Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                

Quantum 2-SAT on Low Dimensional Systems Is QMAsubscript{1}-Complete: Direct Embeddings and Black-Box Simulation

Authors Dorian Rudolph , Sevag Gharibian , Daniel Nagaj



PDF
Thumbnail PDF

File

LIPIcs.ITCS.2025.85.pdf
  • Filesize: 0.98 MB
  • 24 pages

Document Identifiers

Author Details

Dorian Rudolph
  • Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS), Paderborn University, Germany
Sevag Gharibian
  • Department of Computer Science and Institute for Photonic Quantum Systems (PhoQS), Paderborn University, Germany
Daniel Nagaj
  • Institute of Physics, Slovak Academy of Sciences, Bratislava, Slovakia

Acknowledgements

We thank Jonas Kamminga for proofreading, and Libor Caha for helpful discussions.

Cite As Get BibTex

Dorian Rudolph, Sevag Gharibian, and Daniel Nagaj. Quantum 2-SAT on Low Dimensional Systems Is QMAsubscript{1}-Complete: Direct Embeddings and Black-Box Simulation. In 16th Innovations in Theoretical Computer Science Conference (ITCS 2025). Leibniz International Proceedings in Informatics (LIPIcs), Volume 325, pp. 85:1-85:24, Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2025) https://doi.org/10.4230/LIPIcs.ITCS.2025.85

Abstract

Despite the fundamental role the Quantum Satisfiability (QSAT) problem has played in quantum complexity theory, a central question remains open: At which local dimension does the complexity of QSAT transition from "easy" to "hard"? Here, we study QSAT with each constraint acting on a d_A-dimensional and d_B-dimensional qudit pair, denoted (d_A×d_B)-QSAT. Our first main result shows that, surprisingly, QSAT on qubits can remain QMA_1-hard, in that (2×5)-QSAT is QMA_1-complete. (QMA_1 is a quantum analogue of MA with perfect completeness.) In contrast, (2×2)-QSAT (i.e. Quantum 2-SAT on qubits) is well-known to be poly-time solvable [Bravyi, 2006]. Our second main result proves that (3×d)-QSAT on the 1D line with d ∈ O(1) is also QMA_1-hard. Finally, we initiate the study of (2×d)-QSAT on the 1D line by giving a frustration-free 1D Hamiltonian with a unique, entangled ground state.
As implied by our title, our first result uses a direct embedding: We combine a novel clock construction with the 2D circuit-to-Hamiltonian construction of [Gosset and Nagaj, 2013]. Of note is a new simplified and analytic proof for the latter (as opposed to a partially numeric proof in [GN13]). This exploits Unitary Labelled Graphs [Bausch, Cubitt, Ozols, 2017] together with a new "Nullspace Connection Lemma", allowing us to break low energy analyses into small patches of projectors, and to improve the soundness analysis of [GN13] from Ω(1/T⁶) to Ω(1/T²), for T the number of gates. Our second result goes via black-box reduction: Given an arbitrary 1D Hamiltonian H on d'-dimensional qudits, we show how to embed it into an effective 1D (3×d)-QSAT instance, for d ∈ O(1). Our approach may be viewed as a weaker notion of "analog simulation" (à la [Bravyi, Hastings 2017], [Cubitt, Montanaro, Piddock 2018]). As far as we are aware, this gives the first "black-box simulation"-based QMA_1-hardness result.

Subject Classification

ACM Subject Classification
  • Theory of computation → Complexity classes
  • Theory of computation → Quantum complexity theory
Keywords
  • quantum complexity theory
  • Quantum Merlin Arthur (QMA)
  • Quantum Satisfiability Problem (QSAT)
  • Hamiltonian simulation

Metrics

  • Access Statistics
  • Total Accesses (updated on a weekly basis)
    0
    PDF Downloads

