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Figure 1: Given the uncolored pattern templates shown on the left, we use a probabilistic factor graph model to generate the pattern
colorings shown in the middle. The factor graph is trained on example patterns colored by human artists. For comparison, on the right we
show randomized colorings of each template. The lightness information shown to visualize the input pattern is not used.

Abstract

We present a probabilistic factor graph model for automatically col-
oring 2D patterns. The model is trained on example patterns to sta-
tistically capture their stylistic properties. It incorporates terms for
enforcing both color compatibility and spatial arrangements of col-
ors that are consistent with the training examples. Using Markov
Chain Monte Carlo, the model can be sampled to generate a diverse
set of new colorings for a target pattern. This general probabilistic
framework allows users to guide the generated suggestions via con-
ditional inference or additional soft constraints. We demonstrate
results on a variety of coloring tasks, and we evaluate the model
through a perceptual study in which participants judged sampled
colorings to be significantly preferable to other automatic base-
lines.
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1 Introduction

From graphic and web design, to fashion and fabrics, to interior
design, colored patterns are everywhere. Web designers use them
as main images, backgrounds, or repeating page elements, fashion
designers print them on clothing and accessories, and interior de-
signers employ them on upholstery, wallpaper, drapes, and more.

A colored pattern has two parts: a pattern template, which is a
creative decomposition of space into regions, and a set of colors
assigned to those regions. Additionally, pattern templates often de-
fine constraints on which regions must be assigned the same color:
childrens’ color-by-numbers exercises and the patterns shared on
the popular COLOURlovers1 website are two such examples. It is
this color-by-numbers pattern format that we explore in this paper.

While many people can easily distinguish patterns they find pleas-
ing from those they do not, creating attractive pattern colorings
takes much more time and effort. Because color appearance de-
pends strongly on spatial arrangement, it can be difficult for both
experienced artists and enthusiasts to anticipate how a specific col-
oring will appear. Thus, the coloring process involves much trial-
and-error color tweaking. Experienced artists often create quick
thumbnail colorings to explore the state space before diving into
their final work [Meier et al. 2004].

Can computation make this process easier for artists of all levels
by automatically suggesting colorings? To be an effective creative
support tool, a coloring suggestion system should adapt to different
usage scenarios. First, it should output diverse suggestions auto-
matically for uncertain users who want to explore the space of good

1http://www.colourlovers.com/
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colorings. Second, it should accommodate users with different aes-
thetic preferences by customizing suggestions to evoke a particular
desired style. Finally, it should expose controls to let users refine
their criteria and guide the suggestion process.

Building such a system requires a computational encoding of the
properties that make a coloring desirable. There are many princi-
ples of aesthetics that might be relevant, such as the different color
harmony rules [Sutton and Whelan 2004]. However, which of these
principles apply to which patterns and coloring styles? For those
that do apply, which are the most important? Even assuming an an-
swer to these questions, there is still the problem of how to generate
many diverse colorings that satisfy the desired properties.

In this paper, we present a probabilistic approach to automatic pat-
tern colorization using factor graphs. A factor graph is a class of
probabilistic graphical model well-suited to encoding complex dis-
tributions over multiple random variables. This formalism has been
succesfully applied in the graphics literature to synthesize pattern
tilings [Yeh et al. 2012a], generate object layouts [Yeh et al. 2012b],
and assign materials to 3D objects [Jain et al. 2012].

Our main contribution is a probabilistic factor graph model that can
be trained on example patterns and sampled to generate new color-
ings for a target pattern template. Our model incorporates functions
to enforce plausible spatial arrangements of colors as well as overall
color compatibility. The individual functions, as well as the relative
importance of each one, are automatically trained using machine
learning techniques, statistically capturing desirable properties of
the example patterns. Using Markov Chain Monte Carlo sampling,
our model can generate a wide variety of attractive colorings. In
addition, via the use of conditional probabilistic inference or the ad-
dition of simple constraint factors, users can exercise control over
the generated suggestions.

We demonstrate the effectiveness of our model for a variety of pat-
tern coloring scenarios. We also show applications of our auto-
matic coloring system to 3D scene design, web design, and fash-
ion. Finally, we evaluate the quality of colorings generated by our
model through a judgment study. Automatically-colored patterns
were significantly preferred to both random colorings and colorings
that respect only global color compatibility.

2 Background

Related work has tackled problems similar to the one we address
in this paper. While our approach builds on some of the ideas and
algorithms presented in past research, these methods alone are not
sufficient to meet our goals.

Creative color support tools Addressing a problem similar to
ours, Sauvaget and colleagues describe a system that takes an im-
age divided into segments and a set of colors and computes a ‘har-
monious’ assignment of colors to segments based on contrast of
proportions guidelines [2010]. The system selects colors from a
fixed palette, and users can specify the set of colors to be used and
their relative amounts. However, these requirements can conflict
with our goal of supporting exploratory coloring, in which the user
may not know in advance the colors she wants and would like to
see many plausible suggestions. In contrast, our model is trained
from artist-created images. It does not require the user to specify
colors in advance, but its probabilistic framework is general enough
to support this input if the user desires it.

In the theme of user exploration, Meier and colleagues develop a
suite of interactive interfaces to help users browse color themes and
experiment with compositions [2004]. However, they do not focus

on algorithms for generating coloring suggestions. In this paper, we
explore generating suggestions while considering user input.

Color harmony & compatibility Computer graphics, aesthetics,
and psychology research has introduced theories and models to
predict the compatibility of colors [Cohen-Or et al. 2006; Mun-
sell and Birren 1969; Palmer and Schloss 2010; Itten 1974]. Re-
cently, O’Donovan and colleagues presented a data-driven model
that predicts the numeric ratings people would give to five-color
‘color themes’ [2011]. Our model includes this compatibility func-
tion. However, as we demonstrate in Section 3, this term alone is
insufficient to produce good colorings, as it does not take into ac-
count the spatial role each color plays in the pattern. Thus, our
model also uses the distinguishing spatial features of each pattern
region and the relationships between regions to constrain the space
of colorings that it will suggest.

