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Overview

Plagiarism is the practice of claiming, or implying, original authorship

of someone else’s written or creative work, in whole or in part, into

one’s own without adequate acknowledgment.

[Wikipedia: Plagiarism]

q Plagiarism is observed in literature, music, software, scientific articles,

newspaper, advertisement, Web sites, etc.

q A study among 18 000 university students in the United States shows that

almost 40% of them have plagiarized at least once. [1]

[1] D. McCabe. Research Report of the Center for Academic Integrity.

http://www.academicintegrity.org, 2005.
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Overview

Taxonomy of Plagiarism Offenses

Plagiarism offence


Detection method


Accurate copy


Identity analysis


Modified


copy


Small part of document


Local identity analysis


Large part of document


Global identity analysis: Document model comparison (suffix-tree)


Language translation


Structure analysis


Transformation


Similarity analysis


w/o reference corpus:


Style analysis


with reference corpus:


Chunk identity (MD5-Hash)


Small part of document


Local similarity analysis


Large part of document


Global analysis: Document model comparison (VSM)


w/o reference corpus:


Style analysis


with reference corpus:


Fuzzy-fingerprinting
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Paragraph detection

Knowledge-based


post processing
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Paragraph detection

Knowledge-based


post processing


External analysis

Suspicious


paragraphs

ComparisonHeuristic retrieval (focused search)
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Overview

Examples for Identification Technology

q Level 1. Identity analysis for paragraphs.

MD5 hashing

q Level 2. Synchronized identity analysis for paragraphs.

hashed breakpoint chunking

q Level 3. Tolerant similarity analysis for paragraphs.

Fuzzy-fingerprinting

q Level 4. Intrinsic (style) analysis without a reference corpus.

statistical outlier analysis with Bayes, meta learning with logistic regression

q Level 5. Correct citation.

knowledge-based analysis
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Overview

Current research is corpus-centered, “external plagiarism analysis”.

[Brin et al. 1995, Monostori et al. 2001-2004, Stein et al. 2004-2006, etc.]

External plagiarism analysis formulated as decision problem:

Problem. AVEXTERN (AV stands for Authorship Verification)

Given. A text d, allegedly written by author A, and set of texts D,

D = {d1, . . . , dn}, written by an arbitrary number of authors.

Question. Does d contain sections whose similarity to sections in D is above

a threshold θ?
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Overview

Basic Principle

q Partition each document in meaningful sections, also called “chunks”.

q Do a pairwise comparison using a similarity function ϕ.

.
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Abstract The paper in hand presents a Web-based application for the analysis of text documents

with respect to plagiarism. Aside from reporting experiences with standard algorithms, a new

method for plagiarism analysis is introduced. Since well-known algorithms for plagiarism detection

assume the existence of a candidate document collection against which a suspicious document

can be compared, they are unsuited to spot potentially copied passages using only the input document

This kind of plagiarism remains undetected e.g. when paragraphs are copied from sources

that are not available electronically. Our method is able to detect a change in writing style, and

consequently to identify suspicious passages within a single document. Apart from contributing to

solve the outlined problem, the presented method can also be used to focus a search for potentially

original documents.

Key words: plagiarism analysis, style analysis, focused search, chunking, Kullback-Leibler divergence

1 Introduction

Plagiarism refers to the use of another’
s ideas, information, language, or writing,

when done without proper acknowledgment of the original source [15]. Recently,

the growing amount of digitally available documents contributes to the possibility to

easily find and (partially) copy text documents given a specific topic: According to

McCabe’
s plagiarism study on 18,000 students, about 50% of the students admit to

plagiarize from Internet documents [7].

1.1 Plagiarism Forms

Plagiarism happens in several forms. Heintze distinguishes between the following textual

relationships between documents: identical copy, edited copy, reorganized document,

revisioned document, condensed/expanded document, documents that include

portions of other documents. Moreover, unauthorized (partial) translations and documents

that copy the structure of other documents can also be seen as plagiarized.

Figure 1 depicts a taxonomy of plagiarism forms. Orthogonal to plagiarism forms

are the underlying media: plagiarism may happen in articles, books or computer programs.

Our Web-based plagiarism analysis application takes a suspicious document

from an a-priori unknown domain as input. Consequently, an unsupervised, 

domainindependent keyword extraction algorithm that takes a single document as input

would be convenient, language independence being a plus. Matsuo and Ishizuka propose

such a method; it is based on a ÷2-analysis of term co-occurence data [6].

