Tackling Societal Challenges with Style Analysis

Martin Potthast Leipzig University www.temir.org joint work with the Webis Group www.webis.de

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait

Text quality

Fake News and Hyperpartisanship

Offensive language

Detection

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Web as Corpus

Mnemonic passwords

Synthesis

Summarization

Paraphrasing Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

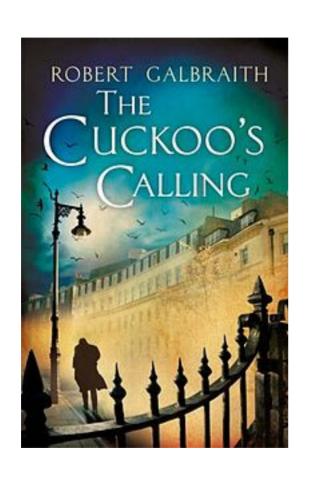
Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection



Fake likes

Fake news

Fake clicks

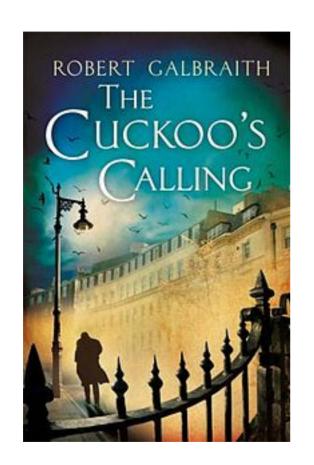
Fake users

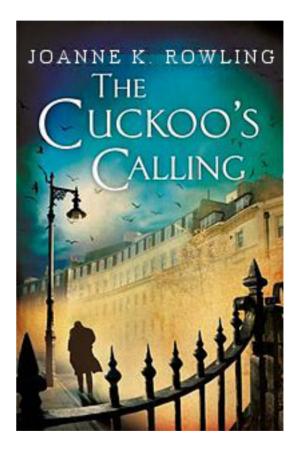
Fake reviews

Fake comments

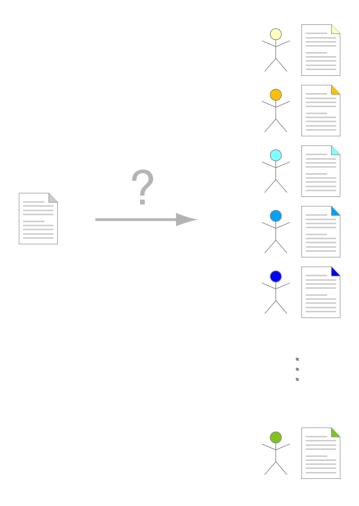
-

Fake identities (pseudonyms)





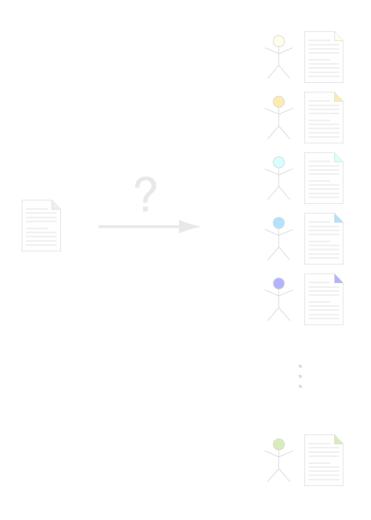
Authorship Attribution

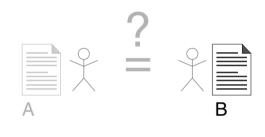


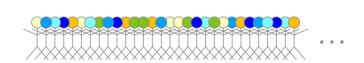
To which author does a text belong?

Authorship Attribution

Authorship Verification

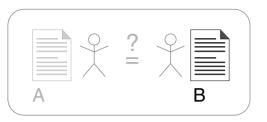


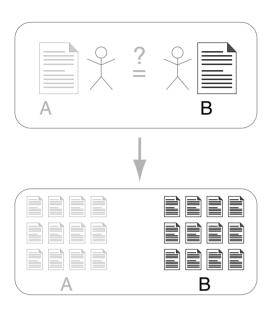


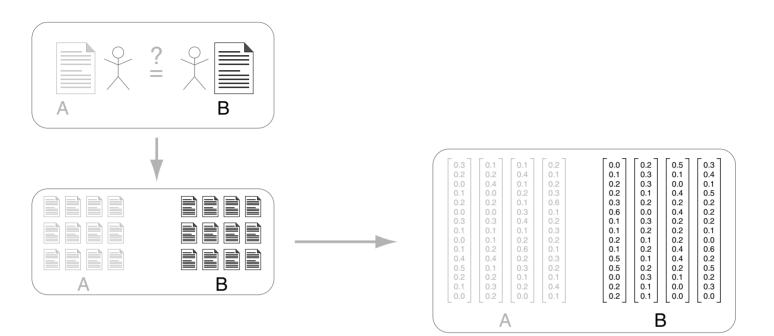


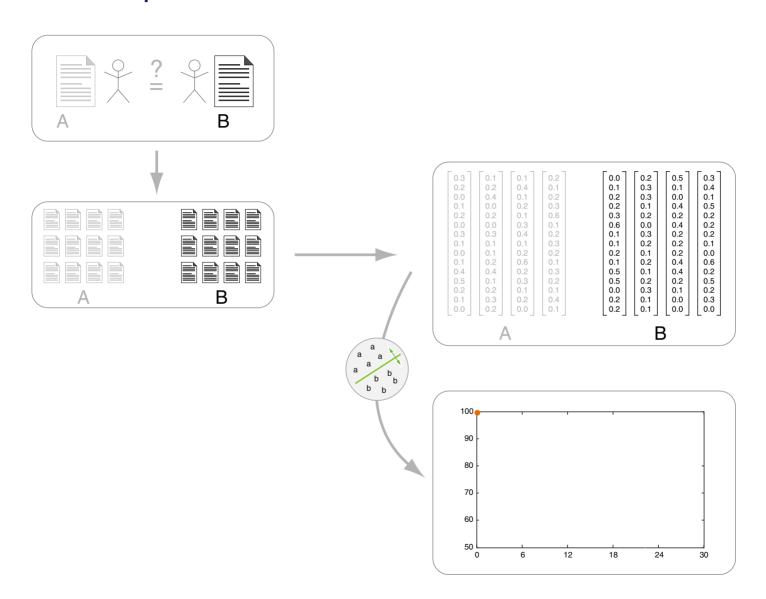
To which author does a text belong?

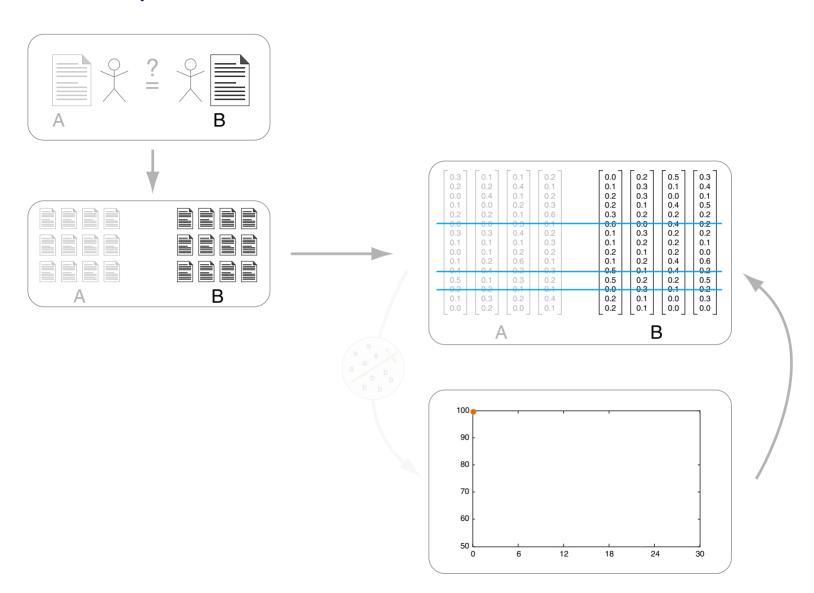
Originate two texts from the same author?