Natural image colorization Related to the pattern colorization
problem, researchers have developed many approaches to coloriz-
ing grayscale photographic images [Levin et al. 2004; Welsh et al.
2002]. The most automatic of these methods builds distributions
of color variability given local texture descriptors, combines them
into one energy function, and minimizes it using a graph cut algo-
rithm [Charpiat et al. 2008]. Our model employs similar local color
distributions but bases them on features of pattern regions, rather
than photographic texture patches. We also cast the problem of
finding good colorizations as one of probabilistic inference, rather
than optimization. This framing allows our algorithm to explore the
space of colorings and suggest multiple good alternatives, whereas
a graph cut yields only a single global optimum.

3D model colorization Other recent work has tackled automatic
coloring of 3D objects. The DressUp! system suggests plausible
outfits—including colors for each clothing item—for virtual char-
acters [Yu et al. 2012]. It also employs the color compatibility func-
tion of O’Donovan et al. [2011] as part of a probabilistic model,
but it does not consider the spatiality of color beyond a top-to-
bottom ordering. The Material Memex system models the context-
dependent correlation between geometric shape and material prop-
erties of 3D object parts [Jain et al. 2012]. In a related fashion, the
system presented in this paper models the context-dependent corre-
lation between pattern regions and color properties of those regions.
The Material Memex does not include any explicit consideration of
color compatibility. Additionally, its use of multinomial factors re-
quires a quantization of material configuration space. Since it does
not consider colors separately from materials, this quantization can
restrict the set of colors the model can possibly suggest. In contrast,
our model uses continuous probability distributions.

3 Approach

We seek to facilitate the creative coloring process by automatically
suggesting pattern colorings. In doing so, we must keep in mind
that users may or may not have a target coloring style in mind.
In addition, aesthetic taste varies across users and can depend on
the situation. Thus, an effective color support system should both
output a variety of appealing colorings as well as provide controls
for personalizing suggestions to a preferred coloring style.

Our system takes as input a pattern template and outputs suggested
colorings for that template. A pattern template specifies which seg-
ments, or connected components, in an image can be colored in and
which segments must map to the same color. For example, an im-
age of a flower on a background may have a template that specifies
all petals of the flower must be the same color, and all background



segments must be the same color. We refer to the set of segments
that map to the same color as a color group. Figure 1 shows an
example of a pattern template visualized in grayscale, where each
lightness level identifies a different color group. This template rep-
resentation is relatively easy to author from images composed of
segments, such as web designs, 3D renderings, and line drawings.

To generate attractive pattern colorings, a reasonable first step is to
enforce that colors are by some definition ‘compatible’ with one
another. Figure 2 shows several patterns whose colors receive a
high score under the color compatibility model of O’Donovan et
al. [2011]. While these high-scoring colorings use attractive col-
ors and exhibit a great degree of diversity, they also display several
problems. Some background regions may be oversaturated, com-
ing across as too ‘loud.’ Several foreground regions have insuffi-
cient contrast with the pattern background, causing them to blend
uncomfortably into the background.

3.75 3.32 3.67 3.70

3.74 3.42 3.66 3.39

Figure 2: Patterns whose colors receive high scores under the
color compatibility model of O’Donovan et al. [2011]. The score is
shown beneath each pattern; a typical pattern scores between 2 and
4. Many results exhibit problems such as adjacent equi-luminant
regions and excessively saturated backgrounds.

To overcome these problems, we turn to examples of well-colored
patterns. If we inspect color groups that are large, highly con-
nected, and spread across the entire pattern—indicative features of
a background—we can see how saturated they are. This knowledge
can prevent us from using excessively ‘loud’ background colors. If
we examine the contrast between adjacent pattern regions, we might
find that large foreground regions have high contrast with the back-
ground but less contrast with thin borders. Enforcing these same
properties in our own colorings should lead to better results.

Consequently, the approach we take to pattern coloring is data-
driven: given a dataset of example patterns, we learn distributions
over color properties such as saturation, lightness, and contrast for
individual regions and for adjacent regions. We predict these distri-
butions using discriminative spatial features of the pattern, such as
the size and shape of different regions. Finally, we use the predicted
distributions to score the goodness of pattern colorings.

In the next sections, we introduce the dataset of patterns used for
our experiments (Section 4). Next, we describe the unary color
functions that we use to score the colors of indvidual pattern re-
gions (Section 5), as well the pairwise color functions that score
the colors of adjacent regions (Section 6). While color compatibil-
ity alone does not predict good pattern colorings, it helps enforce
global consistency between colors, and our approach makes use of
this ability (Section 7).

We then show how these three types of scoring functions—unary,
pairwise, and global—can be combined into one unified model us-
ing the framework of probabilistic factor graphs (Section 8). The
resulting model is very flexible: we can sample from it to gener-

ate a variety of new coloring suggestions, train it on different ex-
ample sets to capture different coloring styles, and add additional
constraints to it to support different usage scenarios (Section 9).

4 Dataset

To build our data-driven model, we use a dataset of colored pat-
terns collected from COLOURlovers, an online community cen-
tered around creating and sharing color designs. Artists and en-
thusiasts can create colored patterns by creating a template from
scratch or by coloring an existing template.

Our dataset contains 100 colored patterns for each of 82 artists—
8200 colored patterns in total spread over 2908 unique pattern tem-
plates. We chose artists in order of their most popular pattern and if
he or she had created at least 100 patterns total. The supplemental
materials contain the complete list of patterns in our dataset.

These patterns originated as vector images, where each region
is mapped to a color in a source color palette. However, our
dataset only contains rasterized patterns, which is the format
COLOURlovers makes available to the public. Thus, we must pre-
process the rasterized patterns to create pattern templates for train-
ing. We first map each pixel to a color in the source palette. To
reduce quantization noise, we examine the closest palette colors in
the 8x8 neighborhood for each pixel, and map that pixel to the mode
color. We group all connected components under a threshold size
(0.05% image size) into one ‘noise’ segment. Each other pattern
segment is defined as a set of connected components that are 2 pix-
els or closer to each other, to account for noise. Finally, we create
color groups from segments with the same palette color.