2.2 Query Generation: Focussing Search

When keywords are extracted from the suspicious document, we employ a heuristic

query generation procedure, which was first presented in [12]. Let K1 denote the

set of keywords that have been extracted from a suspicious document. By adding

synonyms, coordinate terms, and derivationally related forms, the set K1 is extended

towards a setK2 [2].WithinK2 groups of words are identified by exploiting statistical

knowledge about significant left and right neighbors, as well as adequate co-occurring

words, yielding the set K3 [13]. Then, a sequence of queries is generated (and passed

to search engines).

This selection step is controlled by quantitative relevance feedback: Depending

on the number of found documents more or less “esoteric”
 queries are generated.

Note that such a control can be realized by a heuristic ordering of the set K3, which

considers word group sizes and word frequency classes [14]. The result of this step is

a candidate document collection C = {d1, . . . , dn}.

3 Plagiarism Analysis

As outlined above, a document may be plagiarized in different forms. Consequently,

several indications exist to suspect a document of plagiarism. An adoption of indications

that are given in [9] is as follows.

(1) Copied text. If text stems from a source that is known and it is not cited properly

then this is an obvious case of plagiarism.

(2) Bibliography. If the references in documents overlap significantly, the bibliography

and other parts may be copied. A changing citing style may be a sign for

plagiarism.

(3) Change in writing style. A suspect change in the author’
s style may appear

paragraph- or section-wise, e.g. between objective and subjective style, nominaland

verbal style, brillant and baffling passages.

(4) Change in formatting. In copy-and-paste plagiarism cases the formatting of the

original document is inherited to pasted paragraphs, especially when content is

copied from browsers to text processing programs.

(5) Textual patchwork. If the line of argumentation throughout a document is consequently

incoherent then the document may be a “mixed plagiate”, i.e. a compilation

of different sources.

suspicious document corpus documents

ϕ

Complexity:

n documents in corpus, c chunks per document on average

Ü O(n · c2) comparisons

15 webis@LWA October 6, 2008



Overview

Comparison with Fingerprints (Level 1)

q Partition each document into equidistant sections.

q Compute fingerprints of the chunks using a hash function h.

q Put all hashes into a hash table. A collision indicates matching chunks.
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1 Introduction

Plagiarism refers to the use of another’
s ideas, information, language, or writing,

when done without proper acknowledgment of the original source [15]. Recently,

the growing amount of digitally available documents contributes to the possibility to

easily find and (partially) copy text documents given a specific topic: According to

McCabe’
s plagiarism study on 18,000 students, about 50% of the students admit to

plagiarize from Internet documents [7].

1.1 Plagiarism Forms

Plagiarism happens in several forms. Heintze distinguishes between the following textual

relationships between documents: identical copy, edited copy, reorganized document,

revisioned document, condensed/expanded document, documents that include

portions of other documents. Moreover, unauthorized (partial) translations and documents

that copy the structure of other documents can also be seen as plagiarized.

Figure 1 depicts a taxonomy of plagiarism forms. Orthogonal to plagiarism forms

are the underlying media: plagiarism may happen in articles, books or computer programs.

Our Web-based plagiarism analysis application takes a suspicious document

from an a-priori unknown domain as input. Consequently, an unsupervised, 

domainindependent keyword extraction algorithm that takes a single document as input

would be convenient, language independence being a plus. Matsuo and Ishizuka propose

such a method; it is based on a ÷2-analysis of term co-occurence data [6].

2.2 Query Generation: Focussing Search

When keywords are extracted from the suspicious document, we employ a heuristic

query generation procedure, which was first presented in [12]. Let K1 denote the

set of keywords that have been extracted from a suspicious document. By adding

synonyms, coordinate terms, and derivationally related forms, the set K1 is extended

towards a setK2 [2].WithinK2 groups of words are identified by exploiting statistical

knowledge about significant left and right neighbors, as well as adequate co-occurring

words, yielding the set K3 [13]. Then, a sequence of queries is generated (and passed

to search engines).

This selection step is controlled by quantitative relevance feedback: Depending

on the number of found documents more or less “esoteric”
 queries are generated.

Note that such a control can be realized by a heuristic ordering of the set K3, which

considers word group sizes and word frequency classes [14]. The result of this step is

a candidate document collection C = {d1, . . . , dn}.

3 Plagiarism Analysis

As outlined above, a document may be plagiarized in different forms. Consequently,

several indications exist to suspect a document of plagiarism. An adoption of indications

that are given in [9] is as follows.