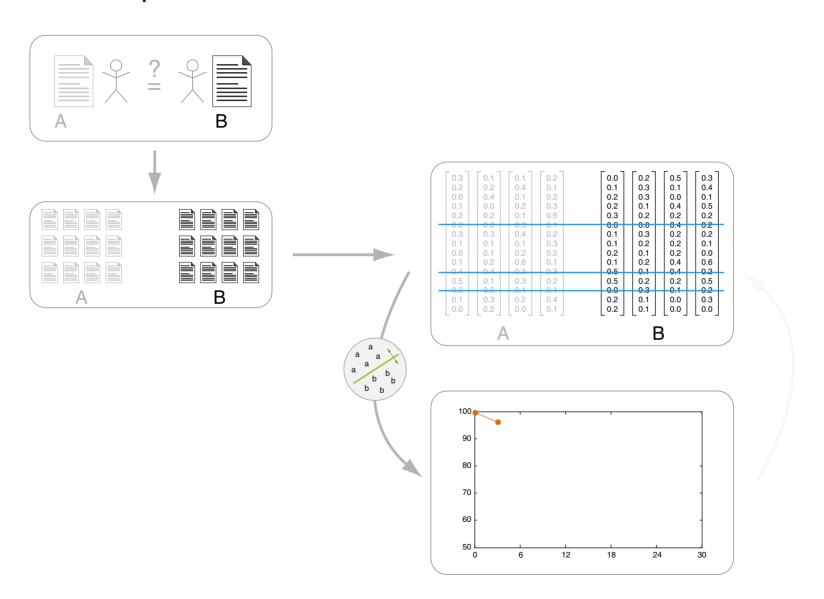


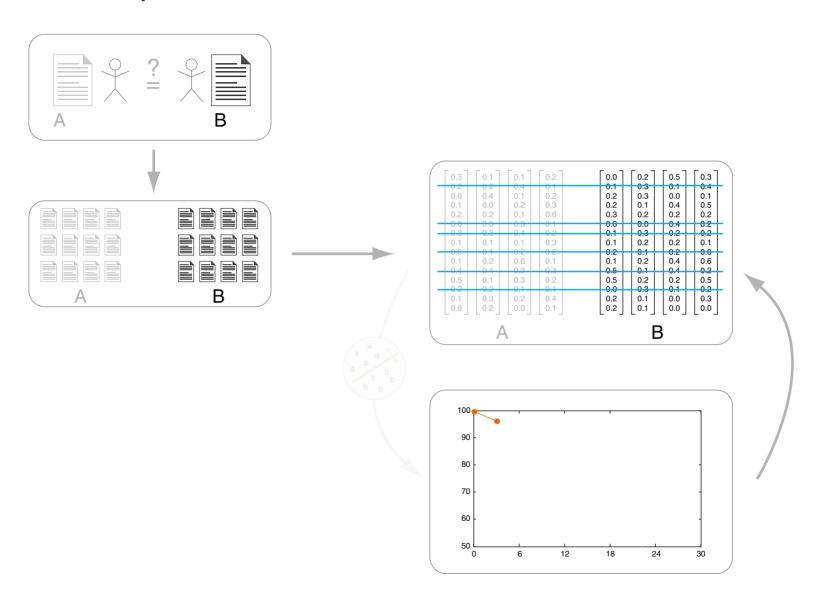


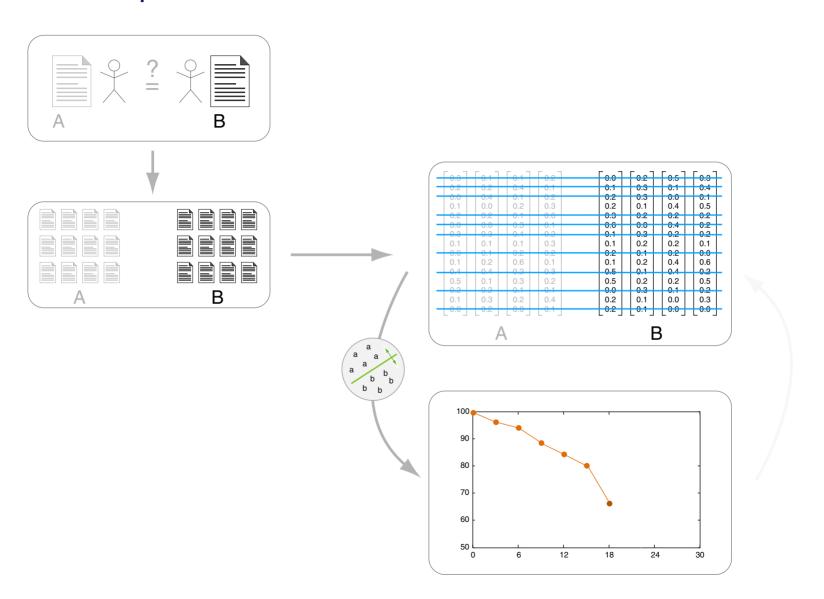






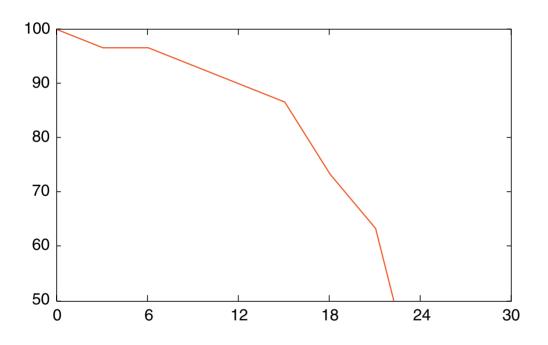






Authorship Verification Unmasking at Work

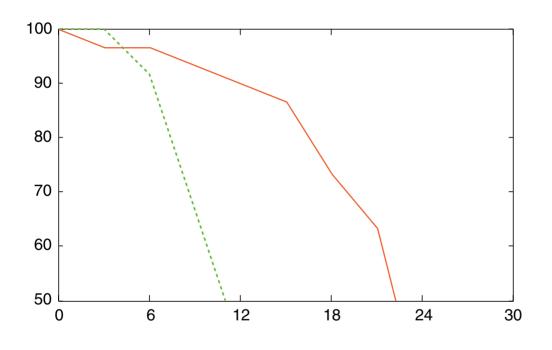
Typical learning characteristic for ...



different authors $(A \neq B)$

Authorship Verification Unmasking at Work

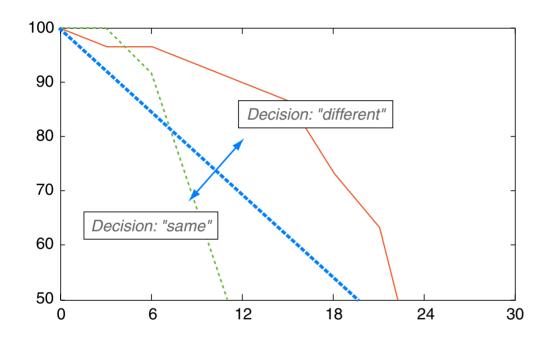
Typical learning characteristic for . . .



different authors $(A \neq B)$ same author (A = B)

Authorship Verification Unmasking at Work

Typical learning characteristic for . . .