5 Unary Color Functions

As discussed in Section 3, color compatibility alone does not pre-
dict good pattern colorings. We observed that properties of a pattern
region’s color can depend on some key spatial features of that re-
gion. In this section, we define a set of color properties that we hy-
pothesize contribute to good colorings, a set of spatial features that
we use to predict distributions over those properties, and a general-
purpose method for performing this prediction.

5.1 Color Properties and Predictive Features

While we could directly predict distributions over colors for pattern
regions, predicting distributions instead over properties of those
colors (e.g. lightness or saturation) has benefits. First, it general-
izes better to colors that do not occur in the training dataset but are
consistent with that dataset’s overall style: a training set that uses
pastel colors might not contain a particular pastel blue, but that does
not mean our system should not use it. Second, it allows the relative
importance of different color properties to be tuned: it may be more
critical to set the lightness of a pattern region correctly than to use
the perfect hue. Similar approaches have been succesfully deployed
to model the aesthetics of photographs [Datta et al. 2006].

Many different color properties can contribute to the appearance of
a pattern coloring. For the colors of individual pattern regions, our
method considers the following set:

Lightness is the L component of a color in the L*a*b*color space.
This value affects how bright the color appears to an observer.

Saturation is the difference between a color and neutral gray, and
affects how vivid the color appears. Rather than the typical
HSV saturation, we use a more perceptually-based formula

that operates in L*a*b*space:
√
a2+b2√

a2+b2+L2
[Lübbe 2010].



Color Name Counts is a vector of counts that summarizes how
frequently a color is referred to using different names. The
common names of a color often convey higher-level stylistic
information about it. These vectors were derived in previous
work from data collected in a large online color naming sur-
vey [Heer and Stone 2012].

Color Name Saliency is a measure of how reliably a color is
named [Heer and Stone 2012]. It is derived through an
entropy-based formulation and conveys information about
how ‘instantly recognizable’ a color is likely to be.

Distinctive spatial features of a color group, as well as the spatial
features of the segments it contains, can affect the appearance of a
color assignment. In our system, we use the following group fea-
tures for color property prediction:

Relative Sizes The area occupied by the group divided by the to-
tal area of the pattern, and the area divided by the maximum
group area in the template.

Segment Spread The 2D covariance matrix of the group’s seg-
ment centroids. This feature captures whether the group is
concentrated in one section of the pattern or spread across the
whole pattern.

Segment Size Statistics The minimum, maximum, mean, and
standard deviation of the sizes of segments within the group.

Number of Segments The number of segments in the group di-
vided by the total number of segments in the image.

We also consider the following features for individual segments
within a color group:

Relative Sizes The area occupied by the segment divided by the
total area of the pattern, and the area divided by the maximum
segment area in the template.

Normalized Discrete Compactness A relationship between the
segment’s boundary edges and its area [Bribiesca 1997].

Elongation The relative narrowness of a segment based on its min-
imum area bounding box: 1 − boxWidth

boxHeight . A square is the least
elongated.

Centrality Euclidean distance from the segment’s centroid to the
center of the pattern.

Role Labels A set of three binary values: Noise, Background,
Foreground. Noise indicates if the segment was labeled as
‘noise’ during preprocessing (Section 4). Background in-
dicates if a segment belongs to the group with the largest
connected component. All other segments are labeled Fore-
ground.

5.2 Color Property Distributions

With a set of color properties and predictive spatial features in hand,
our goal is to predict distributions over those properties given the
features. Then, for a color group g and a color property π, we
define the scoring function:

φGrp
π (cg) = ln p(π(cg)|fg) ·Ag

where cg is the color of group g and fg are its spatial features.
We weight by the area of the group Ag as larger regions tend to
have more impact on the appearance of a coloring. Similarly, for a
segment s, we define the function φSeg

π (cs) = ln p(π(cs)|fs) · As.
Evaluating these functions on a particular color results in a ‘score’

for how well that color fits the given group or segment, according
to the property π.

Figure 3 shows predicted distributions over lightness for different
pattern regions using training data from the top 10 artists in our
dataset. The background color group, which is larger and more
spread, exhibits a bimodal distribution. Intuitively, backgrounds are
either dark or light but rarely of middling brightness. The distribu-
tion favors light backgrounds, reflecting the stylistic biases of the
data used for training. The smaller, more concentrated, foreground
flower color group, on the other hand, strictly prefers lighter colors.

Figure 3: Predicted distributions over lightness for two different
color groups (higlighted in orange). The background has a bimodal
distribution, whereas the foreground strictly favors lighter colors.

How should we represent these distributions p? Closed-form con-
tinuous distributions, such as the normal distribution, are appealing
for their simplicity. However, they are unlikely to capture the shape
of distributions exhibited by real patterns, which are often multi-
modal in nature (Figure 3).

We adapt the method of Charpiat et al. [2008] to build multimodal
distributions of color properties. We first discretize the space of
possible color property values into a finite number of bins. Next,
we train a multi-class classifier on (π(c), f) pairs extracted from
the training dataset. This classifier predicts, given a feature vector
f , the probability that its corresponding property value π(c) falls
into each bin. Given a never-before-seen feature vector, the classi-
fier can then output a histogram of these probabilities, one for each
property value bin. The histogram is then smoothed using kernel
density estimation, and the resulting density forms the final, contin-
uous probability distribution.

In our implementation, we discretize the space of property values
using k-means clustering with k = 10 on the values found in the
training examples. We then use multinomial logistic regression to
predict the histograms of color property values given features. Fi-
nally, we smooth the histograms by placing a Gaussian at the center
of each histogram bin and setting the Gaussian bandwidth to the av-
erage distance to the nearest three other bins [Wang et al. 2010].

6 Pairwise Color Functions

While group and segment terms model the dependency of color as-
signments on spatial features of same-color regions, they do not
capture relationships between different-color regions. Adjacent



color regions can have strong effects on their neighbor’s perceived
color, making colors appear more or less saturated or causing vi-
brating boundaries [Albers 1963]. Thus, we also predict distribu-
tions over color properties for adjacent segment pairs.