(1) Copied text. If text stems from a source that is known and it is not cited properly

then this is an obvious case of plagiarism.

(2) Bibliography. If the references in documents overlap significantly, the bibliography

and other parts may be copied. A changing citing style may be a sign for

plagiarism.

(3) Change in writing style. A suspect change in the author’
s style may appear

paragraph- or section-wise, e.g. between objective and subjective style, nominaland

verbal style, brillant and baffling passages.

(4) Change in formatting. In copy-and-paste plagiarism cases the formatting of the

original document is inherited to pasted paragraphs, especially when content is

copied from browsers to text processing programs.

(5) Textual patchwork. If the line of argumentation throughout a document is consequently

incoherent then the document may be a “mixed plagiate”, i.e. a compilation

of different sources.

suspicious document corpus documents

h=9154

h=2232

Complexity:

n documents in corpus, c chunks per document on average

Ü O(n · c) operations (fingerprint generation, hash table operations)
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Overview

Comparison with Fingerprints (Level 2)

q Partition each document into synchronized sections.

q Compute fingerprints of the chunks using a hash function h.

q Put all hashes into a hash table. A collision indicates matching chunks.
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can be compared, they are unsuited to spot potentially copied passages using only the input document

This kind of plagiarism remains undetected e.g. when paragraphs are copied from sources

that are not available electronically. Our method is able to detect a change in writing style, and

consequently to identify suspicious passages within a single document. Apart from contributing to

solve the outlined problem, the presented method can also be used to focus a search for potentially
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Key words: plagiarism analysis, style analysis, focused search, chunking, Kullback-Leibler divergence

1 Introduction

Plagiarism refers to the use of another’
s ideas, information, language, or writing,

when done without proper acknowledgment of the original source [15]. Recently,

the growing amount of digitally available documents contributes to the possibility to

easily find and (partially) copy text documents given a specific topic: According to

McCabe’
s plagiarism study on 18,000 students, about 50% of the students admit to

plagiarize from Internet documents [7].

1.1 Plagiarism Forms

Plagiarism happens in several forms. Heintze distinguishes between the following textual

relationships between documents: identical copy, edited copy, reorganized document,

revisioned document, condensed/expanded document, documents that include

portions of other documents. Moreover, unauthorized (partial) translations and documents

that copy the structure of other documents can also be seen as plagiarized.

Figure 1 depicts a taxonomy of plagiarism forms. Orthogonal to plagiarism forms

are the underlying media: plagiarism may happen in articles, books or computer programs.

Our Web-based plagiarism analysis application takes a suspicious document

from an a-priori unknown domain as input. Consequently, an unsupervised, 

domainindependent keyword extraction algorithm that takes a single document as input

would be convenient, language independence being a plus. Matsuo and Ishizuka propose

such a method; it is based on a ÷2-analysis of term co-occurence data [6].

2.2 Query Generation: Focussing Search

When keywords are extracted from the suspicious document, we employ a heuristic

query generation procedure, which was first presented in [12]. Let K1 denote the

set of keywords that have been extracted from a suspicious document. By adding

synonyms, coordinate terms, and derivationally related forms, the set K1 is extended

towards a setK2 [2].WithinK2 groups of words are identified by exploiting statistical

knowledge about significant left and right neighbors, as well as adequate co-occurring

words, yielding the set K3 [13]. Then, a sequence of queries is generated (and passed

to search engines).

This selection step is controlled by quantitative relevance feedback: Depending

on the number of found documents more or less “esoteric”
 queries are generated.

Note that such a control can be realized by a heuristic ordering of the set K3, which

considers word group sizes and word frequency classes [14]. The result of this step is

a candidate document collection C = {d1, . . . , dn}.

3 Plagiarism Analysis

As outlined above, a document may be plagiarized in different forms. Consequently,

several indications exist to suspect a document of plagiarism. An adoption of indications

that are given in [9] is as follows.

(1) Copied text. If text stems from a source that is known and it is not cited properly

then this is an obvious case of plagiarism.

(2) Bibliography. If the references in documents overlap significantly, the bibliography

and other parts may be copied. A changing citing style may be a sign for

plagiarism.

(3) Change in writing style. A suspect change in the author’
s style may appear

paragraph- or section-wise, e.g. between objective and subjective style, nominaland

verbal style, brillant and baffling passages.

(4) Change in formatting. In copy-and-paste plagiarism cases the formatting of the

original document is inherited to pasted paragraphs, especially when content is

copied from browsers to text processing programs.

