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Abstract

Lightweight, source-to-source transforma-
tion approaches to implementing MCMC
for probabilistic programming languages are
popular for their simplicity, support of ex-
isting deterministic code, and ability to exe-
cute on existing fast runtimes [I]. However,
they are also inefficient, requiring a com-
plete re-execution of the program on every
Metropolis Hastings proposal. We present a
new extension to the lightweight approach,
C3, which enables efficient, incrementalized
re-execution of MH proposals. C3 is based
on two core ideas: transforming probabilis-
tic programs into continuation passing style
(CPS), and caching the results of function
calls. It is particularly effective at speeding
up recursive programs with many local latent
variables. We show that on several common
such models, C3 reduces proposal runtime by
20-100x, in some cases reducing runtime com-
plexity from linear in model size to constant.
We also demonstrate nearly an order of mag-
nitude speedup on a complex inverse proce-
dural modeling application.

1 Introduction

Probabilistic programming languages (PPLs) are a
powerful, general-purpose tool for developing proba-
bilistic models. A PPL is a programming language
augmented with random sampling statements; pro-
grams written in a PPL correspond to generative pri-
ors. Performing inference on such programs amounts
to reasoning about the space of execution traces which
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satisfy some condition on the program output. Many
different PPL systems have been proposed, such as
BLOG [2], Figaro [3], Church [4], Venture [5], Angli-
can [6], and Stan [7].

There are many possible implementations of PPL in-
ference. One popular choice is the ‘Lightweight MH’
framework [I]. Lightweight MH uses a source-to-
source transformation to turn a probablistic program
into a deterministic one, where random choices are
uniquely identified by their structural position in the
program execution trace. Random choice values are
then stored in a database indexed by these structural
‘addresses.” To perform a Metropolis-Hastings pro-
posal, Lightweight MH changes the value of a random
choice and re-executes the program, looking up the val-
ues of other random choices in the database to reuse
them when possible. Lightweight MH is simple to im-
plement and allows PPLs to be built atop existing de-
terministic languages. Users can thus leverage existing
libraries and fast compilers/runtimes for these ‘host’
languages. For example, Stochastic Matlab can ac-
cess Matlab’s rich matrix and image manipulation rou-
tines [1], WebPPL runs on Google’s highly-optimized
V8 Javascript engine [§], and Quicksand’s host lan-
guage compiles to fast machine code using LLVM [9].

Unfortunately, Lightweight MH is also inefficient:
when an MH proposal changes a random choice, the
entire program re-executes to propagate this change.
This is rarely necessary: for many models, most pro-
posals affect only a small subset of the program execu-
tion trace. To update the trace, re-execution is needed
only where values can change. Under Lightweight MH,
random choice values are preserved and reused when
possible, limiting the effect of a proposal to a sub-
set of the changed variable’s Markov blanket (some-
times a much smaller subset, due to context-specific
independence [10]). Custom PPL interpreters can
leverage this property to incrementalize proposal re-
execution [B], but implementing such interpreters is
complicated, and using them makes it difficult or im-
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// Hidden Markov Model
var hmm = function(n, obs) {
if (n === 0)
return true;
else {
var prev = hmm(n-1, obs);
var state = transition(prev);
observation(state, obs[n]);
query.add(n, state);
return state;
}
b
hmm(100, observed_data);
return query;
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Figure 1: (Left) A simple HMM program in the WebPPL language; the hightlighted lines involving query are
the only modifications necessary to use our method with this program. (Right) Illustrating the re-execution
behavior of different MH implementations in response to a proposal to the random choice ¢; shaded in red.
Lightweight MH re-executes the entire hmm program, invoking (orange bar) and then unwinding (blue bar) the
full chain of recursive calls. Callsite caching allows re-execution to skip all recursive calls under hmm(i-1, obs).
With continuations, re-execution only has to unwind from the continuation of choice ¢;. Combining callsite
caching and continuations allows re-execution to terminate upon returning from hmm(i+1, obs), since its return

value does not change.

possible to leverage libraries and fast runtimes for ex-
isting deterministic languages.