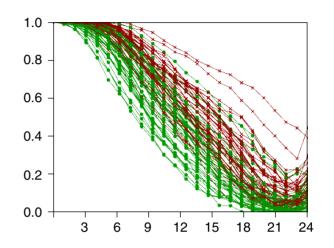


different authors $(A \neq B)$ same author (A = B)

The typical learning characteristic can be learned.

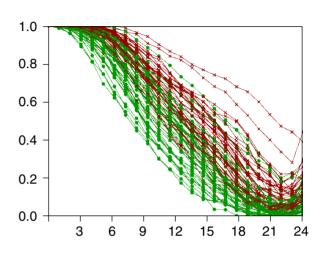
Authorship Verification Recent Results [Bevendorff et al., 2019]

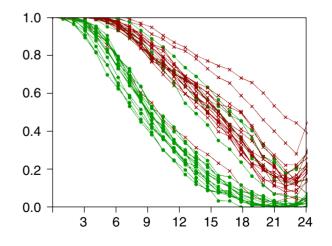
Experiment	I	II
Performance		
Precision	0.96	1.00
Accuracy	0.63	0.91
Classified	100%	
Omitted	0%	74%
Configuration		
Number of cases Size of each case Number of authors	180 training / 78 test 4 000 words 135	
Number of chunks Size of each chunk Vocabulary Removed per round Smoothing	25 600 words 250 words 10 words no	



Authorship Verification Recent Results [Bevendorff et al., 2019]

Experiment	ı	II
Performance		
Precision	0.96	1.00
Accuracy	0.63	0.91
Classified	100%	26%
Omitted	0%	74%
Configuration		
Number of cases Size of each case Number of authors	180 training / 78 test 4 000 words 135	
Number of chunks Size of each chunk Vocabulary Removed per round	25 600 words 250 words 10 words	
Smoothing	no	





Web as Corpus

Mnemonic passwords

Synthesis

Summarization Paraphrasing

Obfuscation

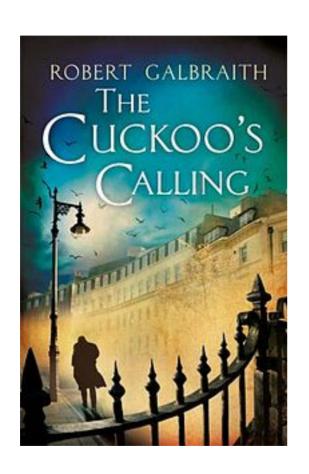
Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection



Fake likes

Fake news

Fake clicks

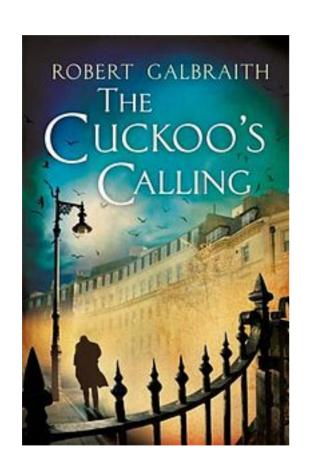
Fake users

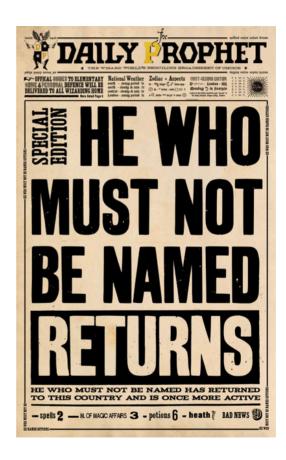
Fake reviews

Fake comments

-

Fake identities (pseudonyms)





[Bevendorff et al., 2019]

beautiful_christmas you know jesus our saviour w patiently stooping to hunger and pain, so he mic ones, from shame; now if we love him, he bids us brothers and sisters who need. blessed old nick! in it, you would remember and certainly do it; this you empty your pack, pray give a portion to all what there's anything left and you can bring a small gi wasn't that dandy? sure, little mary ann has a wou she has! she takes after her own mother. I was just that age. and you're just like her still, mollie mullic

sure, little mary_ann has a wonderful education, s after her own mother. i was just like her when i ware just like_her still, mollie mulligan. sure you're_than alley and the belle of shantytown. whist now! it lushes. but, hush! i think the show is about to beging so, samson symbolical! come and see slivers, clow me and see zip, the foremost of freaks! come an ister sheiks! eager equestriennes, each unexcelled enagerie ever beheld, the giant, the fat girl, the liou artists from far-off japan, audacious acrobats should be a sure of the same and see zip.

Idea: Obfuscate by increasing the Kullback-Leibler Divergence (KLD).

Desired: A "minimally invasive" procedure.

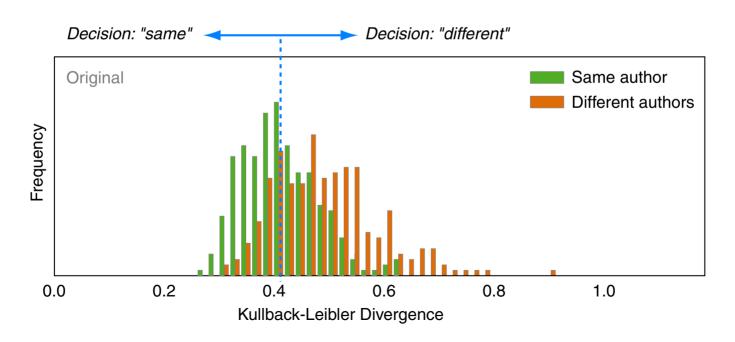
Strategy: Determine "high-impact" n-grams. $\frac{\partial}{\partial q} \left(p \log_2 \frac{p}{q} \right) \to \max$,

where p and q denote the n-gram-specific occurrence probabilities in texts A and B respectively.

[Bevendorff et al., 2019]

beautiful_christmas you know jesus our saviour w patiently stooping to hunger and pain, so he mig ones, from shame; now if we love him, he bids us brothers and sisters who need. blessed old nick! it, you would remember and certainly do it; this you empty your pack, pray give a portion to all where's anything left and you can bring a small gi wasn't that dandy? sure, little mary ann has a wor she has! she takes after her own mother. i was just that age. and you're just like her still, mollie mullige.

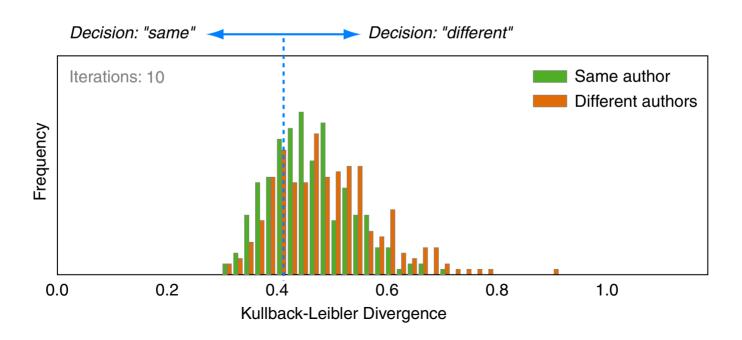
sure, little mary_ann has a wonderful education, s after her own mother. i was just like her when i wa e just like_her still, mollie mulligan. sure you're_than alley and the belle of shantytown. whist now! it lushes. but, hush! i think the show is about to begin so, samson symbolical! come and see slivers,_clow me and see zip, the foremost of freaks! come an ister sheiks! eager equestriennes,_each unexcelled enagerie ever beheld, the giant, the fat girl, the liou artists from far-off japan, audacious acrobats sho



[Bevendorff et al., 2019]

beautiful_christmas you know jesus our saviour w patiently stooping to hunger and pain, so he mig ones, from shame; now if we love him, he bids us brothers and sisters who need. blessed old nick! it, you would remember and certainly do it; this you empty your pack, pray give a portion to all where's anything left and you can bring a small gi wasn't that dandy? sure, little mary ann has a wor she has! she takes after her own mother. It was jus that age. and you're just like her still, mollie mullige.