6.1 Color Properties and Predictive Features

As with individual pattern regions, there are many possible prop-
erties of the color relationship between two adjacent regions that
could influence the appearance of a pattern coloring. Our method
uses the following set:

Perceptual Difference is the Euclidean distance between two col-
ors in L*a*b*space and is the primary descriptor of ‘contrast’
between two colors that we use in our model. This distance
metric is simple and efficient to evaluate; more sophisticated
formulae have also been proposed [Sharma et al. 2005].

Relative Lightness is the absolute difference between the L values
of two colors in L*a*b*space. This ‘difference of intensities’
captures another important type of contrast.

Relative Saturation is the absolute difference between the satura-
tion values of two colors, using the definition from Section 5.
This property helps capture whether or not two colors should
be mutually saturated/desaturated

Chromatic Difference is the squared fraction of perceptual dis-
tance due to the L*a*b*chroma channels: δa2+δb2

δa2+δb2+δL2 . This
value measures the difference between two colors after factor-
ing out lightness.

Color Name Similarity is the cosine similarity between the color
name count vectors defined in Section 5 [Heer and Stone
2012]. This measure assesses whether two colors are typi-
cally referred to with the same set of names.

Good color assignments may depend on the sizes of participating
regions and the nature of their adjacency. For example, a square
enclosed by a thin border appears different from a square enclosed
by a thick border, and different again from a square side-by-side
with another square (Figure 4). Thus, to form a set of predictive
spatial features for an adjacent segment pair, we use the features
from both participating segments, concatenated such that the one
with the smaller L2 norm is first to enforce a consistent ordering.
In addition, we add a pair of features we call Enclosure Strengths,
which measure how much one segment in the adjacency encloses
the other and vice versa. Enclosure Strength is defined as the num-
ber of pixels of the neighboring segment appearing within a 2-pixel
neighborhood outside the segment’s boundary, normalized by the
area of that neighborhood. Out-of-image pixels are counted as part
of the neighborhood area.

Figure 4: Color appearance depends on relationships with sur-
rounding regions.

6.2 Color Property Distributions

For a particular pair of adjacent segments (s, s′) and a color prop-
erty π, we can define a scoring function:

φAdj
π (cs, cs′) = ln p(π(cs, cs′)|fs,s′) · str(s, s′)

where str(s, s′) is the strength of the adjacency (s, s′). We define
adjacency strength as the number of pixels from segments s or s′

that are within a 2-pixel distance from their perimeters. All adja-
cency strengths in a given pattern are normalized to sum to 1. We
learn the distributions p using the ‘histogram regression’ approach
described in Section 5. This function scores how well a color as-
signment fits an adjacency according to color property π.

Figure 5 shows predicted distributions over relative lightness for
different adjacent segment pairs. The two distributions are simi-
lar in shape and reflect the intuition that no two adjacent segments
should be equi-luminant. However, the adjacency between the fore-
ground flower and the background concentrates more mass toward
higher lightness differences. Together, these two distributions sug-
gest that foreground-background adjacencies should exhibit more
lightness contrast than foreground-foreground adjacencies.

Figure 5: Predicted distributions over relative lightness for two
different segment adjacencies (participating segments higlighted in
orange and green). A value of 0 indicates identical lightness. The
foreground-foreground distribution permits more similar lightness
values than the foreground-background distribution.

7 Color Compatibility Function

The unary and pairwise color scoring functions defined in the pre-
vious sections indicate whether an individual pattern region is well-
colored or whether two adjacent regions are colored well in con-
cert, but they have no knowledge of the global harmony between
all colors in the pattern. To enforce global consistency, we include
a color compatibility function based on the model introduced by
O’Donovan et al. [2011]. Their model predicts 0-5 numeric aes-
thetic ratings for five-color ‘color themes,’ which are ordered rows
of five colors.

We extract such a color theme from a pattern by taking the col-
ors of the five largest color groups and ordering them by size. If
the pattern contains fewer than five color groups, we repeat colors
in order of size to fill the rest of the theme. Inspection of these
extracted themes revealed that size-ordering of colors tends to pro-
duce themes that are rated higher than random orderings but lower
than the optimal ordering. Additionally, ordering has little effect
on discriminative power: in general, low-scoring themes are rated
lower than high-scoring themes, regardless of permutation.

To turn a theme’s predicted rating into a score consistent with our
unary and pairwise functions, we divide the rating by the maximum



possible rating (5) and treat the result as a probability:

φCompat(c1 . . . c5) = ln(compat(c1 . . . c5)/5)

where c1 . . . c5 are the colors of the five largest color groups in the
pattern and compat is the O’Donovan color compatibility model.
While our implementation uses the O’Donovan model of color
compatibility, it is flexible enough to accomodate any other color
compatibility that can assign a score to a set of colors.

8 Probabilistic Model

We have defined unary, pairwise, and global scoring functions for
pattern color properties. Now, we combine them into one scoring
function that evaluates the overall quality of a pattern coloring.

For this task, we turn to the language of probabilistic factor graphs.
A factor graph is a probabilistic graphical model that decomposes
a complex probability distribution over multiple variables into a set
of smaller factors over subsets of the variables. In our case, the
variables C are the colors of each color group in a pattern, and the
factorsF are derived from our scoring functions. Figure 6 shows an
example of a factor graph for one simple pattern. The circles denote
color variables, while squares denote different factors F . Edges in
the graph connect each factor to the variables within its scope.

C1 C2

C5C4

C3

Figure 6: A factor graph for an example pattern template. Variable
nodes are colored according to their corresponding color group in
the pattern.

The factors connected to a single variable are derived from our
unary scoring functions; they combine the score for a color group
with the scores for all segments in that group:

FUnary
π (cg) = exp(wGrp

π · φGrp
π (cg) + wSeg

π ·
∑
s∈g

φSeg
π (cg))

The w’s are weights that control the relative importance of each
function; we will see how to set them later in this section.