In this paper, we present a new implementation tech-
nique for MH proposals on probabilistic programs that
gives the best of both worlds: incrementalized pro-
posal execution using a lightweight, source-to-source
transformation framework. It is especially successful
at accelerating recursive probabilistic programs with
many local latent variables. Our method, C3, is based
on two core ideas:

1. Continuations: Converting the program into
continuation-passing style to allow program re-
execution to begin anywhere.

2. Callsite caching: Caching function calls to avoid
re-execution when function inputs or ouputs have
not changed.

We first describe how to implement C3 in any func-
tional PPL with first-class functions. Our implementa-
tion is integrated into the open-source WebPPL prob-
abilistic programming language [8]; it requires only
small changes to how WebPPL programs are normally
written. We then compare C3 to Lightweight MH,
showing that it gives orders of magnitude speedups on
common models such as HMMs, topic models, Gaus-
sian mixtures, and hierarchical linear regression. In
some cases, C3 reduces runtimes from linear in model
size to constant. We also demonstrate that C3 is
nearly an order of magnitude faster on a complex
inverse procedural modeling example from computer
graphics.

2 Approach

To illustrate our approach, we use a simple example:
a binary state Hidden Markov Model program written
in WebPPL (Figure [1| Left). This program recursively
samples latent states (inside the transition function),
conditioning on the observations in the obs list (inside
the observation function). When invoked, hmm(N, obs)
generates a linear chain of latent and observed random
variables (Figure [1| Right). The values of the latent
state variables are stored in the special query table; we
will show later how this small modification allows our
method to be used with this program.

Consider how Lightweight MH performs a proposal on
this program. It first runs the program once to initial-
ize the database of random choices. It then selects a
choice ¢; uniformly at random from this database (the
red circle in Figure [1| Right) and changes its value.
This change necessitates a constant-time update to the
score of ¢;y1. However, Lightweight MH re-executes
the entire program, invoking a chain of recursive calls
to hmm (the orange bar in Figure [1| Right) and then
unwinding those calls (the blue bar). This process re-
quires 2N such call visits for an HMM with N states.

One strategy for speeding up re-execution is to cache
function calls and reuse their results if they are invoked
again with unchanged inputs. We call this scheme,
which is a generalization of Lightweight MH’s random
choice reuse policy, callsite caching. With this strat-
egy, the recursive re-execution of hmm must still traverse
all ancestors of choice ¢; but can stop at hmm(i, obs): it
can reuse the result of hmm(i-1, obs), since the inputs
have not changed. As shown in Figure [I] Right, using
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// Initial HMM code
var hmm = function(n, obs) {

// After caching transform
var hmm = function(n, obs) {

// After function tagging transform
var hmm = tag(function(n, obs) {

if (n === 0) if (n === 0) if (n === 0)
return true; return true; return true;
else { else { else {
var prev = hmm(n-1, obs); var prev = cache(hmm, n-1, obs); var prev = cache(hmm, n-1, obs);

var state = transition(prev);
observation(state, obs[n]);
return state;
3 3
¥ b

return state;

var state = cache(transition, prev);
cache(observation, state, obs[n]);

var state = cache(transition, prev);
cache(observation, state, obs[nl);
return state;

}, ’1’, [hmm, transition, observation]);

Figure 2: Source code transformations used by C3. (Left) Original HMM code. (Middle) Code after applying
the caching transform, wrapping all callsites with the cache intrinsic. (Right) Code after applying the function
tagging transform, where all functions are annotated with a lexically-unique ID and the values of their free
variables. An example CPS-transformed program can be found in the supplemental materials.

callsite caching can result in less re-execution, but it
still requires ~ 2N hmm call visits on average.

Now suppose we instead convert the program into con-
tinuation passing style. CPS re-organizes a program
to make all data and control flow explicit—instead
of returning, functions invoke a ‘continuation’ func-
tion which represents the remaining computation to
be performed [I1]. For our HMM example, by storing
the continuation at c¢;, computation can resume from
the point where this random choice is made, which
corresponds to unwinding the stack from hmm(i, obs)
up to hmm(N, obs). Looking at the ‘Continuations’
row of Figure this is a significant improvement
over Lightweight MH and is also better than callsite
caching. However, it still requires ~ N call visits.