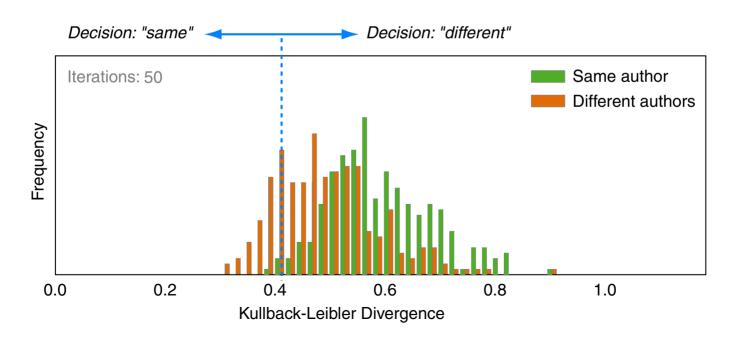
sure, little mary_ann has a wonderful education, s after her own mother. i was just like her when i was e just like_her still, mollie mulligan. sure you're_than alley and the belle of shantytown. whist now! it lushes. but, hush! i think the show is about to begin the joo, samson symbolical! come and see slivers,_clow me and see zip, the foremost of freaks! come an ister sheiks! eager equestriennes,_each unexcelled enagerie ever beheld, the giant, the fat girl, the liou artists from far-off japan, audacious acrobats should be supported by the same and see zip.



[Bevendorff et al., 2019]

beautiful_christmas you know jesus our saviour w patiently stooping to hunger and pain, so he mig ones, from shame; now if we love him, he bids us brothers and sisters who need. blessed old nick! it, you would remember and certainly do it; this you empty your pack, pray give a portion to all where's anything left and you can bring a small gi wasn't that dandy? sure, little mary ann has a wor she has! she takes after her own mother. It was jus that age. and you're just like her still, mollie mullige.

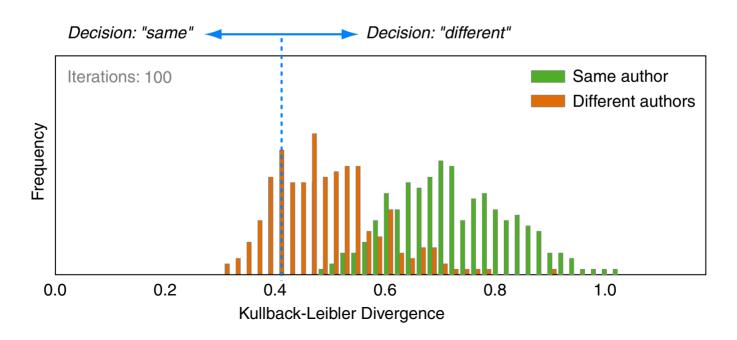
sure, little mary_ann has a wonderful education, s after her own mother. i was just like her when i was e just like_her still, mollie mulligan. sure you're_than alley and the belle of shantytown. whist now! it lushes. but, hush! i think the show is about to begin the joo, samson symbolical! come and see slivers,_clow me and see zip, the foremost of freaks! come an ister sheiks! eager equestriennes,_each unexcelled enagerie ever beheld, the giant, the fat girl, the liou artists from far-off japan, audacious acrobats should be supported by the same and see zip.



[Bevendorff et al., 2019]

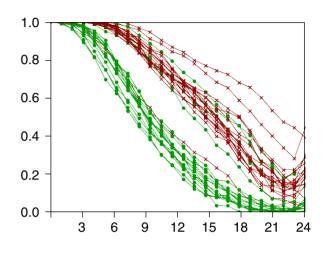
beautiful_christmas you know jesus our saviour w patiently stooping to hunger and pain, so he mig ones, from shame; now if we love him, he bids us brothers and sisters who need. blessed old nick! is it, you would remember and certainly do it; this you empty your pack, pray give a portion to all whethere's anything left and you can bring a small gi wasn't that dandy? sure, little mary ann has a wor she has! she takes after her own mother. i was just that age. and you're just like her still, mollie mullige

sure, little mary_ann has a wonderful education, s after her own mother. i was just like her when i was e just like_her still, mollie mulligan. sure you're_than alley and the belle of shantytown. whist now! it lushes. but, hush! i think the show is about to begin the joo, samson symbolical! come and see slivers,_clow me and see zip, the foremost of freaks! come an ister sheiks! eager equestriennes,_each unexcelled enagerie ever beheld, the giant, the fat girl, the liou artists from far-off japan, audacious acrobats should be supported by the same and see zip.



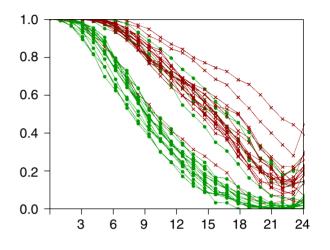
Countermeasure: Obfuscation Recent Results

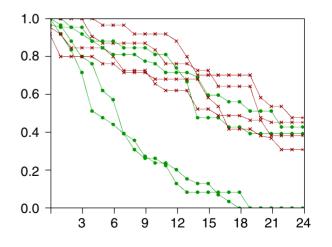
Experiment	ı	II	Ш
Performance			
Precision Accuracy	1.00 0.91	1.00 0.75	1.00 0.83
n-gram removals Text coverage	0 0%	80 1%	200 2.6%
Classified Omitted	26% 74%	10% 90%	7% 93%
Configuration			
Number of cases Size of each case Number of authors	180 training / 78 test 4000 words 135		
Number of chunks Size of each chunk	25 600 words		
Vocabulary Removed per round Smoothing	250 words 10 words no		



Countermeasure: Obfuscation Recent Results

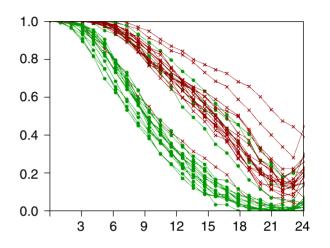
Experiment	I	II	III
Performance			
Precision Accuracy	1.00 0.91	1.00 0.75	1.00 0.83
n-gram removals Text coverage	0 0%	80 1%	200 2.6%
Classified Omitted	26% 74%	10% 90%	7% 93%
Configuration			
Number of cases Size of each case Number of authors	180 training / 78 test 4 000 words 135		
Number of chunks Size of each chunk	25 600 words		
Vocabulary Removed per round Smoothing	250 words 10 words no		

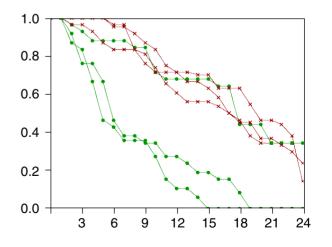




Countermeasure: Obfuscation Recent Results

Experiment	I	II	III
Performance			
Precision Accuracy	1.00 0.91	1.00 0.75	1.00 0.83
n-gram removals Text coverage	0 0%	80 1%	200 2.6%
Classified Omitted	26% 74%	10% 90%	7% 93%
Configuration			
Number of cases Size of each case Number of authors	180 training / 78 test 4000 words 135		
Number of chunks	25		
Size of each chunk	600 words		
Vocabulary	250 words		
Removed per round	10 words		
Smoothing	no		





Challenges

Web as Corpus

passwords

Mnemonic

Synthesis

Summarization

Paraphrasing

Obfuscation

Search

Question queries Axiomatic re-ranking Argument search

Assessment

Clickbait Text quality Fake News and Hyperpartisanship Offensive language

Detection

Vandalism Plagiarism Authorship

To the Members of the California State Assembly:

I am returning Assembly Bill 1176 without my signature.