The factors connecting two variables come from our pairwise scor-
ing functions and combine the scores for all adjacencies which in-
volve segments from two different color groups:

FPairwise
π (cg, cg′) = exp(wAdj

π ·
∑

(s,s′)∈adj(g,g′)

φAdj
π (cg, cg′))

Finally, the factor connected to all five color variables enforces
color compatibility:

FCompat(c1 . . . c5) = exp(wCompat · φCompat(c1 . . . c5))

The probability distribution encoded by this factor graph is the nor-
malized product of all of these factors:

p(c|P : w) =
1

Z(P : w)

∏
F

F(ScopeF (c))

Here, ScopeF selects the color variables connected to the factor
F and Z(P : w) is the pattern-dependent partition function that
normalizes the distribution. The distribution is parameterized by
the vector of factor weights w.

8.1 Sampling

Generating good coloring suggestions reduces to sampling high-
probability colorings from our model. We use the Metropolis-
Hastings algorithm (MH), a variant of Markov Chain Monte Carlo
(MCMC) [Metropolis et al. 1953; Hastings 1970]. MH explores
the coloring state space by proposing candidate new states, which
are accepted with probability proportional to their model score.
We would also like our sampler to output a variety of suggestions,
which requires that it explore many modes of the distribution. To
do this efficiently, we use parallel tempering, a technique that runs
multiple MCMC chains in parallel at different ‘temperatures’ and
swaps their states periodically [Geyer 1991]. ‘Hot’ chains are more
likely to take large jumps across the state space, whereas ‘cool’
chains behave like local hill-climbing optimizers. The combined
system of chains effectively explores and refines different coloring
configurations.

Our sampler uses the following MH proposals:

• Perturb a randomly chosen color by v ∼ N (0, σ) in RGB
space

• Swap two randomly chosen colors

where σ varies linearly with the model temperature t, encourag-
ing larger perturbations at high temperatures. The sampler chooses
between these two proposals with a probability that also varies lin-
early with temperature. The sampler operates in RGB space rather
than L*a*b*space, since all RGB colors fall in the display gamut,
and the sampler should not waste time exploring colorings that can-
not be visualized. Since the RGB color space is bounded, the per-
turbation proposal draws from a truncated normal distribution in
order to maintain ergodicity of the MCMC chains [Robert 1995].

Finally, we use maximimum marginal relevance (MMR) to enforce
diversity in the set of suggestions returned by the sampler [Car-
bonell and Goldstein 1998]. MMR is a technique from information
retrieval that re-ranks every item in a list according to a linear com-
bination of relevance (model score, in our case) and similarity to
the items preceding it. The similarity metric we use for two color-
ings c and c̃ of a pattern is −

∑
g∈G Ag · ||cg − c̃g||, which is the

area-weighted sum of L*a*b*distances between the corresponding
colors in each coloring.

8.2 Weight Learning

The factor graph model we have defined is parameterized by a vec-
tor of weights w. Setting these weights manually proves challeng-
ing, as it is not obvious which color properties matter most to the
quality of a pattern coloring. Instead, we would like to set them
automatically, using our training dataset as a guide.

We formulate the weight-tuning problem as one of maximum like-
lihood parameter estimation: we would like to set the weights such
that the training examples have high probability under the resulting
model. We first rewrite the probability distribution encoded by our
model from a weight-centric view

p(c|P : w) =
1

Z(P : w)

∏
w∈w

exp(w · Φw(c,P))

where Φw(c,P) sums all the scoring functions φ that share the
weight w. We can then express the log-likelihood of the weights



given a dataset D of pattern colorings:

`(w : D) =
∑

(P,c)∈D

(
∑
w∈w

w · Φw(c,P))− lnZ(P : w)

Convex log-likelihoods such as this are typically maximized via
gradient ascent. The partial derivatives of this function with respect
to the weights are

∂

∂w
`(w : D) =

∑
(P,c)∈D

Φw(c,P)−Ew[Φw(C,P)]

where Ew denotes an expectation under the model with weights
w. Unfortunately, these quantities are extremely expensive to com-
pute: the expectation term requires probabilistic inference—an NP-
complete problem—for every training pattern, for every iteration of
gradient ascent.

This computational intractability has motivated the development of
alternative, ‘biased’ parameter estimation schemes which do not di-
rectly maximize the likelihood function but nevertheless yield pa-
rameters that give high likelihoods. We use one such method called
Contrastive Divergence (CD) [Hinton 2002]. CD uses the follow-
ing approximation to the likelihood gradient:

CDk
w(w : D) =

∑
(P,c)∈D

Φw(c,P)− Φw(ĉ,P)

where ĉ is the coloring obtained by running an MCMC chain for k
steps from the initial coloring c. CD forms a local approximation
to the likelihood gradient around the neighborhood of c. Larger k
yields more accurate approximations at additional cost; we use k =
10. We initialize the weights uniformly to 1 and constrain them to
be non-negative, since all terms in the model are log-probabilities.

While the exact weights learned depend on the training dataset, we
have noticed several persistent trends. The perceptual difference,
color compatibility, and color name count terms receive the highest
weights. These trends coincide well with our intuition that col-
ors should be harmonious, adjacent regions should have sufficient
contrast, and colors should be categorically similar to those in the
training set. The lowest weight belongs to the color name similarity
term, which suggests that the similarity in how two adjacent colors
are named is not strongly predictive of their compatibility.

8.3 Implementation

Our prototype implementation of this model is written in the Scala
programming language, using the Factorie toolkit for probabilistic
modeling [Mccallum et al. 2009]. To evaluate the color compatibil-
ity term, it uses the reference MATLAB implementation provided
by O’Donovan et al. [2011].

9 Results

In this section, we demonstrate the flexibility of our model when
applied to a variety of pattern coloring scenarios. Results were gen-
erated using a model trained on patterns from the 10 most popular
artists in our dataset, except for patterns with a template used in a
result figure or experiment; the training patterns and final weights
for each of our factors can be found in the supplemental materials.
To sample from the model, we used parallel tempering with 5 chains
at temperatures (1, 0.5, 0.2, 0.05, 0.01), swapping colors between
chains every 50 iterations. We then used MMR to retrieve a diverse
set of samples from the resulting MCMC chains. Images were ren-
dered using the COLOURlovers online pattern creator, from color
assignments generated by our model.