Our main insight is that we can achieve the de-
sired runtime by combining -callsite caching with
continuations—we call the resulting system C3. With
C3, re-execution can not only jump directly to choice
¢; by invoking its continuation, but it can actually ter-
minate almost immediately: the cache also contains
the return values of all function calls, and since the
return value of hmm(i+1, obs) has not changed, all sub-
sequent computation will not change either. C3 un-
winds only two recursive hmm calls, giving the desired
constant-time update. Despite this early termination,
the values of all hidden states are still available in the
special query table (see Section . Thus C3 is more
than the sum of its parts: by combining caching with
CPS, it enables incrementalization benefits that nei-
ther component can deliver independently.

In the sections that follow, we describe how to imple-
ment C3 in a functional PPL. Specifically, we describe
how to transform the program source at compile-time
(Section to make requisite data available to the run-
time caching mechanism (Section .

3 Compile-time Source
Transformations

Lightweight MH transforms the source code of proba-
bilistic programs to compute random choice addresses;
the transformed code can then be executed on ex-
isting runtimes for the host deterministic language.
C3 fits into this framework by adding three additonal
source transformations: caching, function tagging, and
a standard continuation passing style transform for
functional languages.

Caching This transform wraps every function call-
site with a call to an intrinsic cache function (Fig-
ure [2{ Middle). This function performs run-time call-
site cache lookups, as described in Section [} We ini-
tially left this step to the user, requiring them to hand-
annotate calls that should be cached. However, we
found that with a simple automatic cache adaptation
scheme, the automatic transformation can achieve per-
formance close to that of the optimal hand-annotation
without additional user overhead (see Section

Function tagging This transform analyzes the
body of each function and tags the function with both
a lexically-unique ID as well as the values of its free
variables (Figure |2 Right). In Section 4] we describe
how C3 uses this information to decide whether a func-
tion call must be re-executed.

The final source transformation pipeline is: caching
— function tagging — address computation — CPS.
Standard compiler optimizations such as inlining, con-
stant folding, and common subexpression elimination
can then be applied. In fact, the host language com-
piler often already performs such optimizations, which
is an additional benefit of the lightweight transforma-
tional approach.
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// Arguments added by compiler
// a: current address
// k: current continuation
function cache(a, k, fn, args) {
// Global function call stack
var currNode = nodeStack.top();
var node = find(a, currNode.children);
if (node === null) {
node = FunctionNode(a);
// Insert maintains execution order
insert(node, currNode.children,
currNode.nextChildIndex);

execute(node, k, fn, args);

}

// rc: a random choice node

function propagate(rc) {
// Restore call stack up to rc.parent
restore(nodeStack, rc.parent);
// Changes to rc may make siblings unreachable
markUnreachable(rc.parent.children, rc.index);
// Continue executing
rc.parent.nextChildIndex = rc.index + 1;
rc.k(rc.val);

}

function execute(node, k, fn, args) {
node.reachable = true; node.k = k;
node.index = node.parent.nextChildIndex;
// Check for input changes
if (!fnEquiv(node.fn, fn) || 'equal(node.args, args)) {
this.fn = fn; this.args = args;
// Mark all children as initially unreachable
markUnreachable(this.children, 0);
// Call fn with special continuation
node.nextChildIndex = 0;
nodeStack.push(node) ;
node.entered = true;
fn(args, function(retval) {
node = nodeStack.pop();
// Remove unreachable children
removeUnreachables(node.children);
// Terminate early on proposals where
// retval does not change
var rveq = equal(retval, this.retval);
if (!node.entered && rveq) kexit();
else {
node.entered = false;
// retval change may make siblings unreachable
if (!rveq)
markUnreachable(node.parent.children,
node.index);
// Continue executing
node.retval = retval;
node.parent.nextChildIndex++;
k(node.retval);
}
D
} else {
node.parent.nextChildIndex++;
k(node.retval);

Figure 3: The main subroutines governing C3’s callsite
cache. Function calls are wrapped with cache, which re-
trieves (or creates) a cache node for a given address a.
It calls execute, which examines the function call’s in-
puts for changes and runs the call if needed. Finally,
MH proposals use propagate to resume re-execution of
the program from a particular random choice node
which has been changed.