(5) Textual patchwork. If the line of argumentation throughout a document is consequently

incoherent then the document may be a “mixed plagiate”, i.e. a compilation

of different sources.

suspicious document corpus documents

h=3294

h=7439
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Complexity:

n documents in corpus, c chunks per document on average

Ü O(n · c) operations (fingerprint generation, hash table operations)
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Overview

Comparison with Fingerprints (Level 3)

Discussion:

q Hashing is fast, but sensitive to smallest changes:

h(c1) = h(c2) ⇒ c1 = c2 (with very high probability)

Current research:

q Focus on fuzzy hash functions hϕ:

hϕ(c1) = hϕ(c2) ⇒ P (ϕ(c1, c2) > θ) ≥ 1 − ε [Stein 2005-07]

q Fuzzy hash functions allow for large chunk sizes (speed-up)

q Fuzzy hash functions are not sensitive to small changes
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Retrieval Models for Source Code

//subloop. for each node...

for(int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

    int nodeId = nodeIdPermutation[nodeIndex];

    //System.out.println("node: "+nodeId);

 

    //reset sums.

    for(int i=0; i<n; i++) sumOfEdgeWeights[i]=0;

   

    //sum all the edges going out to the same cluster

    int[] adjacentNodes = graph.getAdjacentNodes(nodeId);

    for(int i : adjacentNodes)

    { 

      int clusterId = nodes2cluster[i];

      double edgeWeight=graph.getEdgeWeight(nodeId, i);

      if(edgeWeight >= threshold){

        sumOfEdgeWeights[clusterId] += edgeWeight;

      }

    }

    //and determine the cluster of biggest sum.

    int newClusterNumber=nodes2cluster[nodeId];

    double maxWeight=0;

    for(int i =0; i<sumOfEdgeWeights.length; i++)

   {

      if((sumOfEdgeWeights[i])>maxWeight){

        newClusterNumber=i;

        maxWeight=sumOfEdgeWeights[i];

     }

   }

  ...

Compilation Runtime

Representation d Sim. measure ϕ level for d for ϕ
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Retrieval Models for Source Code

Structure-based Graph Models

//subloop. for each node...

for(int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

    int nodeId = nodeIdPermutation[nodeIndex];

    //System.out.println("node: "+nodeId);

 

    //reset sums.

    for(int i=0; i<n; i++) sumOfEdgeWeights[i]=0;

   

    //sum all the edges going out to the same cluster

    int[] adjacentNodes = graph.getAdjacentNodes(nodeId);

    for(int i : adjacentNodes)

    { 

      int clusterId = nodes2cluster[i];

      double edgeWeight=graph.getEdgeWeight(nodeId, i);

      if(edgeWeight >= threshold){

        sumOfEdgeWeights[clusterId] += edgeWeight;

      }

    }

    //and determine the cluster of biggest sum.

    int newClusterNumber=nodes2cluster[nodeId];

    double maxWeight=0;

    for(int i =0; i<sumOfEdgeWeights.length; i++)

   {

      if((sumOfEdgeWeights[i])>maxWeight){

        newClusterNumber=i;

        maxWeight=sumOfEdgeWeights[i];

     }

   }

  ...

Ü 

For

CondBlock

If

ElseThen

Operator

Op2Op1

Compilation Runtime

Representation d Sim. measure ϕ level for d for ϕ

abstract syntax trees hash-based subtree

search

syntactical O(|d|) [Baxter et al. 1998]

conceptual graphs heuristically focused

isomorphic graph search

semantic O(|d|3) [Mishne et al. 2004]

program dep. graphs isomorphic graph search semantic NP-complete [Liu et al. 2006]
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Retrieval Models for Source Code

Attribute-based Vector Models

//subloop. for each node...

for(int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

    int nodeId = nodeIdPermutation[nodeIndex];

    //System.out.println("node: "+nodeId);

 

    //reset sums.

    for(int i=0; i<n; i++) sumOfEdgeWeights[i]=0;

   

    //sum all the edges going out to the same cluster

    int[] adjacentNodes = graph.getAdjacentNodes(nodeId);

    for(int i : adjacentNodes)

    { 

      int clusterId = nodes2cluster[i];

      double edgeWeight=graph.getEdgeWeight(nodeId, i);

      if(edgeWeight >= threshold){

        sumOfEdgeWeights[clusterId] += edgeWeight;

      }

    }

    //and determine the cluster of biggest sum.

    int newClusterNumber=nodes2cluster[nodeId];

    double maxWeight=0;

    for(int i =0; i<sumOfEdgeWeights.length; i++)

   {

      if((sumOfEdgeWeights[i])>maxWeight){

        newClusterNumber=i;

        maxWeight=sumOfEdgeWeights[i];

     }

   }

  ...