References

  1. D. Aharonov, W. van Dam, J. Kempe, Z. Landau, S. Lloyd, and O. Regev. Adiabatic quantum computation is equivalent to standard quantum computation. In 45th Annual IEEE Symposium on Foundations of Computer Science, pages 42-51, 2004. URL: https://doi.org/10.1109/FOCS.2004.8.
  2. Dorit Aharonov, Daniel Gottesman, Sandy Irani, and Julia Kempe. The power of quantum systems on a line. Communications in Mathematical Physics, 287(1):41-65, April 2009. Google Scholar
  3. Dorit Aharonov and Leo Zhou. Hamiltonian Sparsification and Gap-Simulation. In Avrim Blum, editor, 10th Innovations in Theoretical Computer Science Conference (ITCS 2019), volume 124 of Leibniz International Proceedings in Informatics (LIPIcs), pages 2:1-2:21, Dagstuhl, Germany, 2019. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ITCS.2019.2.
  4. Itai Arad, Miklos Santha, Aarthi Sundaram, and Shengyu Zhang. Linear Time Algorithm for Quantum 2SAT. In Ioannis Chatzigiannakis, Michael Mitzenmacher, Yuval Rabani, and Davide Sangiorgi, editors, 43rd International Colloquium on Automata, Languages, and Programming (ICALP 2016), volume 55 of Leibniz International Proceedings in Informatics (LIPIcs), pages 15:1-15:14, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.ICALP.2016.15.
  5. Bengt Aspvall, Michael F. Plass, and Robert Endre Tarjan. A linear-time algorithm for testing the truth of certain quantified boolean formulas. Information Processing Letters, 8(3):121-123, 1979. URL: https://doi.org/10.1016/0020-0190(79)90002-4.
  6. Johannes Bausch, Toby Cubitt, and Maris Ozols. The complexity of translationally invariant spin chains with low local dimension. Annales Henri Poincaré, 18(11):3449-3513, November 2017. URL: https://doi.org/10.1007/s00023-017-0609-7.
  7. S. Bravyi and M. Hastings. On complexity of the quantum Ising model. Communications in Mathematical Physics, 349(1):1-45, 2017. URL: https://doi.org/10.1007/s00220-016-2787-4.
  8. Sergey Bravyi. Efficient algorithm for a quantum analogue of 2-sat, 2006. URL: https://arxiv.org/abs/quant-ph/0602108.
  9. Sergey Bravyi, Libor Caha, Ramis Movassagh, Daniel Nagaj, and Peter W. Shor. Criticality without frustration for quantum spin-1 chains. Phys. Rev. Lett., 109:207202, November 2012. URL: https://doi.org/10.1103/PhysRevLett.109.207202.
  10. Sergey Bravyi, David P. DiVincenzo, and Daniel Loss. SchriefferendashWolff transformation for quantum many-body systems. Annals of Physics, 326(10):2793-2826, 2011. URL: https://doi.org/10.1016/j.aop.2011.06.004.
  11. Jianxin Chen, Xie Chen, Runyao Duan, Zhengfeng Ji, and Bei Zeng. No-go theorem for one-way quantum computing on naturally occurring two-level systems. Phys. Rev. A, 83:050301, May 2011. URL: https://doi.org/10.1103/PhysRevA.83.050301.
  12. Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third Annual ACM Symposium on Theory of Computing, STOC '71, pages 151-158, New York, NY, USA, May 1971. Association for Computing Machinery. URL: https://doi.org/10.1145/800157.805047.
  13. T. S. Cubitt, A. Montanaro, and S. Piddock. Universal quantum Hamiltonians. National Academy of Sciences, 115(38):9497-9502, 2018. URL: https://doi.org/10.1073/pnas.1804949115.
  14. Toby Cubitt and Ashley Montanaro. Complexity Classification of Local Hamiltonian Problems. SIAM Journal on Computing, 45(2):268-316, January 2016. URL: https://doi.org/10.1137/140998287.
  15. M. Davis and H. Putnam. A computing procedure for quantification theory. Journal of the ACM, 7(3):201, 1960. Google Scholar
  16. Niel de Beaudrap and Sevag Gharibian. A Linear Time Algorithm for Quantum 2-SAT. In Ran Raz, editor, 31st Conference on Computational Complexity (CCC 2016), volume 50 of Leibniz International Proceedings in Informatics (LIPIcs), pages 27:1-27:21, Dagstuhl, Germany, 2016. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.CCC.2016.27.
  17. Lior Eldar and Oded Regev. Quantum sat for a qutrit-cinquit pair is qma1-complete. In Luca Aceto, Ivan Damgård, Leslie Ann Goldberg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz, editors, Automata, Languages and Programming, pages 881-892, Berlin, Heidelberg, 2008. Springer Berlin Heidelberg. URL: https://doi.org/10.1007/978-3-540-70575-8_72.
  18. S. Even, A. Itai, and A. Shamir. On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5(4):691-703, 1976. URL: https://doi.org/10.1137/0205048.
  19. Richard P. Feynman. Quantum mechanical computers. Foundations of Physics, 16(6):507-531, June 1986. URL: https://doi.org/10.1007/BF01886518.
  20. M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph problems. Theoretical Computer Science, 1(3):237-267, February 1976. URL: https://doi.org/10.1016/0304-3975(76)90059-1.
  21. Sevag Gharibian. Strong np-hardness of the quantum separability problem. Quantum Info. Comput., 10(3):343-360, March 2010. URL: https://doi.org/10.26421/QIC10.3-4-11.
