comparison under some compact representation
Acceptable similarity ranking (85% recall at » > 0.5)

a Comparison in constant time with a similarity-sensitive hash function &,
Binary decision wrt. threshold 6 (similar if ¢ > 6 / not similar if ¢ < 6)

124298 456723 546781 342509 129842 972653 921345 546719 564214 519461

Hash-based Search: Motivation
Hash-based Search is a Space Partitioning Method

Xq4 O
0 o ;dg
()

42 webis@LWA October 6, 2008

Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

12

13

15
‘xd1 X O
@
Xd2 16
14

17

18

(%) = {13
(i) = {14
ho(i;) = {16
ho() = {16

Hash-based Search: Motivation
Hash-based Search is a Space Partitioning Method

ho(Xds) = {13, 24}
ho(%) = {14, 24}
ho(%4.) = {16, 24}
ho(* 1) = {16, 26}

44 webis@LWA October 6, 2008

Hash-based Search: Motivation
Hash-based Search is a Space Partitioning Method

Similarity collision condition:

(Roxa) O R5(x0)) 20 & %, Xe) > 0

45 webis@LWA

ho(Xd,) = {13, 24}
ho(%d,) = {14, 24}
ho(%ds) = {16, 24}
ho(* 1) = {16, 26}

October 6, 2008

Hash-based Search: Motivation
Hash-based Search is a Space Partitioning Method

Similarity collision condition:

(h(xa) Nh(xa,)) #0 < p(X4,Xay) > 0

46 webis@LWA

S

saas!

S S5 I I
S 6

S

Hash index

October 6, 2008

Hash-based Search: Motivation
Issues about Hash-based Search

0 Hash-based search reduces a cont. similarity relation to a binary relation.
0o Hash-based search is a space partitioning method.

a Space partitioning is realized by a similarity-sensitive hash function A.,.

a Equal codes under h, indicate similar objects with a high probability.

Precision: hy(xq,) Nhy(xq,) #0 = P(p(X4,,Xa,) > 0) is high

a h, maps similar objects on equal codes with a high probability.

Recall: ¢(x4,,X4,) >0 = P(hy(xq,) N hp(xa,) # 0) is high

a h, must be multi-valued if D is partly unknown.

a A perfectly similarity-sensitive hash function A7, may exist for each D.

47 webis@LWA October 6, 2008

Hash-based Search
Construction Principles for h,: Shingling [Broder 2000]

Embedding -> Quantization -> Encoding

TV {1, .., [V} (1

<A

VI

Synchronized random projection

48 webis@LWA October 6, 2008

Hash-based Search
Construction Principles for h,: Shingling [Broder 2000]

Embedding -> Quantization -> Encoding

T V{1, ., |V} (1 MD5(v | 1(v)=min(w1))

<A

.“’\

VI

Synchronized random projection

49 webis@LWA October 6, 2008

Hash-based Search
Construction Principles for h,: Shingling [Broder 2000]

Embedding -> Quantization -> Encoding

T V{1, ., |V} (1 MD5(v | 1(v)=min(w1))

To: V{1, ..., V]

i V- {1, .. |V]}

<A

.“’\

VI

Synchronized random projection

50 webis@LWA October 6, 2008

Hash-based Search
Construction Principles for h,: Shingling [Broder 2000]

Embedding -> Quantization -> Encoding

MD5(v | 7t1(v)=min(m1))
MD5(v | m2(v)=min(n2))

T V{1, ., V) (1
To: V{1, .. V]

i Vs {1, [V} MD5(v | mi(v)=min())

<A

VI

Synchronized random projection

51 webis@LWA October 6, 2008

Hash-based Search
Construction Principles for h,: Shingling [Broder 2000]

Embedding -> Quantization -> Encoding

Ti: V{1, ... |V] 1 MD5(v | m1(v)=min(m1)) Projection and
Mo Vo {1, V) | 2 MD5(v | Tta(v)=min(r2)) quantization of
; : MD5 hashes.
Tei V= {1, .y [V} MD5(v | mtk(v)=min(m))
<A
V|
Synchronized random projection "Super-shingling"

=» Fingerprint = {2643256, 325567} = h,(x,)