Ü 

For

CondBlock

If

ElseThen

Operator

Op2Op1

Ü 

for ( int nodeIndex


= 0 ; nodeIndex


< n ; nodeIndex++


) { int nodeId


= nodeIdPer [ nodeIndex


] ; for (


int i = 0


; i < n


; i ++ )


sumOfEdgeWeights [ i ]


= 0 ; int


[ ] adjacentNodes =


graph . getAdNodes ( 


nodeId ) ; for


( int i :


adjacentNodes ) { int


clusterId = nodes2clu [


i ] ; double


edgeWeight = graph .


getEdgeWeight ( nodeId ,


i ) ; if


...

Compilation Runtime

Representation d Sim. measure ϕ level for d for ϕ

software metric features cosine none O(|d|) [Ottenstein 1976]

all n grams Jaccard lexical O(|d|) [Clough et al. 2002]

subset of all n grams Jaccard lexical O(|d|) [Schleimer et al. 2003]

n < 5
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Retrieval Models for Source Code

Structure-based String Models

//subloop. for each node...

for(int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

    int nodeId = nodeIdPermutation[nodeIndex];

    //System.out.println("node: "+nodeId);

 

    //reset sums.

    for(int i=0; i<n; i++) sumOfEdgeWeights[i]=0;

   

    //sum all the edges going out to the same cluster

    int[] adjacentNodes = graph.getAdjacentNodes(nodeId);

    for(int i : adjacentNodes)

    { 

      int clusterId = nodes2cluster[i];

      double edgeWeight=graph.getEdgeWeight(nodeId, i);

      if(edgeWeight >= threshold){

        sumOfEdgeWeights[clusterId] += edgeWeight;

      }

    }

    //and determine the cluster of biggest sum.

    int newClusterNumber=nodes2cluster[nodeId];

    double maxWeight=0;

    for(int i =0; i<sumOfEdgeWeights.length; i++)

   {

      if((sumOfEdgeWeights[i])>maxWeight){

        newClusterNumber=i;

        maxWeight=sumOfEdgeWeights[i];

     }

   }

  ...

Ü 

For

CondBlock

If

ElseThen

Operator

Op2Op1

Ü 

for ( int nodeIndex


= 0 ; nodeIndex


< n ; nodeIndex++


) { int nodeId


= nodeIdPer [ nodeIndex


] ; for (


int i = 0


; i < n


; i ++ )


sumOfEdgeWeights [ i ]


= 0 ; int


[ ] adjacentNodes =


graph . getAdNodes ( 


nodeId ) ; for


( int i :


adjacentNodes ) { int


clusterId = nodes2clu [


i ] ; double


edgeWeight = graph .


getEdgeWeight ( nodeId ,


i ) ; if


...

Ü 
BEGINFOR VARDEF BEGINFOR ASSIGN


VARDEF ASSIGN BEGINFOR ASSIGn


ENDFOR ASSIGN ENDFOR ... 

Compilation Runtime

Representation d Sim. measure ϕ level for d for ϕ

string of token types compression ratio lexical O(|d|2) [Chen et al. 2004]

string of token types greedy string tiling lexical O(|d|3) [Prechelt et al. 2000]

string of token types longest common substring lexical O(|d|2) [Burrows et al. 2000]

string of token types longest common subseq. lexical O(|d|2) [new]
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.��yyBEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN
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Retrieval Models for Source Code

Comparison of Structure-based String Models

For “compression ration”, “greedy string tiling”, and “longest common substring”

the heart of ϕ is substring maximization.

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN


Longest common subsequence:

BEGINFOR VARDEF BEGINFOR ASSIGN VARDEF ASSIGN BEGINFOR ASSIGN

BEGINFOR VARDEF VARDEF ASSIGN CASE BEGINSWITCH BEGINFOR ASSIGN


���yyy���yyy
ϕ(sq, sx) =

2 · |lcs(sq, sx)|

|sq| + |sx|
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Retrieval Models for Source Code

Comparison of Structure-based String Models

Corpus:

q open source project JNode, (Java New Operating System Design Effort)

q 18 subsequent release versions, 80 091 documents

q 121 215 methods

Experiment (plot below): sample of 50 000 method pairs, drawn i.i.d.