4 Runtime Caching Implementation

When performing an MH proposal, callsite caching
aims to avoid re-executing functions and to enable
early termination from them as often as possible. In
this section, we describe how C3 efficiently implements
both of these types of computational ‘short-circuiting’
for probabilistic functional programs. Figure [3] pro-
vides high-level code for the main subroutines which
govern the caching system.

4.1 Cache Representation

We first require an efficient cache structure to mini-
mize overhead introduced by performing a cache ac-
cess on every function call. C3 uses a tree-structured
cache: it stores one node for each function call, where
a node’s children correspond to the function’s callees.
Random choices are stored as leaf nodes. Thus, the
size of the cache is proprtional to the runtime of one
complete execution of the program.

C3 also maintains a stack of nodes which tracks the
program’s call stack (nodestack in Figure [3). During
cache lookups, the desired node, if it exists, must be a
child of the node on the top of this stack. Exploiting
this property accelerates lookups, which would oth-
erwise proceed from the cache root. Altogether, this
structure provides expected constant time lookups, ad-
ditions, and deletions. In addition, by storing a node’s
children in execution order, C3 can efficiently deter-
mine when child nodes have become ‘stale’ (i.e. un-
reachable) due to control flow changes and should be
removed. A child node is marked unreachable when
its parent begins or resumes execution (execute line 35;
propagate line 22) and marked reachable when it is ex-
ecuted (execute line 20). Any children left marked un-
reachable when the parent exits are removed from the
cache (execute line 43).

4.2 Short-Circuit On Function Entry

As described in Section every function call is
wrapped in a call to cache, which retrieves (or creates)
a cache node for the current address. C3 then evalu-
ates whether the node’s associated function call must
be re-evaluated or if its previous return value can be
re-used (the execute function). Reuse is possible when
the following two criteria are satisfied:

1. The function’s arguments are equivalent to those
from the previous execution.

2. The function itself is equivalent to that from the
previous execution.
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The first criterion can be verified with conservative
equality testing; C3 uses shallow value equality testing,
though deeper equality tests could result in more reuse
for structured argument types. Deep equality testing
is more expensive, though this can be mitigated using
data structure techniques such as hash consing [12] or
compiler optimizations such as global value number-
ing [13].

The second criterion is necessary because C3 operates
on languages with first-class functions, so the identity
of the caller at a given callsite is a runtime variable.
Checking whether the two functions are exactly equal
(i.e. refer to the same closure) is too conservative, how-
ever. Instead, C3 leverages the information provided
by the function tagging transform from Section[3} two
functions are equivalent if they have the same lexical
ID (i.e. came from the same source location) and if
the values of their free variables are equal. C3 ap-
plies this check recursively to any function-valued free
variables, and it also memoizes the result, as program
execution traces often feature many applications of the
same function. This scheme is especially critical to ob-
tain reuse in programs that feature anonymous func-
tions, as those manifest as different closures for each
program execution.

4.3 Short-Circuit On Function Exit

When C3 re-executes the program after changing a
random choice (using the propagate function), control
may eventually return to a function call whose return
value has not changed. In this case, since all subse-
quent computation will have the same result, C3 can
terminate execution early by invoking the exit contin-
uation kexit. During function exit, C3’s execute func-
tion detects if control is returning from a proposal by
checking if the call is exiting without having first been
entered (line 47). This condition signals that the cur-
rent re-execution originated at some descendant of the
exiting call, i.e. a random choice node.

Early termination is complicated by inference queries
whose size depends on model size: for example, the
sequence of latent states in an HMM. In lightweight
PPL implementations, inference typically computes
the marginal distribution on program return values.
Thus, a naive HMM implementation would construct
and return a list of latent states. However, this imple-
mentation makes early termination impossible, as the
list must be recursively reconstructed after a change
to any of its elements.

For these scenarios, C3 offers a solution in the form
of a global query table to which the program can write
values of interest. Critically, query has a write-only in-
terface: since the program cannot read from query, a

write to it cannot introduce side-effects in subsequent
compuation, and thus the semantics of early termina-
tion are preserved. Programs that use query can then
simply return it to infer the marginal distribution over
its contents.