9.1 Coloring Pattern Templates

People can color patterns with a variety of different criteria in mind,
which may even change during the coloring process. These prefer-
ences can range from the more general preference for any appeal-
ing coloring to more specific preferences such as using a particular
palette, looking for local improvements to an existing coloring, or
matching a specific style. We explore how our model can facilitate
these scenarios.

Automatic pattern coloring In the most direct application of
our framework, we can sample from our model to produce color-
ings for a pattern template that are similar to the colorings used for
training. Figure 1 shows two examples of this process. The sam-
pled patterns exhibit a range of colors and styles employed by the
COLOURLovers artists. For comparison, the same patterns colored
with palettes randomly sampled from RGB-space are shown on the
right. These patterns exhibit significant problems, such as low color
harmony and adjacent regions with equi-luminant colors.

Coloring with fixed palettes Artists often draw inspiration from
inspirational photographs and existing color themes and may have
specific colors in mind when coloring in a pattern. Even with a fixed
color palette, mapping different colors to different regions leads to
a range of possible images, some more desirable than others. We
can use our model’s score to rank all possible permutations of the
palette colors (excluding the color compatibility factor).

Figure 7 shows an example where colors from two photographs are
applied to different pattern templates. A color palette is first auto-
matically extracted from the input photograph [Lin and Hanrahan
2013]. Our algorithm then automatically computes a pleasing map-
ping from the colors in the extracted palette to regions in a given
pattern template.

Figure 7: Palettes are extracted from the two input photographs
on the left, and on the right we show the top-scoring coloring sug-
gested by our algorithm for three different pattern templates.

Although using a well-designed color palette often improves the
look of a pattern, the spatial arrangement of those colors can make
a dramatic difference in appearance. Figure 8 shows two input color
palettes for the bird pattern and the highest and lowest-scoring color
assignments to the pattern using those palettes. These palettes were
originally used by artists to color in this pattern on COLOURlovers.
Because the pattern has 5 color groups, there are 120 possible color
assignments for a given 5-color palette. Our model ranks the orig-
inal artist-created color assignments as 39th (for the first palette)
and 21st (for the second) out of the 120 permutations. Over a larger
sampling of 188 patterns, artist-created colorings rank in the top
40% overall, suggesting that the model captures general artist trends
in pattern coloring. However, there may be stylistic variations be-
tween different artists that are not well predicted by a single model.



(a) Input Palettes (b) Highest-scoring assignments (c) Lowest-scoring assignments

Figure 8: Given a pattern template and corresponding palette as input, we use our color model to compute the score of each possible
assignment of the palette to the image regions. (b) and (c) show the top-3 and bottom-3 assignments for two different palettes.

Initial automatic suggestions After fixing the stem to be green

Figure 9: An artist coloring a pattern is presented with the results shown on the left, and decides that she only likes results where the stem of
the plant is dark green. On the right, we use conditional inference to sample from our model subject to the constraint that the desired palette
entry is fixed to a specific color.

In this example, the model terms that most distinguish the highest-
scoring assignments from the lowest-scoring ones are the color
name counts factors. The model prefers colors such as Tan-Yellow,
Grey, and Green-Black to Red-Orange and Orange for background
regions. Colorings with orange background colors tend to score
poorly, perhaps because there are few popular patterns with orange
backgrounds in our training set. Our model also predicts that fore-
ground regions should more perceptually distinct from the back-
ground than from other foreground regions. Thus, it tends to assign
the most distinct color in the palette to the background region.

Hard color constraints In some cases, a user may only have par-
tial knowledge about the colors she wants to see in particular pattern
regions. Our model assists this situation by allowing users to fix the
colors of certain pattern regions. The system then uses conditional
inference to sample values for the remaining unconstrained color
variables. Figure 9 shows an example. After viewing an initial set
of coloring suggestions, the user decides she wants to see more re-
sults where the stem of the plant is a particular shade of green. Our
system outputs new suggestions subject to this constraint.

Soft color constraints In another use case, a user might have
strong preferences for the appearance of the pattern. She might
manually color a pattern and then wish to see variations upon this
theme, hoping to find better-looking alternatives nearby in the space
of colorings. Our model can support this type of query by incorpo-
rating an additional soft constraint factor on color variable, con-

Original Suggestions

Figure 10: An artist provides an initial color assignment and asks
for patterns that are similar. We incorporate this request by adding
an additional factor to our model, showing four samples drawn
from the new model for each of the input images.

straining it to be close to a target color:

FTarget(Cg|P) = N (||Cg − targetColor(g)||, σuser) (1)

Here, targetColor(g) is the desired color of group g and σuser con-
trols the extent to which the group is allowed to deviate from the
desired color. We assign this factor a weight wuser ∗ wmodel, where
wmodel is the sum of the weights of all other factors in the model.
wuser controls the tradeoff between satisfying the user-specified tar-
get colors for a region versus satisfying the color distribution en-
coded by the trained model.

Figure 10 shows two example scenarios where a proposed coloring
is given and the model returns similar colorings. Here we choose



σuser to be 10% of the diagonal length of the L*a*b*color space, and
wuser = 3, indicating a desire to remain fairly close to the original
coloring. Our model generates numerous variations on the input
coloring while still preserving its overall character.

Style capture A powerful advantage of a data-driven approach is
the ability to modify the underlying training source to achieve spe-
cialization of the resulting model. This ability allows our model to
capture a specific style and color preferences such as “high-contrast
patterns” by selecting a set of patterns with the desired property.
Figure 11 demonstrates this behavior using four style categories:
Light, Dark, Bold, and Mellow. Using 17 training examples, our
model can capture general properties of the example patterns such
as the distribution of colors over the background regions in Light
and Dark and the level of contrast in Bold and Mellow. The model
can also capture the style of a specific artist, as shown in Figure 12.
Here, 100 images from each artist were used for training. The sam-
pled images mimic properties of each artist’s style, such as the light
backgrounds preferred by Artist A and the bold colors and dark
backgrounds preferred by Artist B. The complete list of patterns
used as training data for these examples can be found in the supple-
mental materials.