Similarity interval
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Retrieval Models for Source Code

Fingerprint-based Models

//subloop. for each node...

for(int nodeIndex = 0; nodeIndex<n; nodeIndex++) {

    int nodeId = nodeIdPermutation[nodeIndex];

    //System.out.println("node: "+nodeId);

 

    //reset sums.

    for(int i=0; i<n; i++) sumOfEdgeWeights[i]=0;

   

    //sum all the edges going out to the same cluster

    int[] adjacentNodes = graph.getAdjacentNodes(nodeId);

    for(int i : adjacentNodes)

    { 

      int clusterId = nodes2cluster[i];

      double edgeWeight=graph.getEdgeWeight(nodeId, i);

      if(edgeWeight >= threshold){

        sumOfEdgeWeights[clusterId] += edgeWeight;

      }

    }

    //and determine the cluster of biggest sum.

    int newClusterNumber=nodes2cluster[nodeId];

    double maxWeight=0;

    for(int i =0; i<sumOfEdgeWeights.length; i++)

   {

      if((sumOfEdgeWeights[i])>maxWeight){

        newClusterNumber=i;

        maxWeight=sumOfEdgeWeights[i];

     }

   }

  ...

Ü 

for ( int nodeIndex


= 0 ; nodeIndex


< n ; nodeIndex++


) { int nodeId


= nodeIdPer [ nodeIndex


] ; for (


int i = 0


; i < n


; i ++ )


sumOfEdgeWeights [ i ]


= 0 ; int


[ ] adjacentNodes =


graph . getAdNodes ( 


nodeId ) ; for


( int i :


adjacentNodes ) { int


clusterId = nodes2clu [


i ] ; double


edgeWeight = graph .


getEdgeWeight ( nodeId ,


i ) ; if


...

{2323753332,345256745}

Rationale:

q the inherent quadratic situation becomes linear

q code repositories become extremely large

q because of the problem structure we are interested in plagiarism

candidates; a human inspection is always necessary

32 webis@LWA October 6, 2008



Hash-based Search: Motivation
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Hash-based Search: Motivation

Nearest Neighbor Search

xdq

θ

Applications:

q elimination of duplicates / near duplicates

q identification of versioned and plagiarized documents

q retrieval of similar documents

q identification of source code plagiarism
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Hash-based Search: Motivation

Nearest Neighbor Search

Indexing with space partitioning methods:

q Quad-tree.

Split the space recursively into sub-squares until only a few points left.

Space exponential in dimension; time exponential in dimension.

q Kd-tree. Linear space; exponential query time is still possible.
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Hash-based Search: Motivation

Nearest Neighbor Search

Indexing with data partitioning methods:

q R-tree.

Bottom-up; heuristically construct minimum bounding regions for points

Works well for low dimensions (< 10).

q Rf-tree, X-tree, . . .
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Hash-based Search: Motivation

Document Representation and Search

The nearest neighbor problem cannot be solved efficiently in high dimensions by

partitioning methods.

“Existing methods are outperformed on average by a simple

sequential scan, if the number of dimensions exceeds around 10.”

[Weber 99, Gionis/Indyk/Motwani 99-04]

37 webis@LWA October 6, 2008



Hash-based Search: Motivation

Document Representation and Search

The nearest neighbor problem cannot be solved efficiently in high dimensions by

partitioning methods.

“Existing methods are outperformed on average by a simple

sequential scan, if the number of dimensions exceeds around 10.”

[Weber 99, Gionis/Indyk/Motwani 99-04]

English Wikipedia:

Dictionary Number of dimensions

1-gram space 3 921 588

4-gram space 274 101 016

8-gram space 373 795 734

Shingling space 75 659 644

106 108107102

102 103

Size of document


representation xd

Embedding

Projecting

101

105
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Hash-based Search: Motivation

Document Representation and Search

Given the representation xdq of a query document and a collection D.

q Linear comparison under some BOW representation

Ü Similarity ranking (baseline)
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Hash-based Search: Motivation

Document Representation and Search

Given the representation xdq of a query document and a collection D.

q Linear comparison under some BOW representation

Ü Similarity ranking (baseline)

q Linear comparison under some compact representation

Ü Acceptable similarity ranking (85% recall at ϕ > 0.5)
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Hash-based Search: Motivation

Document Representation and Search

Given the representation xdq of a query document and a collection D.