For some time now I have lamented the fact that major issues are overlooked while many unnecessary bills come to me for consideration. Water reform, prison reform, and health care are major issues my Administration has brought to the table, but the Legislature just kicks the can down the alley.

Yet another legislative year has come and gone without the major reforms Californians overwhelmingly deserve. In light of this, and after careful consideration, I believe it is unnecessary to sign this measure at this time.

Sincerely,

Arnold Schwarzenegger

To the Members of the California State Assembly:

I am returning Assembly Bill 1176 without my signature.

For some time now I have lamented the fact that major issues are overlooked while many *nnecessary bills come to me for consideration. Water reform, prison reform, and health *are are major issues my Administration has brought to the table, but the Legislature just *icks the can down the alley.

Yet another legislative year has come and gone without the major reforms Californians *verwhelmingly deserve. In light of this, and after careful consideration, I believe it is *nnecessary to sign this measure at this time.

Sincerely,

Arnold Schwarzenegger

O POTTHAST 2020

To the Members of the California State Assembly:

I am returning Assembly Bill 1176 without my signature.

For some time now I have lamented the fact that major issues are overlooked while many *nnecessary bills come to me for consideration. Water reform, prison reform, and health *are are major issues my Administration has brought to the table, but the Legislature just *icks the can down the alley.

Yet another legislative year has come and gone without the major reforms Californians *verwhelmingly deserve. In light of this, and after careful consideration, I believe it is *nnecessary to sign this measure at this time.

Sincerely

"My goodness. What a coincidence [...]"

Arnol

[Aaron McLear, Schwarzenegger spokesman, Oct. 2009]

Paraphrasing "The Acrostify Benchmark"

An acrostic is a poem or other form of writing in which the first letter, syllable or word of each line, paragraph or other recurring feature in the text spells out a word or a message.

[Wikipedia]

A poem [Kuperavage 2000]:

- H He broke my heart
- E Every piece, shattered
- A All I wanted was his love
- R Real, as he promised
- True, as mine for him

. . .

Paraphrasing "The Acrostify Benchmark"

An acrostic is a poem or other form of writing in which the first letter, syllable or word of each line, paragraph or other recurring feature in the text spells out a word or a message.

[Wikipedia]

A poem [Kuperavage 2000]:

H He broke my heart

E Every piece, shattered

A All I wanted was his love

R Real, as he promised

True, as mine for him

. . .

Task

Given: (1) A text T and an acrostic x.

(2) Lower and upper bounds on the desired line lengths.

Task: Find a paraphrased version T^* of T in monospaced font that encodes x in some consecutive lines, if possible. Each line of T^* has to meet the length constraints.

43

Paraphrasing "The Acrostify Benchmark"

An acrostic is a poem or other form of writing in which the first letter, syllable or word of each line, paragraph or other recurring feature in the text spells out a word or a message. [Wikipedia]

A poem [Kuperavage 2000]:

- H He broke my heart
- Every piece, shattered E

е

A complex search problem.

(that may be tackled with AI technologies)

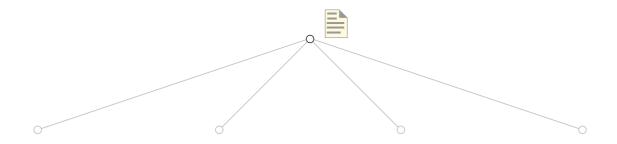
Task

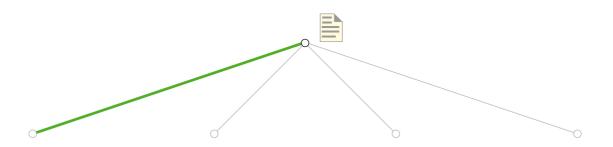
Given: (1) A text T and an acrostic x.

(2) Lower and upper bounds on the desired line lengths.

Task: Find a paraphrased version T^* of T in monospaced font that encodes x in some consecutive lines, if possible. Each line of T^* has to meet the length

constraints.

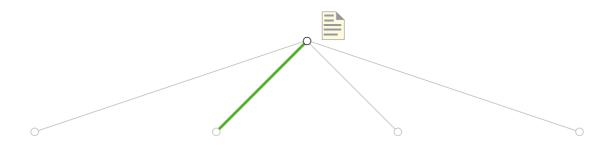




Before some time
now I have
lamented the
fact that major
issues are
overlooked while
many bills come
to

«Preposition»

Subtask: Create the character bauhaus



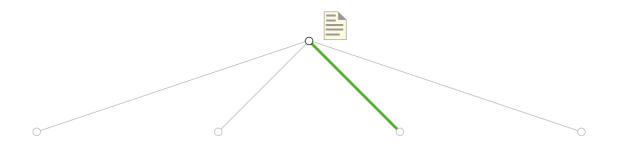
Before some time now I have lamented the fact that major issues are overlooked while many bills come to

For some time now I have lamented but the fact that major issues are overlooked while many bills

«Add Connective»

«Preposition»

Subtask: Create the character bauhaus



Before some time now I have lamented the fact that major issues are overlooked while many bills come to

For some time now I have lamented | but the fact that major issues are overlooked while many bills

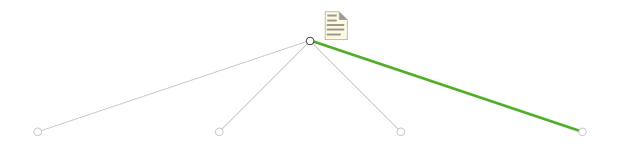
«Add Connective»

Been for some time now I have lamented the fact that major issues are overlooked while many bills come to

«Preposition»

«Change Tense»

Subtask: Create the character bauhaus



Before some time now I have lamented the fact that major issues are overlooked while many bills come to

«Preposition»

For some time now I have lamented but the fact that major issues are overlooked while many bills

«Add Connective»

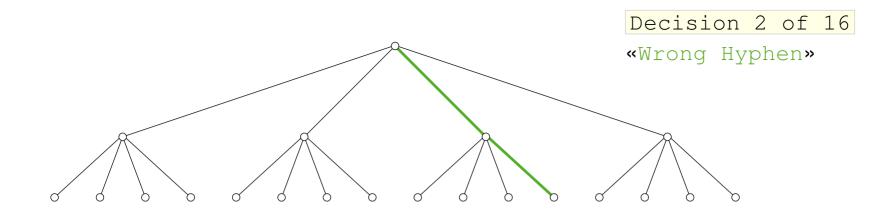
Been for some time now I have lamented the fact that major issues are overlooked while many bills come to