Style Example Results

Light

Dark

Bold

Mellow

Figure 11: Training different models on patterns with different
styles. (Left) A representative pattern from each style. (Right) The
top four samples drawn from each model.

9.2 Applications

Next, we show how our model can be applied to different pattern
coloring tasks, such as coordinating colors in interior scene design,
coloring in webpage backgrounds, and suggesting clothing color-
ings to fit people with different physical attributes.

3D scene design Color-coordinating a virtual scene is another
creative task that can benefit from computatational support. While
repositories such as the 3D Warehouse provide a wealth of object
models with which to build scenes, such models are rarely color
coordinated with one another. Figure 13 shows how our model can
make coordinating object colors easier. We can treat a scene as a
recolorable pattern by rendering its material coefficients to an im-
age. The user then provides a few additional annotations to spec-
ify which object components should be the same color; in this ex-
ample, cushions, pillows, and wooden objects must take the same
color. Finally, we add a factor to our model to enforce that the col-
ors assigned to each component are similar to their original colors

(see Equation 1) to keep the system from wandering into physi-
cally implausible colorings. The resulting model suggests plausi-
ble, improved recolorings of the scene. Recent related work trans-
fers material properties from photographs to 3D scenes [Nguyen
et al. 2012]; the objective functions used in this system could be
adapted to soft constraints in our framework.

Web design A web designer may want to change a web page’s
color theme to fit the season, a special event, or even the time of
day. Our model can support these tasks by suggesting recolorings
for web page pattern elements. In Figure 14, the background pattern
of a blog is automatically recolored in three distinct styles. Each
style is defined by a manually-specified page body color and header
text color. We generate these recolorings by adding new factors to
the model. First, we add a unary factor to each color variable that
encourages similarity to a color that occurs in the web page body:

FWebSim(cg|W) = p(cg|W)

where W is a rendered image of the web page body. The distri-
bution p is represented with a smoothed histogram of colors in the
image, after quantizing to a small number of colors (20, in this ex-
periment). We also add a factor to the pattern’s background color
group that penalizes similarity to the web page body background
color:

FBgPen(clargest(G)|W) = 0.05 · ||clargest(G) − bgColor(W)||

This term ensures that the body of the page does not blend into the
patterned background. A more sophisticated approach would treat
the entire web page as a pattern and perform joint recoloring; we
leave this extension to future work.

Fashion design Our model can also adapt the colorings of cloth-
ing items to fit different people. Figure 15 shows a shirt recolored
to match different hair, eye, and skin tones. The hair, skin, eyes,
and lips of the 3D person model were manually quantized to a sin-
gle color; the resulting texture atlas functions as a recolorable pat-
tern template. Fixing the colors of the hair, skin, eyes, and lips
constrains the inference process to produce suitable colorings for a
person with those physical attributes.

9.3 Performance

The time required to generate coloring suggestions varies depend-
ing on the visual complexity of the pattern. With the parallel tem-
pering parameters described at the beginning of this section, it took
73.0s on average to retrieve 20 MMR-diversified results for a single
input pattern on a 2.67GHz Intel Core i7. Running time is domi-
nated by MCMC sampling, which on average accounts for 83% of
the total time.

Real-time coloring suggestions would benefit many of the ap-
plications demonstrated in this paper, and there are several av-
enues for improving the performance of our unoptimized, JVM-
based prototype to this end. We could leverage the massive par-
allelism of graphics hardware to speed up parallel tempering, as
was done in related work on automatic furniture layout [Merrell
et al. 2011]. We could also improve the convergence of the individ-
ual MCMC chains via gradient-based proposals, as in Hamiltonian
MCMC [Neal 2010].

10 Evaluation

We conducted a judgement study to better understand how color-
ing suggestions from our model compare to colorings from sim-
pler models as well as colorings made by artists. We recruited 16



Artist A Artist B

Figure 12: Our data-driven approach makes it easy to capture the styles of different artists. Top: representative images from two different
artists. Bottom: results sampled from a model trained on 100 images from the artist.

Original Recoloring 1 Recoloring 2 Recoloring 3

Figure 13: A poorly color-coordinated 3D scene is recolored using our model. Using the original coloring as a soft constraint, our model
suggests multiple novel recolorings. (Top) Diffuse material coefficients for each object. (Bottom) Final renderings.

Computer Science graduate students (5 female) to participate in the
study. All participants had normal color vision. To simulate the ex-
ploratory situations in which our model would be used, we generate
and present multiple coloring suggestions. Although participants
likely have different aesthetic preferences, we should see any gen-
eral trends in the preferability of colorings generated by different
methods.

We first generate coloring suggestions from four different
sources—-Artist colorings, our Model, a Color Compatibility-only
model using the measure by O’Donovan et. al. [2011], and Ran-
dom colorings—to be compared in the study. Next, we select 15
different pattern templates that do not have strong semantic asso-
ciations and are also outside of our training set. For each pattern
template, we then generate 4 coloring suggestions per source. For
the Artist source, we randomly choose 4 colorings from the top 45
artist colorings on COLOURlovers. For our Model, we sample col-
ors using parallel tempering for 2000 iterations and choose the top
4 results using MMR with λ = 0.5. We similarly sample Color
Compatibility-only colorings. Finally, for the Random source, we
generate 4 colorings uniformly at random.

The study interface presents participants with a randomized grid of
all 16 coloring suggestions for a pattern template. Participants are
asked to choose the 4 colorings they like the most and the 4 they

like the least from the grid before moving on to the next template.
Each participant responds to 5 pattern templates randomly drawn
from the pool of 15 and presented in random order. One template
is presented twice to check for participant consistency.