q Linear comparison under some BOW representation

Ü Similarity ranking (baseline)

q Linear comparison under some compact representation

Ü Acceptable similarity ranking (85% recall at ϕ > 0.5)

q Comparison in constant time with a similarity-sensitive hash function hϕ

ÜBinary decision wrt. threshold θ (similar if ϕ > θ / not similar if ϕ ≤ θ)
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Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

xd1

xd4

xd3

xd2

θ
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Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

xd1

xd4

xd3

xd2

θ


hϕ(xd1
) = {13 }


hϕ(xd2
) = {14 }


hϕ(xd3
) = {16 }


hϕ(xd4
) = {16 }

hϕ
(1)

xd1

xd4

xd3

xd2

15

16
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12 17

13

...

18

θ


43 webis@LWA October 6, 2008



Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

xd1
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xd3

xd2

θ


hϕ(xd1
) = {13 }


hϕ(xd2
) = {14 }
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) = {16 }
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) = {16 }
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Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

xd1

xd4

xd3

xd2

θ


hϕ(xd1
) = {13 }


hϕ(xd2
) = {14 }


hϕ(xd3
) = {16 }


hϕ(xd4
) = {16 }

hϕ
(1)

xd1

xd4

xd3

xd2

15

16

14

12 17

13

...

18

θ


24

26

23

22

27

...

...

hϕ
(2)

, 24

, 24

, 24

, 26

Similarity collision condition:

( h∗
ϕ(xd1) ∩ h∗

ϕ(xd2) ) 6= ∅ ⇔ ϕ(xd1,xd2) > θ
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Hash-based Search: Motivation

Hash-based Search is a Space Partitioning Method

xd1

xd4

xd3

xd2

θ


hϕ(xd1
) = {13 }


hϕ(xd2
) = {14 }


hϕ(xd3
) = {16 }


hϕ(xd4
) = {16 }

hϕ
(1)

xd1

xd4

xd3

xd2

15

16

14

12 17

13

...

18

θ


24
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22

27

...

...

hϕ
(2)

, 24

, 24

, 24

, 26���������yyyyyyyyy������yyyyyyHash index

Similarity collision condition:

( h∗
ϕ(xd1) ∩ h∗

ϕ(xd2) ) 6= ∅ ⇔ ϕ(xd1,xd2) > θ
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Hash-based Search: Motivation

Issues about Hash-based Search

q Hash-based search reduces a cont. similarity relation to a binary relation.

q Hash-based search is a space partitioning method.

q Space partitioning is realized by a similarity-sensitive hash function hϕ.

q Equal codes under hϕ indicate similar objects with a high probability.

Precision: hϕ(xd1
) ∩ hϕ(xd2

) 6= ∅ ⇒ P (ϕ(xd1
,xd2

) > θ) is high

q hϕ maps similar objects on equal codes with a high probability.

Recall: ϕ(xd1
,xd2

) > θ ⇒ P (hϕ(xd1
) ∩ hϕ(xd2

) 6= ∅) is high

q hϕ must be multi-valued if D is partly unknown.

q A perfectly similarity-sensitive hash function h∗
ϕ may exist for each D.
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Hash-based Search

Construction Principles for hϕ: Shingling [Broder 2000]

Embedding Ü Quantization Ü Encoding

d

π1 :  V → {1, ..., |V|} 1

2























|V|


Synchronized random projection
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Hash-based Search

Construction Principles for hϕ: Shingling [Broder 2000]

Embedding Ü Quantization Ü Encoding

d

π1 :  V → {1, ..., |V|} 1

2























|V|


Synchronized random projection

MD5( v | π1(v)=min(π1))
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Hash-based Search

Construction Principles for hϕ: Shingling [Broder 2000]

Embedding Ü Quantization Ü Encoding

d

π1 :  V → {1, ..., |V|} 1

2























|V|


Synchronized random projection

MD5( v | π1(v)=min(π1))


...


π2 :  V → {1, ..., |V|}





πk :  V → {1, ..., |V|}


...
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Hash-based Search

Construction Principles for hϕ: Shingling [Broder 2000]

Embedding Ü Quantization Ü Encoding

d

π1 :  V → {1, ..., |V|} 1

2























|V|


Synchronized random projection

MD5( v | π1(v)=min(π1))


...


π2 :  V → {1, ..., |V|}





πk :  V → {1, ..., |V|}


...