4.4 Automatic Cache Adaptation

It is not always optimal to cache every callsite: caching
introduces overhead, and some function calls almost
always change on each invocation. C3 detects such
callsites and stops caching them in a heuristic process
we call adaptive caching. A callsite is un-cached if,
after at least N proposals, execution has reached it
M times without resulting in either short-circuit-on-
entry or short-circuit-on-exit. We use N = 10, M = 50
for the results presented in this paper. With these
settings, we have observed modest reductions in both
cache size (20-65%) and running time (10-45%) for
the examples presented in this paper. These re-
sults are also close to those given by the optimal
hand-annotation of cache statements. For example,
on the LDA example presented in Section the
automatically-adapted program has runtime within
7% of the optimally hand-annotated program. A
small, constant running time overhead remains for un-
cached callsites, as calling them still triggers a table
lookup to determine their caching status. Future work
could explore efficiently re-compiling the program to
remove cache calls around such callsites.

4.5 Optimizations

C3 takes care to ensure that the amount of work it per-
forms in response to a proposal is only proportional to
the amount of the program execution trace affected
by that proposal. First, it maintains references to all
random choices in a hash table, which provides ex-
pected constant time additions, deletions, and random
element lookups. This table allows C3 to perform uni-
form random proposal choice in constant time, rather
than the linear time cost of scanning through the en-
tire cache.

Second, proposals may be rejected, which necessitates
copying the cache in case its prior state must be re-
stored on rejection. C3 avoids copying the entire cache
using a copy-on-write scheme with similar principles
to transactional memory [I4]: modifications to a cache
node’s properties are staged and only committed if the
proposal is accepted. Thus, C3 only copies as much
of the cache as is actually visited during proposal re-
execution.

Finally, continuations which never return may overflow
the call stack for long-running programs. Our imple-
mentation avoids this problem via a standard tram-
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Figure 4: Comparing the performance of C3 with other MH implementations. (7Top) Performing 10000 MH
iterations on an HMM program. (Bottom) Performing 1000 MH iterations on an LDA program. (Left) Wall
clock time elapsed, in seconds. (Right) Sampling throughput, in proposals per second. 95% confidence bounds are
shown in a lighter shade. Only C3 exhibits constant asymptotic complexity for the HMM; other implementations

take linear time, exhibiting decreasing throughput.

polining optimization: instead of directly invoking its
continuation, a CPS’ed function returns a thunk (i.e.
a nullary function) which encapsulates the continua-
tion. The program repeatedly calls the series of re-
turned thunks in a loop, thus executing the program
with only one function call on the stack at any time.

5 Experimental Results

We now investigate the runtime performance charac-
teristics of C3. We compare C3 to Lightweight MH,
as well as to systems that use only callsite caching and
only continuations. This allows us to investigate the
incremental benefit provided by each of C3’s compo-
nents. The source code for all models used in this sec-
tion is available in the supplemental materials, and our
implementation of C3 itself is available as part of the
WebPPL probabilistic programming language [§]. All
timing data was collected on an Intel Core i7-3840QM
machine with 16GB RAM running OSX 10.10.2.

We first evaluate these systems on two standard gen-
erative models: a discrete-time Hidden Markov Model

and a Latent Dirichlet Allocation model. We use syn-
thetic data, since we are interested purely in the com-
putational efficiency of different implementations of
the same statistical inference algorithm. The HMM
program uses 10 discrete latent states and 10 discrete
observable states and returns the sequence of latent
states. We condition it on a random sequence of ob-
servations, of increasing length from 10 to 100, and
run each system for 10000 MH iterations, collecting a
sample every 10 iterations. The LDA program uses 10
topics, a vocabulary of 100 words, and 20 words per
document. It returns the distribution over words for
each topic. We condition it on a set of random doc-
uments, increasing in size from 5 to 50, and run each
system for 1000 MH iterations.