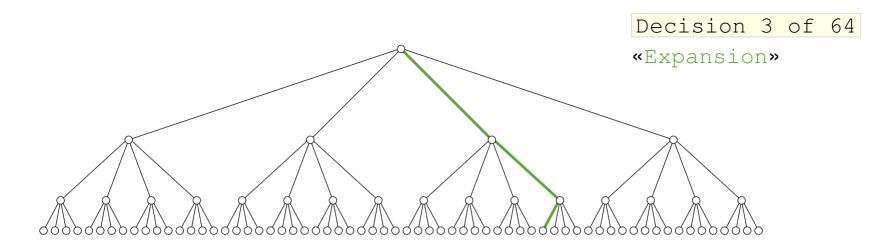
«Change Tense»

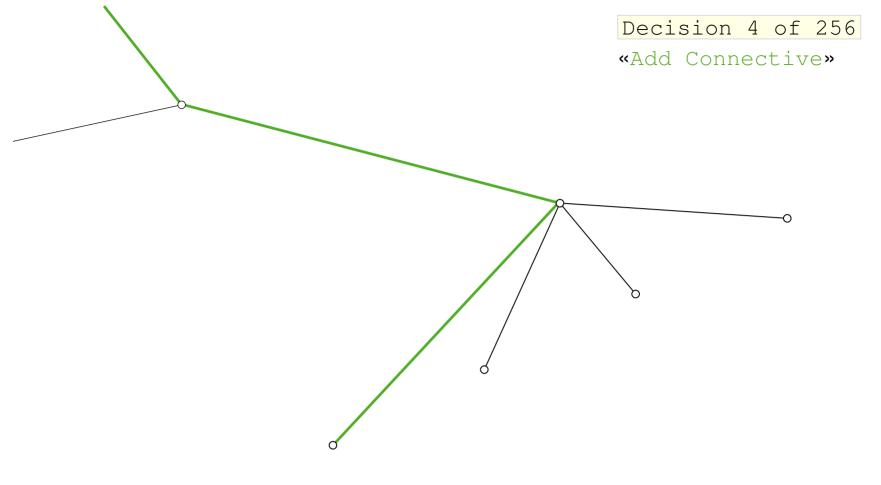
For some time now I have lamented the fact that major issues are overlooked while many bills come to

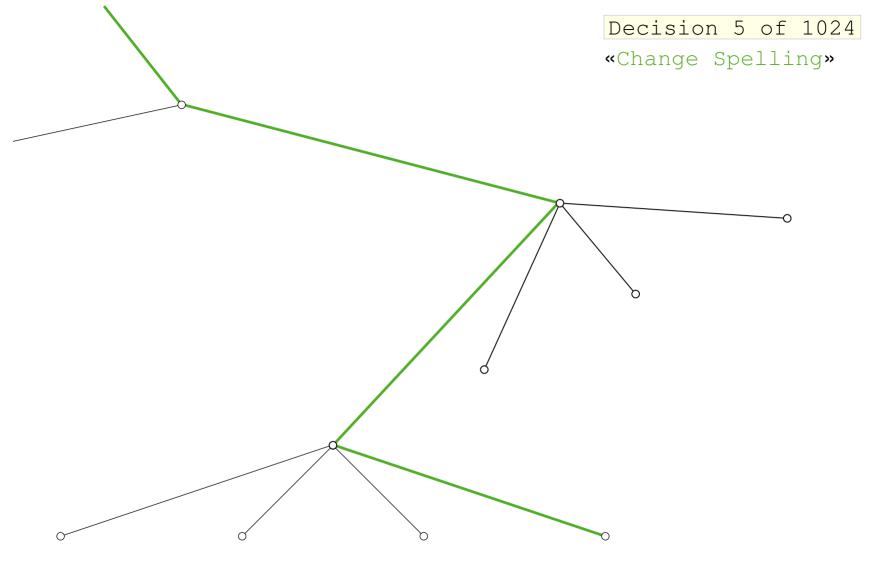
«Linebreak»

Subtask: Create the character bauhaus

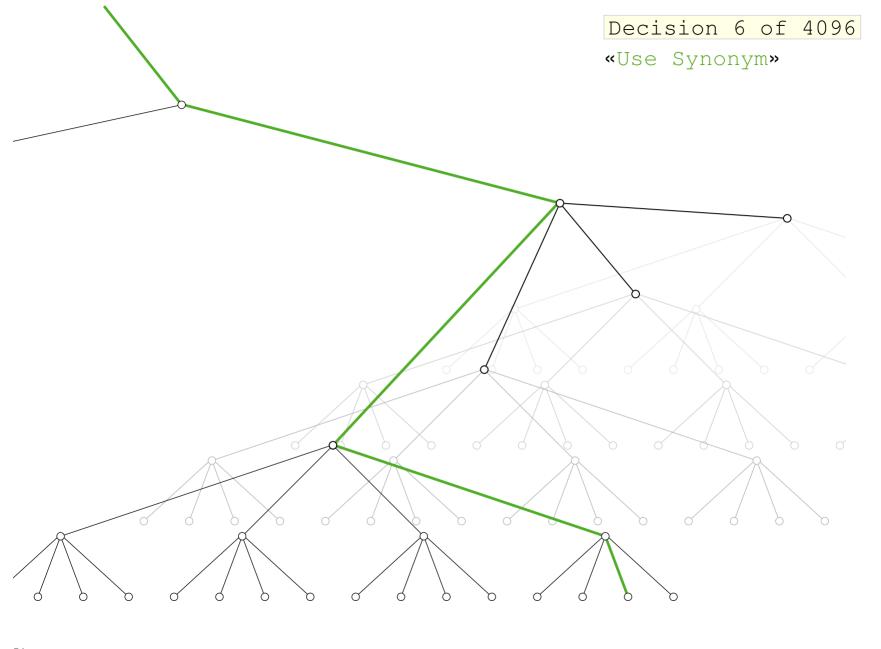




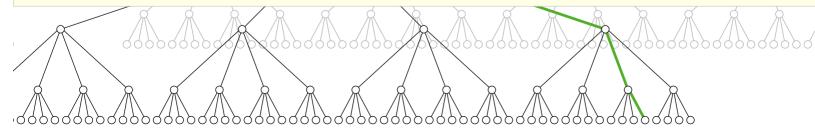




Subtask: Create the character bauhaus




```
B Been for some time now I have lamented the fact that at major issues are overlooked while many unnecessary bills come to me for consideration. [...] health care are major issues my Administration [...] a ture just kicks the can down the alley. Yet [...] ut the major reforms Californians overwhelmingly deserve. In light of this, and after careful [...]
```



Paraphrasing Searchspace Facts

Consider a text with a length of 100 words (the Schwarzenegger Letter) ...

- \approx 10 · 3 possibilities to change tense
- \approx 100 possibilities to break a line
- ≈ 100 · 3 possibilities to introduce a synonym
- \approx 100 · 3 possibilities to introduce filler words
- \approx 100 · 5 possibilities to hyphenate a word
- >> 100 possibilities to introduce tautologies

...

56

Paraphrasing Searchspace Facts

Consider a text with a length of 100 words (the Schwarzenegger Letter) ...