  22. Sevag Gharibian, Stephen Piddock, and Justin Yirka. Oracle Complexity Classes and Local Measurements on Physical Hamiltonians. In Christophe Paul and Markus Bläser, editors, 37th International Symposium on Theoretical Aspects of Computer Science (STACS 2020), volume 154 of Leibniz International Proceedings in Informatics (LIPIcs), pages 20:1-20:37, Dagstuhl, Germany, 2020. Schloss Dagstuhl - Leibniz-Zentrum für Informatik. URL: https://doi.org/10.4230/LIPIcs.STACS.2020.20.
  23. Brett Giles and Peter Selinger. Exact synthesis of multiqubit clifford+t circuits. Phys. Rev. A, 87:032332, March 2013. URL: https://doi.org/10.1103/PhysRevA.87.032332.
  24. David Gosset and Daniel Nagaj. Quantum 3-sat is qma1-complete. 2013 IEEE 54th Annual Symposium on Foundations of Computer Science, October 2013. URL: https://doi.org/10.1109/focs.2013.86.
  25. Leonid Gurvits. Classical deterministic complexity of edmonds' problem and quantum entanglement. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, STOC '03, pages 10-19, New York, NY, USA, 2003. Association for Computing Machinery. URL: https://doi.org/10.1145/780542.780545.
  26. S. Hallgren, D. Nagaj, and S. Narayanaswami. The Local Hamiltonian problem on a line with eight states is QMA-complete. Quantum Information & Computation, 13(9&10):0721-0750, 2013. URL: https://doi.org/10.26421/QIC13.9-10-1.
  27. Lawrence M. Ioannou. Computational complexity of the quantum separability problem. Quantum Info. Comput., 7(4):335-370, May 2007. URL: https://doi.org/10.26421/QIC7.4-5.
  28. Richard M. Karp. Reducibility among combinatorial problems. In Raymond E. Miller, James W. Thatcher, and Jean D. Bohlinger, editors, Complexity of Computer Computations: Proceedings of a symposium on the Complexity of Computer Computations, held March 20-22, 1972, at the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, and sponsored by the Office of Naval Research, Mathematics Program, IBM World Trade Corporation, and the IBM Research Mathematical Sciences Department, pages 85-103, Boston, MA, 1972. Springer US. URL: https://doi.org/10.1007/978-1-4684-2001-2_9.
  29. Julia Kempe, Alexei Kitaev, and Oded Regev. The complexity of the local hamiltonian problem. SIAM Journal on Computing, 35(5):1070-1097, 2006. URL: https://doi.org/10.1137/S0097539704445226.
  30. A. Yu. Kitaev, A. H. Shen, and M. N. Vyalyi. Classical and Quantum Computation. American Mathematical Society, USA, 2002. Google Scholar
  31. M. R. Krom. The Decision Problem for a Class of First-Order Formulas in Which all Disjunctions are Binary. Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 13:15-20, 1967. Google Scholar
  32. Zeph Landau, Umesh Vazirani, and Thomas Vidick. A polynomial time algorithm for the ground state of one-dimensional gapped local Hamiltonians. Nature Physics, 11(7):566-569, July 2015. URL: https://doi.org/10.1038/nphys3345.
  33. L. Levin. Universal search problems. Problems of Information Transmission, 9(3):265-266, 1973. Google Scholar
  34. Daniel Nagaj. Local hamiltonians in quantum computation, 2008. URL: https://arxiv.org/abs/0808.2117.
  35. Daniel Nagaj and Shay Mozes. New construction for a QMA complete three-local Hamiltonian. Journal of Mathematical Physics, 48(7):072104, July 2007. URL: https://doi.org/10.1063/1.2748377.
  36. C. H. Papadimitriou. On selecting a satisfying truth assignment. In [1991] Proceedings 32nd Annual Symposium of Foundations of Computer Science, pages 163-169, 1991. URL: https://doi.org/10.1109/SFCS.1991.185365.
  37. Asher Peres. Separability criterion for density matrices. Phys. Rev. Lett., 77:1413-1415, August 1996. URL: https://doi.org/10.1103/PhysRevLett.77.1413.
  38. W. V. Quine. On cores and prime implicants of truth functions. The American Mathematical Monthly, 66(5):755-760, 1959. Google Scholar
  39. Dorian Rudolph. Towards a universal gateset for QMA₁, 2024. URL: https://arxiv.org/abs/2411.02681.
  40. Dorian Rudolph, Sevag Gharibian, and Daniel Nagaj. Quantum 2-SAT on low dimensional systems is QMA₁-complete: Direct embeddings and black-box simulation, 2024. https://arxiv.org/abs/2401.02368, URL: https://doi.org/10.48550/arXiv.2401.02368.
  41. Norbert Schuch, Ignacio Cirac, and Frank Verstraete. Computational difficulty of finding matrix product ground states. Phys. Rev. Lett., 100:250501, June 2008. URL: https://doi.org/10.1103/PhysRevLett.100.250501.
  42. James D. Watson. Detailed analysis of circuit-to-hamiltonian mappings, 2019. URL: https://arxiv.org/abs/1910.01481.
  43. Stathis Zachos and Martin Furer. Probabilistic quantifiers vs. distrustful adversaries. In Kesav V. Nori, editor, Foundations of Software Technology and Theoretical Computer Science, pages 443-455, Berlin, Heidelberg, 1987. Springer Berlin Heidelberg. Google Scholar
Questions / Remarks / Feedback
X

Feedback for Dagstuhl Publishing


Thanks for your feedback!

Feedback submitted

Could not send message

Please try again later or send an E-mail