Figure[4 shows the results of this experiment; all quan-
tities are averaged over 20 runs. We show wall clock
time in seconds (left) and throughput in proposals per
second (right). For the HMM, C3’s runtime is con-
stant regardless of model size, whereas Lightweight
MH and CPS Only exhibit the expected linear run-
time (approximately 2N and N, respectively). As dis-
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Figure 5: Comparing C3 and Lightweight MH on an inverse procedural modeling program. (Left) Desired

tree shape.

(Middle) Example output from inference over a tree program given the desired shape.

(Right)

Performance characteristics of different MH implementations. C3 delivers nearly an order of magnitude speedup.

cussed in Section 2| Caching Only has the same com-
plexity as Lightweight MH but is a constant factor
slower due to caching overhead. For the LDA model,
Lightweight MH and CPS Only all exhibit asymptotic
complexity comparable with their performance on the
HMM. However, Caching Only performs significantly
better. The LDA program is structured with nested
loops; caching allows re-execution to skip entire inner
loops for many proposals. Caching Only must still
re-execute all ancestors of a changed random choice,
though, so it is slower than C3, which jumps directly to
the change point. C3 does not achieve exactly constant
runtime for LDA because a small percentage of its pro-
posals affect hierarchical variables, requiring more re-
execution. This is a characteristic of hierarchical mod-
els in general; in this specific case, conjugacy could be
leveraged to integrate out higher-level variables.

We also evaluate these systems on an inverse pro-
cedural modeling program. Procedural models are
programs that generate random 3D models from the
same family. Inverse procedural modeling infers exe-
cutions of such a program that resemble a target out-
put shape [I5]. We use a simple grammar-like program
for tree skeletons presented in prior work, condition-
ing its output to be volumetrically similar to a target
shape [16]. We run each system for 2000 MH itera-
tions.

Figure [f] shows the results of this experiment. C3
achieves the best performance, delivering nearly an or-
der of magnitude speedup over Lightweight MH. Us-
ing caching only does not help in this example, since
re-executing the program from its beginning recon-
structs all of the recursive procedural modeling func-
tion’s structured inputs, whose equality is not cap-
tured by our cache’s shallow equality tests.

Finally, the figure below shows the results of a wider
evaluation: for four models, we plot the speedup

obtained by C3 over Lightweight MH (in relative
throughput) as model size increases. The four models
are: the HMM and LDA models from Figure[4] a one-
dimensional finite Gaussian mixture model (GMM),
and a hierarchical linear regression model (HLR) [17].
The 1-10 normalized Model Size parameter maps to
a natural scale parameter for each of the four mod-
els; details are available in the supplemental materials.
While C3 offers only small benefits over Lightweight
MH for small models, it achieves dramatic speedups
of 20-100x for large models.

gox Model
H HMM
Il LDA
60x [l GMM
E) HLR
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6 Related Work

The ideas behind C3 have connections to other areas
of active research. First, incrementalizing MCMC pro-
posals for PPLs falls under the umbrella of incremental
computation [18]. Much of the active work in this field
seeks to build general-purpose languages and compil-
ers to incrementalize any program [19]. However, there
are also systems such as ours which seek simpler solu-
tions to domain-specific incrementalization problems.
In particular, C3’s callsite caching mechanism was in-
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spired in part by recent work in computer graphics on
hierarchical render caches [20]E|

C3 bears similarity to the CPS-based self-adjusting
computation system developed by Ley-Wild and col-
leagues [21]. Both this system and C3 use contin-
uations to approximate dynamic data dependencies,
and both use some form of function caching to avoid
re-executing unchanged computations. Their system
aims for generality, using a compiler infrastructure
that supports arbitrary changeable data and compu-
tation reuse. The restricted needs of our application—
MH proposal computation—allow C3 to use a sim-
pler strategy: only random choices are changeable,
and computation is only reused from the previously-
accepted program execution. This approach is consis-
tent with our goal of keeping the system lightweight.
It also has efficiency benefits: since Ley-Wild’s sys-
tem allows arbitrary changes to data, its change prop-
agation mechanism must examine all of the previous
execution’s reads and writes to changeable data to en-
sure that they are consistent with the data’s current
value. In contrast, C3 knows that a proposal makes ex-
actly one change (i.e. to a random choice value), so it
can start change propagation from the continuation at
that point, as well as terminate change propagation as
soon as any function’s return value is unchanged. This
ability, along with efficient random choice lookup and
cache copy-on-write, enables asymptotically constant-
time proposals when the model’s dependence structure
supports them.