- \approx 10 · 3 possibilities to change tense
- \approx 100 possibilities to break a line
- \approx 100 · 3 possibilities to introduce a synonym
- \approx 100 · 3 possibilities to introduce filler words
- \approx 100 · 5 possibilities to hyphenate a word
- >> 100 possibilities to introduce tautologies

- → > 1 000 possible operations to generate a single letter of an acrostic
- \rightarrow $O(10^{3n})$ possibilities to synthesize an n = 7 letter word like 'Bauhaus'

Compare the following numbers:

10⁸⁰ atoms in the observable universe 10¹²³ game-tree complexity of chess

Paraphrasing Selected Results

Acrostic type	Length	Runtime	Nodes	Quality-related measures			
	(in letters)	(total in s)	(total)	\triangle WFC	\triangle ARI	\triangle SMOG	
Common English words							
Adjective							
Noun							
Verb							
Common US first names							
Male							
Female							
Self-referential							
First words							
Average							

Setup details:

- □ Text genres: Reuters newspaper articles, Enron emails, English Wikipedia articles
- □ Hardware: standard quad-core PC with 16GB RAM

Paraphrasing Selected Results

Acrostic type	Length	Runtime	Nodes	Quality-related measures			
	(in letters)	(total in s)	(total)	△ WFC	\triangle ARI	\triangle SMOG	
Common English words							
Adjective	4.4	3.3	287 000				
Noun	4.8	3.4	285 000				
Verb	3.6	2.8	251 000				
Common US first names							
Male	6.0	9.3	852 000				
Female	6.1	7.8	740 000				
Self-referential							
First words	10.3	36.1	3 165 000				
Average	5.2	8.5	760 000				

Setup details:

- □ Text genres: Reuters newspaper articles, Enron emails, English Wikipedia articles
- □ Hardware: standard quad-core PC with 16GB RAM

Paraphrasing Selected Results

Acrostic type	Length	Runtime	Nodes	Quality-related measures			
	(in letters)	(total in s)	(total)	\triangle WFC	\triangle ARI	\triangle SMOG	
Common English words							
Adjective	4.4	3.3	287 000	-1.0	-1.6	-0.9	
Noun	4.8	3.4	285 000	-0.4	-1.0	-0.5	
Verb	3.6	2.8	251 000	-1.0	-1.6	-0.9	
Common US first names							
Male	6.0	9.3	852 000	-0.7	-1.9	-0.9	
Female	6.1	7.8	740 000	-0.6	-1.8	-0.9	
Self-referential							
First words	10.3	36.1	3 165 000	-0.3	-0.1	0.2	
Average	5.2	8.5	760 000	-0.8	-1.5	-0.8	

Setup details:

- □ Text genres: Reuters newspaper articles, Enron emails, English Wikipedia articles
- □ Hardware: standard quad-core PC with 16GB RAM

Challenges

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait Text quality

Fake News and Hyperpartisanship

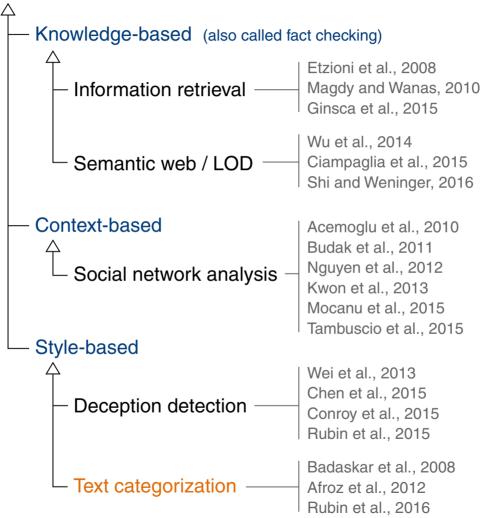
Offensive language

Detection

Vandalism Plagiarism Authorship

Fake News and Hyperpartisanship Taxonomy of Approaches

Fake news detection



POLITICO

Fake News and Hyperpartisanship Corpus Construction

Orientation	Fact-checking results							
Publisher	true	mix	false	n/a	\sum			
Mainstream	806	8	0	12	826			
ABC News	90	2	0	3	95			
CNN	295	4	0	8	307			
Politico	421	2	0	1	424			
Left-wing	182	51	15	8	256			
Addicting Info	95	25	8	7	135			
Occupy Democrats	59	25	7	0	91			
The Other 98%	28	1	0	1	30			
Right-wing	276	153	72	44	545			
Eagle Rising	106	47	25	36	214			
Freedom Daily	49	24	22	4	99			
Right Wing News	121	82	25	4	232			
Σ	1264	212	87	64	1627			

Annotations provided by journalists at BuzzFeed

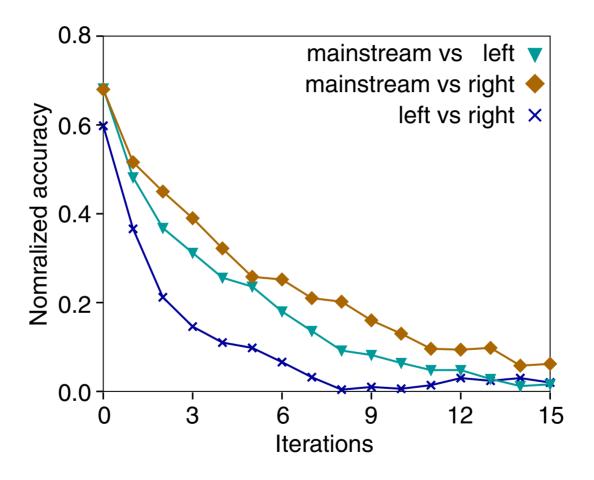
Fake News and Hyperpartisanship Selected Results

Orientation	Fact-checking results							
Publisher	true	mix	false	n/a	\sum			
Mainstream	806	8	0	12	826			
ABC News				3	95			
CNN	E.I. NI	D. I.		8	307			
Politico	Fake Ne	ws Detec	ction	1	424			
Left-wing	Pre	cision $pprox$	42%	8	256			
Addicting Info	F	Recall $pprox$	41%	7	135			
Occupy Democr	_		, •	0	91			
The Other 98%				1	30			
Right-wing	276	153	72	44	545			
Eagle Rising	106	47	25	36	214			
Freedom Daily	49	24	22	4	99			
Right Wing News	121	82	25	4	232			
\sum	1264	212	87	64	1627			

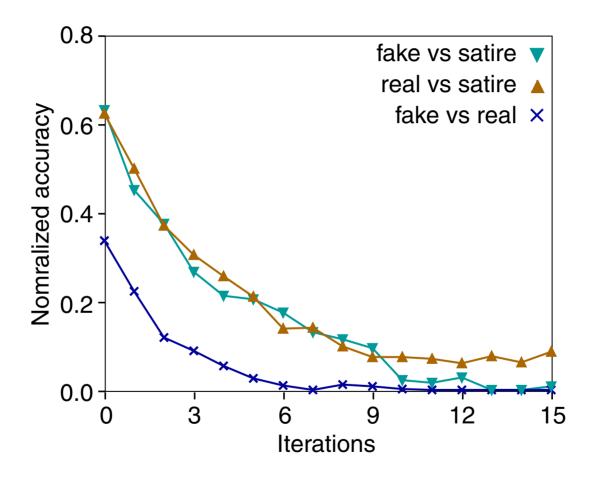
Fake News and Hyperpartisanship Selected Results

Orientation	Fact-checking results						
Publisher	true	mix	false	n/a	\sum		
Mainstream	806	8	0	12	826		
ABC News				1	95		
CNN	I I was a was a set	la a sa a la las II	2-4	, , , , , , , , , , , , , , , , , , ,	307		
Politico	Hyperpart	isansnip i	Jetection		424		
Left-wing		Precisio	n ≈ 69%		256		
Addicting In		Reca	$_{ m all}pprox 89\%$,	135		
Occupy Der					91		
The Other 9					30		
Right-wing	276	153	72	44	545		
Eagle Rising	106	47	25	36	214		
Freedom Daily	49	24	22	4	99		
Right Wing News	121	82	25	4	232		
\sum	1264	212	87	64	1627		