Figure 16 shows the percentage of suggestions from each source
that particpants chose as a ‘Top 4’ or ‘Bottom 4’ pattern. When
counting, we do not include suggestions from the replicated tem-
plate. Logistic regression shows that the source of a suggestion
significantly affects the chances that it will be chosen as either ‘Top
4’ or ‘Bottom 4’ coloring. Tukey all-pair comparison tests show
that all differences are significant (p < 0.01), except for the odds
that an Artist suggestion will be chosen as a ‘Bottom 4’ suggestion
versus a Model suggestion. Artist patterns are selected most often
as a ‘Top 4’ pattern, with our Model patterns selected second most
often. In addition, Model patterns are selected least as a ‘Bottom 4’
pattern, along with Artist patterns.

These results suggest that Model-generated patterns have signifi-
cantly higher quality than patterns generated by automatic base-
lines. They do not yet achieve the same quality as Artist-created
patterns, but since our model functions as part of an interactive
coloring workflow, this result is acceptable. This research does
not seek to replace human artists but rather to augment their abil-
ities. The result that Model patterns are ‘disliked’ as infrequently



Figure 14: With a few additional factors, our model can recolor the
background pattern of a web page to match the colors in the page
body.

Figure 15: Using our model to colorize a patterned shirt for differ-
ent people. The hair, skin, eye, and lip colors are treated as fixed
constraints, which encourage the model to produce compatible col-
orings via adjacencies and long-range dependencies.

Figure 16: The percentage of times that Artist-created, Model-
generated, Color Compatibility-only, and Random patterns were
chosen by participants as one of their ‘Top 4’ favorite or ‘Bottom
4’ least favorite patterns in our online experiment.

as Artist patterns suggests that the Model patterns not chosen as
favorites are likely good enough to serve as inspirational starting
points for further creative work.

Finally, different groups of people likely have different biases in
color preference, which is important to research in automatic color-
ing and color suggestion. Further experiments with different popu-
lations are needed to understand these biases.

11 Discussion and Future Work

In this paper, we present a probabilistic approach to automatically
coloring 2D patterns. We develop a factor graph model that is
trained on example pattern colorings to statistically capture their
coloring style and sampled using MCMC to generate a variety of
pattern coloring suggestions. We demonstrate the utility of the
model on a range of coloring tasks, and a perceptual study showed
that the colorings it generates compare favorably to those generated
by other automatic methods.

There is still much work to be done to understand what makes a
pattern coloring appealing. In this paper, we propose modeling one
plausible set of color properties, and we gain some insight into
which properties matter most by comparing their automatically-
tuned weights. While colorings generated by our model are attrac-
tive and useful, our evaluation shows that they do not yet achieve
the same quality as colorings created by human artists. More re-
search is needed to close this gap, and our probabilistic framework
provides a strong and flexible foundation for further investigation.

One limitation of the current model is that it does not encode any
semantic constraints on pattern regions, such as skies being blue
or plants being green. This is not always a problem, as even hu-
man artists do not always respect these semantics, and patterns of-
ten admit many attractive, non-semantic colorings. However, some
patterns can appear odd or confusing when their colorings do not
respect semantics. Labeling regions with semantic tags could ad-
dress this problem, as the system could search for images on the
web using these tags and build up a distribution of expected colors.
It might also be possible to predict such labels automatically using
sketch classification techniques [Eitz et al. 2012].

In addition, some COLOURlovers templates use extensive color
blending in their original vector artwork. For these patterns, the
rasterized image is a poor approximation to the original artwork,
and our model may not capture good spatial features. In the future,
we would like to apply our model to a dataset of vector patterns.

This research opens up several interesting avenues for future work.
First, our experiments used patterns from COLOURlovers or ren-
derings that can be easily coerced into the same format. What if any
image found ‘in the wild’ could serve as a recolorable template? As
a first approach, we could extract a color theme from the image, and
then quantize the image using the theme’s colors [Lin and Hanrahan
2013]. However, this simple approach is unlikely to perform well
on complex images that use many distinct colors or color blending.
Solving the problem in general requires further research.

Second, this work explores colorizing patterns of the ‘color-by-
numbers’ format, in which some pattern regions are constrained to
take the same color. What if this assumption were relaxed, and the
color groups in the pattern template are unknown? A system that
supported this more general type of template could operate on es-
sentially any segmented image. This requires a more sophisticated
model, as well as transdimensional inference techniques to generate
colorings with a variable number of color groups [Yeh et al. 2012b].

Finally, embedding automatic coloring suggestions into interactive
creative software presents an exciting opportunity. A vector art
program could continually generate suggestions in the background
while its user works on a pattern; the user could view the sugges-
tions at any time, potentially picking one to use as an ‘autocomple-
tion’ of her work-in-progress. These kinds of tools have the poten-
tial to drastically shift the way that artists and enthusiasts work with
color on a daily basis.



Acknowledgments

Support for this research was provided by Intel (ISTC-VC) and an
SAP Stanford Graduate Fellowship. We would also like to thank
COLOURLovers jilbert (Fig 1,2), symea (Fig 1, 10), ArrayOfLilly
(Fig 3,5,7), COLOURLover (Fig 6, 12), timanttimaarit and dazzle-
ment (Fig 7), Any Palacios (Fig 8-12), gregreis [Gregorio Reis] and
praxicalidocious (Fig 11), bhsav and magg (Fig 11, 12), vaneea
and casslovescolors (Fig 12), ivy21 (Fig 14), and caseycastille (Fig
15) for their pattern templates; AlineDam (Fig 11), and sugar! and
albenaj (Fig 12) for the pattern coloring examples; and Flickr users
marctasman and zoomion for the reference photographs (Fig 7).

References

ALBERS, J. 1963. The interaction of color. Art news 62, 1.

BRIBIESCA, E. 1997. Measuring 2-d shape compactness using the
contact perimeter. Computers & Mathematics with Applications
33, 11.

CARBONELL, J., AND GOLDSTEIN, J. 1998. The use of mmr,
diversity-based reranking for reordering documents and produc-
ing summaries. In Proc. ACM SIGIR 1998.

CHARPIAT, G., HOFMANN, M., AND SCHÖLKOPF, B. 2008. Au-
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