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Introduction

Active Learning: minimize the labeling costs of training data acquisition while maximizing a
model’s performance (increase) with each newly labeled problem instance

 
user / oracle active learner

unlabeled instances

labels

A B C
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This Paper

Motivation
q Research has started to investigate transformer models (“transformers”) for active learning but previous

findings may not generalize to transformer models.

q Query strategies targeted at neural networks or text classification are computationally expensive.

q Uncertainty-based query strategies are (computationally inexpensive but) usually considered only as a
baseline.

Contributions
q Systematic investigation of uncertainty-based query strategies paired with transformers.

q Evaluation on a five well-known lately neglected text classification benchmarks.

q We investigate the effectiveness of using a transformer model with fewer parameters, DistiRoBERTa, for
active learning.
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Experiment

Models: BERT [Devlin et al. 2019], DistilRoBERTA [Sanh et al. 2019] (and KimCNN [Kim 2014], SVM)

Query Strategies:

Prediction Entropy
[Roy and McCallum 2001; Schohn and Cohn 2000]

argmax
xi

[
−

c∑
j=1

P (yi = j|xi) logP (yi = j|xi)

]

Breaking Ties
[Scheffer et al. 2001; Luo et al. 2005]

argmin
xi

[
P (yi = k∗1|xi)− P (yi = k∗2|xi)

]

Least Confidence
[Culotta and McCallum 2005]

argmax
xi

[
1− P (yi = k∗1|xi)

]

Contrastive Active Learning
[Margatina et al. 2021]

argmax
xi

[
1

m

m∑
j=1

KL(P (yj|xknnj ) ‖ P (yi|xi))

]

Random Sampling Sample i.i.d. from the unlabeled pool.
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Experiment: Datasets

Dataset Name (ID) Type Classes Training Test
AG’s News (AGN) [Zhang et al. 2015] News 4 120,000 (*) 7,600
Customer Reviews (CR) [Hu and liu 2004] Sentiment 2 3,397 378
Movie Reviews (MR) [Pang and Lee 2005] Sentiment 2 9,596 1,066
Subjectivity (SUBJ) [Pang and Lee 2004] Sentiment 2 9,000 1,000
TREC-6 (TREC-6) [Li and Roth 2002] Questions 6 5,500 (*) 500

(*): Predefined test sets were available and adopted.
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Evaluation: Learning Curves

Ac
cu

ra
cy

LC
BT
PE

Dis�l-
RoBERTa 

BERT

RS
passive

CA

0.70

0.75

0.80

0.85

0.90

0.95

1.00

0.70

0.75

0.80

0.85

0.90

0.95

1.00

AGN CR

MR SUBJ TREC-6

0.86

0.88

0.90

0.88

0.90

0.92

25 275 525 25 275 525

0.92

0.94

0.96

25 275 525

0.92

0.94

0.96

Number of Instances

6 © Christopher Schröder 2022



Evaluation: Summary

Model Strategy
Mean Rank Mean Result
Acc. AUC Acc. AUC

SVM PE 1.80 2.60 0.764 0.663
BT 1.60 1.60 0.767 0.697
LC 3.00 2.60 0.751 0.672
CA 5.00 5.00 0.667 0.593
RS 3.00 2.60 0.757 0.686

KimCNN PE 1.60 2.40 0.818 0.742
BT 1.60 2.00 0.818 0.750
LC 3.80 2.80 0.810 0.732
CA 3.80 4.80 0.793 0.711
RS 3.60 2.40 0.804 0.749

D.RoBERTa PE 2.60 3.00 0.901 0.856
BT 2.20 1.80 0.902 0.864
LC 1.40 2.00 0.904 0.860
CA 3.00 3.40 0.901 0.852
RS 5.00 4.20 0.884 0.853

BERT PE 2.40 2.40 0.909 0.859
BT 2.00 1.60 0.914 0.873
LC 2.20 3.80 0.917 0.866
CA 2.80 2.60 0.916 0.872
RS 5.00 4.00 0.899 0.861

q Surprisingly: prediction entropy
is outperformed by breaking ties.

q For DistilRoBERTa: least confidence also
outperforms prediction entropy.

q DistilRoBERTa performs only slightly
worse than BERT
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Evaluation: Further Results

q Using transformer models we reach considerably higher AUC scores compared to
Zhang et al. (2017).

q Active learning is very close (and even surpasses) previous state-of-the-art results, and our
own passive classification, in terms of final accuracy (using a fraction of the data).

q Detailed results and runtimes per configuration are reported in the paper’s appendix.
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Conclusion

Experiment: Active Learning for Text Classification
q BERT, DistilRoBERTa

q Several sentence classification datasets

q Four query strategies and a baseline

Findings
q The supposedly strongest baseline, prediction entropy, “is not so strong”.

q Breaking ties consistently outperforms prediction entropy in multi-class scenarios.

q DistilRoBERTa achieves results close to BERT while using only about 25% of the parameters.
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Conclusion

Experiment: Active Learning for Text Classification
q BERT, DistilRoBERTa

q Several sentence classification datasets

q Four query strategies and a baseline

Findings
q The supposedly strongest baseline, prediction entropy, “is not so strong”.

q Breaking ties consistently outperforms prediction entropy in multi-class scenarios.

q DistilRoBERTa achieves results close to BERT while using only about 25% of the parameters.

Thank you!
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