52 webis@LWA October 6, 2008

Hash-based Search

Construction Principles for h,: Fuzzy-Fingerprinting

Embedding

-

Quantization

A priori probabilities Distribution of prefix
from BNC classes in sample

—

o il o

Normalization and
difference computation

@ Documents from the British National Corpus

53 webis@LWA

Encoding

October 6, 2008

Hash-based Search

Construction Principles for h,: Fuzzy-Fingerprinting

A priori probabilities
from BNC

Embedding

</

-

L

Quantization

Distribution of prefix
classes in sample

@ Documents from the British National Corpus

54 webis@LWA

—

N

Normalization and
difference computation

2

N

Encoding

Fuzzification

October 6, 2008

Hash-based Search

Construction Principles for h,: Fuzzy-Fingerprinting

Embedding

-

Quantization

A priori probabilities Distribution of prefix
from BNC classes in sample

—

N

Normalization and
difference computation

@ Documents from the British National Corpus

=» Fingerprint = {2643256,

55 webis@LWA

2

N

Fuzzification

Encoding
k
B (xa) =Y plys) -7
1=1

October 6, 2008

Hash-based Search

Construction Principles for h,: Fuzzy-Fingerprinting

Embedding

-

Quantization

A priori probabilities Distribution of prefix
from BNC classes in sample

—

N

Normalization and
difference computation

@ Documents from the British National Corpus

=» Fingerprint = {2643256,

56 webis@LWA

2

N

Fuzzification

Encoding
k
B (xa) =Y plys) -7
1=1

October 6, 2008

Hash-based Search

Construction Principles for h,: Fuzzy-Fingerprinting

Embedding -> Quantization

¢
A priori probabilities Distribution of prefix
from BNC classes in sample _
S
‘=|:F'.-|:F'!:P=-—== Fuzzification

Normalization and
difference computation

@ Documents from the British National Corpus

-» Fingerprint = {2643256, 325567} = h.,(x,)

57 webis@LWA

Encoding
k
W (xq) = ply) -
1=1

October 6, 2008

Hash-based Search
Properties of h,,

Code length controls precision.

The collision probability P(h,(x4,) N hy(%4,) # 0 | ©(x4,,%4,) < 0) goes down if

QO the number k of random vectors (p-stable LSH)
Q the number £ of prefix classes (Fuzzy-fingerprinting)
Q...

is increased.

Hash-based Search
Properties of h,,

Code length controls precision.

The collision probability P(h,(x4,) N hy(%4,) # 0 | ©(x4,,%4,) < 0) goes down if

QO the number k of random vectors (p-stable LSH)
Q the number £ of prefix classes (Fuzzy-fingerprinting)
Q...

is increased.

Code multiplicity controls recall.

The collision probability P(h,(x4,) N hy(X4,) # 0 | ©(x4,,%4,) > 0) goes up if

Q the number [of vector sets (p-stable LSH)
QO the number [of fuzzification schemes (Fuzzy-fingerprinting)
a ...

is increased.

Retrieval Models for Source Code
Fingerprint-based Models

Corpus: as before
Experiment (plot below): 200 queries against fingerprinted corpus
Baseline: greedy string tiling

1.0 1.0
08 + 0.8
S
‘& 06 +— © 0.6
.6 8
O 04 1 r 04
o
02 +— 0.2
0.0 1. 0.0 +—— mﬂ
07 08 0.9 1 0.7 08 0.9 1
Similarity interval Similarity interval
[Shingling

B Fuzzy fingerprinting

60 webis@LWA October 6, 2008

Retrieval Models for Source Code
Fingerprint-based Models

Corpus: as before
Experiment (plot below): 200 queries against fingerprinted corpus
Baseline: greedy string tiling

1.0 1.0
0.8 +—
c 0.8 7 7 o
o —_— 7]
‘5 0.6 1— S 06 A
= 7]
S 04 3 7 /]
O 04 +— o 04 - e
o
0.2 +— 0.2 + v a A _J:
0.0 : 0.0 L, , = ,l-_ri
0.7 0.8 0.9 1 0.7 0.8 0.9 1
Similarity interval Similarity interval
[Shingling
B Fuzzy fingerprinting 777l Retrieval of text documents

61 webis@LWA October 6, 2008

Summary

Summary

1. Survey of retrieval models for high-similarity search in source code.

2. We propose the longest common subsequence for the class of
structure-based string models:

0 better suited for short source code fragments
0 ¢ computation in O(|d|?) instead of in O(|d|?)

3. We investigate the use of hash-based search high-similarity search in
source code:

0 basis is the class of structure-based string models
o real-world order of magnitudes become possible
o the ad-hoc application of existing technology leads to unsatisfying recall

g

Thank you!