Fake News and Hyperpartisanship Unmasking Orientation



Fake News and Hyperpartisanship Unmasking Satire



Challenges

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

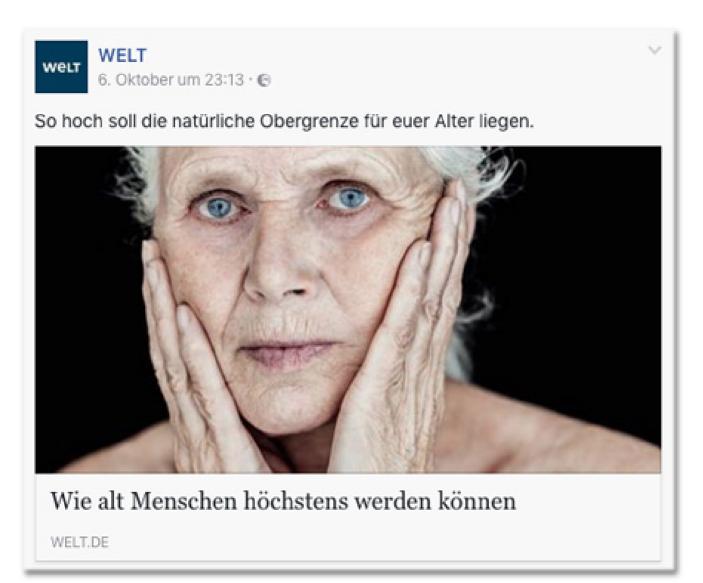
Clickbait

Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Vandalism Plagiarism Authorship

"You won't believe how far cats can count."



Hier ist der absolut genialste Weg, ein schlechtes Pokémon-Tattoo zu retten! bzfd.it/1C3yToz

Source: Twitter @BuzzFeed (http://www.twitter.com/buzzfeed/); Spoiler: No clickbait

Clickbait Algorithmic Assessment in Twitter

Register	Publisher*	Impact (retweets in 2015)	Tweets (in week 24)	Clickbait probability
	New York Times	23.8 ·10 ⁶	875	21%
Print + online	The Guardian	14.0 ·10 ⁶	744	15%
	Forbes	11.5 ⋅10 ⁶	721	38%
	Daily Mail	6.9 ⋅10 ⁶	516	22%
	Wall Street Journal	6.5 ⋅10 ⁶	747	19%
Online only	Mashable	20.6 ·10 ⁶	803	33%
	Huffington Post	11.6 ⋅10 ⁶	770	46%
	Bleacher Report	10.2 ⋅10 ⁶	196	9%
	BuzzFeed	10.0 ⋅10 ⁶	695	42%
	Yahoo!	8.2 ·10 ⁶	195	23%
Television	BBC News	39.6 ·10 ⁶	694	17%
	ABC News	17.6 ⋅10 ⁶	279	9%
	CNN	15.0 ⋅10 ⁶	345	17%
	Fox News	10.2 ⋅10 ⁶	378	8%
	NBC News	$9.7 \cdot 10^{6}$	408	14%

Average: 28%

^{*} Top publishers on Twitter in 2014.

Clickbait Algorithmic Assessment in Twitter

Register	Publisher*		Impact (retweets in 2015)	Tweets (in week 24)	Clickbait probability
	New York Times		23.8 ·10 ⁶	875	21%
Print + online	The Guardian		14.0 ·10 ⁶	744	15%
	Forbes		11.5 ⋅10 ⁶	721	38%
	Daily Mail		6.9 ⋅10 ⁶	516	22%
	Wa				19%
Online only	Ma	Clickbait detection**			33%
	Hu			K	46%
	Ble	Precision \approx 71%			9%
	Bu			o	42%
	Yal	Recall $pprox$ 73%			23%
Television	ВВ				17%
	AB				9%
	CNN		15.0 ⋅10 ⁶	345	17%
	Fox News		10.2 ⋅10 ⁶	378	8%
	NBC News		$9.7 \cdot 10^{6}$	408	14%

Average: 28%

^{*} Top publishers on Twitter in 2014.

^{**[}Potthast et al., ECIR'16]

Clickbait A Challenge!

http://www.clickbait-challenge.org/

A challenge is organized to encourage researchers in this.

Corpus size	40 000 tweets
Votes per tweet	5
Votes per "check instance"	> 60
Number of AMT workers	3 500

Dedicated acquisition technology and statistics.

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Vandalism Plagiarism Authorship

Web as Corpus

Mnemonic passwords

Synthesis

Summarization

Paraphrasing Obfuscation

Search

Question queries

Axiomatic re-ranking Argument search

Assessment

Clickbait

Text quality

Fake News and Hyperpartisanship Offensive language

Detection

Vandalism

Plagiarism

Authorship

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation

Search

Question queries
Axiomatic re-ranking

Argument search

Assessment

Clickbait Text quality

Fake News and Hyperpartisanship

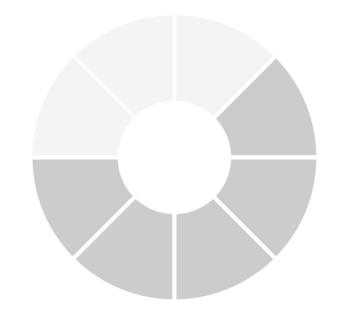
Offensive language

Detection

Vandalism Plagiarism Authorship

Web as Corpus

Mnemonic passwords



Synthesis

Summarization Paraphrasing

Obfuscation

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

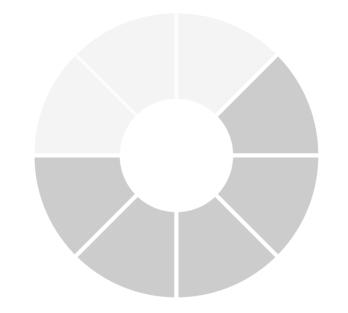
Detection

Vandalism Plagiarism

Authorship

Web as Corpus

Mnemonic passwords



Synthesis

Summarization

Paraphrasing

Obfuscation

Search

Question queries Axiomatic re-ranking Argument search

Assessment

Clickbait Text quality Fake News and Hyperpartisanship

Offensive language

Detection

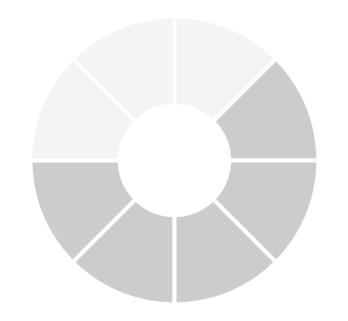
Vandalism Plagiarism Authorship

Web as Corpus

Mnemonic passwords

Synthesis

Summarization
Paraphrasing
Obfuscation



Thank you!

Search

Question queries
Axiomatic re-ranking
Argument search

Assessment

Clickbait
Text quality
Fake News and
Hyperpartisanship
Offensive language

Detection

Vandalism Plagiarism Authorship

Benno Stein

Matthias Hagen

Henning Wachsmuth

Janek Bevendorff

Michael Völske

Thank you!

Johannes Kiesel

Khalid Al-Khatib

Tim Gollub

Shahbaz Syed

Yamen Ajjour