The Venture PPL features an algorithm to incremen-
tally update a probabilistic execution trace in response
to a random choice change [5]. Implemented as part
of a custom interpreter, this method walks the trace
starting from the changed node, identifying nodes
which must be updated or removed, and determining
when re-evaluation can stop. C3 performs a similar
computation but uses continuations to traverse the ex-
ecution trace rather than maintaining a complete in-
terpreter state.

The Shred system also incrementalizes MH updates
for PPLs [I7]. Shred traces a program to remove
its control flow and then uses data-flow analysis to
produce incremental update procedures for each ran-
dom choice. This process produces very fast proposal
code, but it requires significant implementation cost,
and its re-compilation overhead grows very large for
programs with high control-flow variability, such as
PCFGs. C3’s caching scheme is a dynamic analog to
Shred’s static slicing which does not have compilation

!An incomplete, undocumented version of C3’s call-
site caching mechanism also appears in the original MIT-
Church implementation of the Church probabilistic pro-
gramming language [4].

overhead but may not be as fast for models with fixed
control flow.

The Swift compiler for the BLOG language is another
recent system supporting incrementalized MCMC up-
dates [22]. Unlike the above systems, BLOG/Swift
uses a possible-world semantics for probabilistic pro-
grams, representing program state as a graphical
model whose structure changes over time. Swift tracks
the Markov Blanket of this model, computing incre-
mental updates to it as model structure changes, al-
lowing it to make efficient MCMC proposals. C3 does
not explicitly compute Markov blankets, but its short-
circuiting facilities limit re-execution to the subset of
a changed variable’s Markov blanket that is affected
by the change.

7 Discussion and Future Work

This paper presented C3, a lightweight, source-
to-source compilation system for incrementalizing
MCMC updates in probabilistic programs. We have
described how C3’s two main components, continua-
tions and callsite caching, allow it both to avoid re-
executing function calls and to terminate re-execution
early. Our experimental results show that C3 can
provide orders-of-magnitude speedups over previous
lightweight inference systems on typical generative
models. It even enables constant-time updates in some
cases where previous systems required linear time. We
also demonstrate that C3 improves performance by
nearly 10x on a complex, compute-heavy inverse pro-
cedural modeling problem. Our implementation of C3
is freely available as part of the open-source WebPPL
probabilistic programming language.

C3 provides the most benefit for models where the
number of latent variables grows with the dataset size.
For models with a small number of global latent vari-
ables, C3 will not provide any speedup, and in fact the
cache overhead may result in a small constant factor
slowdown (though adaptation will remove almost all
cache lookups in such cases). This is less a limitation
of C3 and more an intrinsic expense of such models:
any MH implementation will have to completely re-
execute on each proposal.

For the Bayesian data analysis models we have focused
on in this paper, much of C3’s performance boost
comes from its ability to terminate execution early,
i.e. achieving constant-time updates for the HMM
program. However, programs for which early termina-
tion is not possible can still see significant performance
benefits. For example, when the program involves ex-
tensive recursive branching, as in the procedural tree
program of Section [5] C3 can prune large sub-trees
from the overall execution trace.
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Careful optimization of computational efficiency, such
as the work presented in this paper, is necessary for
PPLs to move out of the domain of research and into
production machine learning and Al systems. Along
these lines, there are several directions for future work.
First, static analysis might allow C3 to determine at
compile time dependencies between random choices
and subsequent function calls, obviating the need for
some input equality checks and reducing caching over-
head. Second, C3’s CPS transform is overcomplete:
it transforms the entire program, but C3 only need
continuations at random choice points. Detecting and
fusing blocks of purely deterministic code before ap-
plying the CPS transform could improve performance.
Finally, while the results presented in this paper focus
on single-site Metropolis Hastings, C3’s core incremen-
talization scheme also applies to other sampling algo-
rithms, such as Gibbs samplers or particle filter reju-
venation kernels [23].
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