MD5( v | π2(v)=min(π2))





MD5( v | πk(v)=min(πk))


...
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Hash-based Search

Construction Principles for hϕ: Shingling [Broder 2000]

Embedding Ü Quantization Ü Encoding

d

π1 :  V → {1, ..., |V|} 1

2























|V|


Synchronized random projection

MD5( v | π1(v)=min(π1))


...


π2 :  V → {1, ..., |V|}





πk :  V → {1, ..., |V|}


...


MD5( v | π2(v)=min(π2))





MD5( v | πk(v)=min(πk))


...

"Super-shingling"


Projection and


quantization of


MD5 hashes.


Ü Fingerprint = {2643256, 325567} = hϕ(xd)
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Hash-based Search

Construction Principles for hϕ: Fuzzy-Fingerprinting

Embedding Ü Quantization Ü Encoding

Documents from the British National Corpus

d


Ü



Ü



A priori probabilities


from BNC


Distribution of prefix


classes in sample


Normalization and


difference computation
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Hash-based Search

Construction Principles for hϕ: Fuzzy-Fingerprinting

Embedding Ü Quantization Ü Encoding

Documents from the British National Corpus

d


Ü



Ü



A priori probabilities


from BNC


Distribution of prefix


classes in sample


Normalization and


difference computation


Fuzzification


Ü
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Hash-based Search

Construction Principles for hϕ: Fuzzy-Fingerprinting

Embedding Ü Quantization Ü Encoding

Documents from the British National Corpus

d


Ü



Ü



A priori probabilities


from BNC


Distribution of prefix


classes in sample


Normalization and


difference computation


Fuzzification


Ü



h(ρ)
ϕ (xd) =

k∑

i=1

ρ(yi) · r
i−1

Ü Fingerprint = {2643256,
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Hash-based Search

Construction Principles for hϕ: Fuzzy-Fingerprinting

Embedding Ü Quantization Ü Encoding

Documents from the British National Corpus

d
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Ü



A priori probabilities


from BNC


Distribution of prefix
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Normalization and


difference computation


Fuzzification


Ü



h(ρ)
ϕ (xd) =

k∑

i=1

ρ(yi) · r
i−1

Ü Fingerprint = {2643256,
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Hash-based Search

Construction Principles for hϕ: Fuzzy-Fingerprinting

Embedding Ü Quantization Ü Encoding

Documents from the British National Corpus

d


Ü



Ü



A priori probabilities


from BNC


Distribution of prefix


classes in sample


Normalization and


difference computation


Fuzzification


Ü



h(ρ)
ϕ (xd) =

k∑

i=1

ρ(yi) · r
i−1

Ü Fingerprint = {2643256, 325567} = hϕ(xd)
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Hash-based Search

Properties of hϕ

Code length controls precision.

The collision probability P (hϕ(xd1
) ∩ hϕ(xd2

) 6= ∅ | ϕ(xd1
,xd2

) ≤ θ) goes down if

q the number k of random vectors (p-stable LSH)

q the number k of prefix classes (Fuzzy-fingerprinting)

q . . .

is increased.
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Hash-based Search

Properties of hϕ

Code length controls precision.

The collision probability P (hϕ(xd1
) ∩ hϕ(xd2

) 6= ∅ | ϕ(xd1
,xd2

) ≤ θ) goes down if

q the number k of random vectors (p-stable LSH)

q the number k of prefix classes (Fuzzy-fingerprinting)

q . . .

is increased.

Code multiplicity controls recall.

The collision probability P (hϕ(xd1
) ∩ hϕ(xd2

) 6= ∅ | ϕ(xd1
,xd2

) > θ) goes up if

q the number l of vector sets (p-stable LSH)

q the number l of fuzzification schemes (Fuzzy-fingerprinting)

q . . .

is increased.
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Retrieval Models for Source Code

Fingerprint-based Models

Corpus: as before

Experiment (plot below): 200 queries against fingerprinted corpus

Baseline: greedy string tiling
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Retrieval Models for Source Code

Fingerprint-based Models

Corpus: as before

Experiment (plot below): 200 queries against fingerprinted corpus

Baseline: greedy string tiling
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Summary
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Summary

1. Survey of retrieval models for high-similarity search in source code.

2. We propose the longest common subsequence for the class of

structure-based string models:

q better suited for short source code fragments

q ϕ computation in O(|d|2) instead of in O(|d|3)

3. We investigate the use of hash-based search high-similarity search in

source code:

q basis is the class of structure-based string models

q real-world order of magnitudes become possible

q the ad-hoc application of existing technology leads to unsatisfying recall
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Thank you!
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