Deterministic algorithms for skewed matrix
products*®

Konstantin Kutzkov

IT University of Copenhagen
Denmark
konk@itu.dk

—— Abstract

Recently, Pagh presented a randomized approximation algorithm for the multiplication of
real-valued matrices building upon work for detecting the most frequent items in data streams.
We continue this line of research and present new deterministic matrix multiplication algorithms.

Motivated by applications in data mining, we first consider the case of real-valued, nonneg-
ative n-by-n input matrices A and B, and show how to obtain a deterministic approximation of
the weights of individual entries, as well as the entrywise p-norm, of the product AB. The al-
gorithm is simple, space efficient and runs in one pass over the input matrices. For a user defined
b € (0,n?) the algorithm runs in time O(nb+n-Sort(n)) and space O(n-+b) and returns an approx-
imation of the entries of AB within an additive factor of ||AB| g1/b, where ||C||g1 = Z” |Cs51
is the entrywise 1-norm of a matrix C' and Sort(n) is the time required to sort n real numbers in
linear space. Building upon a result by Berinde et al. we show that for skewed matrix products
(a common situation in many real-life applications) the algorithm is more efficient and achieves
better approximation guarantees than previously known randomized algorithms.

When the input matrices are not restricted to nonnegative entries, we present a new determin-
istic group testing algorithm detecting nonzero entries in the matrix product with large absolute
value. The algorithm is clearly outperformed by randomized matrix multiplication algorithms,
but as a byproduct we obtain the first O(n?+¢)-time deterministic algorithm for matrix products
with O(y/n) nonzero entries.

1998 ACM Subject Classification F.2.0 Analysis of algorithms and problem complexity
Keywords and phrases approximate deterministic memory-efficient matrix multiplication

Digital Object Identifier 10.4230/LIPIcs.STACS.2013.466

1 Introduction

The complexity of matrix multiplication is one of the fundamental problems in theoretical
computer science. Since Strassen’s sub-cubic algorithm for matrix multiplication over a
ring from the late 1960’s [33], the topic has received considerable attention, see [9] for a
historical overview on the subject. It is conjectured that matrix multiplication admits an
algorithm running in time O(n?*¢) for any ¢ > 0. For more than 20 years the record
holder was the algorithm by Coppersmith and Winograd [14] running in time O(n?-37°).
Recently two results improving on [14] were announced. In his PhD thesis Stothers [32]
presents a refinement of the Coppersmith-Winograd algorithm running in time O(n?-3737)
and Vassilevska Williams [35] developes a general framework for obtaining a tighter upper
bound on the complexity of the Coppersmith-Winograd algorithm. The latter yields the

* Work supported by the Danish National Research Council under the Sapere Aude program.

© K. Kutzkov; N SYMPOSIUM
ATl licensed under Creative Commons License BY-ND V \ ON THEORETICAL
30th Symposium on Theoretical Aspects of Computer Science (STACS’13). Q l_ ASPECTS

Editors: Natacha Portier and Thomas Wilke; pp. 466-477 T S%FEEQEPUTER

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2013.466
http://creativecommons.org/licenses/by-nd/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

K. Kutzkov

best known bound of O(n?-37%7). Several algorithms computing exactly the matrix product
for special classes have been designed. For example, algorithms with running time better
than O(n?3727) are known for Boolean matrix multiplication with sparse output [25] or for
the case when the input or output matrices are sparse [2, 34]. In a recent work Iwen and
Spencer [23] present a new class of matrices whose product can be computed in time O(n?*¢)
by a deterministic algorithm: namely when the output matrix is guaranteed to contain at

029462 non-zero entries in each column (or by symmetry row). All improved algorithms

most n
use as a black-box the algebraic matrix multiplication algorithm which, unfortunately, is

only of theoretical importance. It uses sophisticated algebraic approaches resulting in large

constants hidden in the big-Oh notation and does not admit an efficient implementation.

This motivates the need of simple “combinatorial-like" algorithms.

Approximate matrix multiplication. The first approximation algorithm with rigorously
understood complexity by Cohen and Lewis is based on sampling [13]. For input matrices
with nonnegative entries they show a concentration around the estimate for individual entries
in the product matrix with high probability.

The amount of data to be handled has been growing at a faster rate than the available
memory in modern computers. Algorithms for massive data sets, where only sequential
access to the input is allowed, have become a major research topic in computer science in
the last decade. Drineas et al. [18] first recognized the need for memory-efficient methods
for matrix multiplication when access to single columns and rows of the input matrices
is possible. They present a randomized algorithm for approximating the product of two
matrices based on sampling. The complexity of the algorithm as well as its accuracy depend
on user-defined parameters. The algorithm is “pass-efficient" since columns and rows of the
input matrices are sequentially loaded into memory. The obtained approximation guarantees
are expressed in terms of the Frobenius norm of the input matrices and the user-defined
parameters but their method does not result in a strong guarantee for individual entries in
the output matrix. Sarldés [30] observed that instead of sampling rows and columns one can
use random projections to obtain a sketch of the matrix product. A notable difference to [18]
is that by sketching one obtains an additive error for each individual entry depending on the
2-norm of the corresponding row and column vector in the input matrices.

Recently Pagh [28] introduced a new randomized approximation algorithm. Instead of
sketching the input matrices and then multiplying the resulting smaller matrices, we treat
the product as a stream of outer products and sketch each outer product. Using Fast Fourier
Transformation in a clever way, Pagh shows how to efficiently adapt the COUNT-SKETCH
algorithm [11] to an outer product. The algorithm runs in one pass over the input matrices
and provides approximation guarantees in terms of the Frobenius norm of their product.

Our contribution.

A new algorithm for the case where the input matrices consist of nonnegative entries only.

This is the first nontrivial deterministic approximation algorithm for the multiplication
of nonnegative matrices in a streaming setting. Motivated by practical applications, we
analyze the approximation guarantee and the algorithm complexity under the assumption
that the entries adhere to Zipfian distribution. We compare it to previously known
randomized algorithms and show that for certain natural settings it is more efficient and
achieves better approximation guarantees.

We present a new matrix multiplication algorithm for arbitrary real-valued input matrices
by adapting the group testing algorithm for streams with updates in the turnstile model

467

STACS’13

468

Deterministic algorithms for skewed matrix products

outlined in [27] for detecting the entries with large absolute value in matrix product. As
a byproduct we obtain the first deterministic algorithm running in O(n?*¢) steps for
matrix products with O(y/n) nonzero entries.

Note that our algorithms easily generalize to rectangular matrix multiplication but for
the ease of presentation we consider the case of square input matrices. Also, we will state the
time complexity of our first algorithm using a function Sort(n) denoting the running time of
a linear space deterministic sorting algorithm. Clearly, Sort(n) = O(nlogn) for comparison
based sorting but under some assumptions on the elements to be sorted also better bounds
are known, e.g. the O(nloglogn) time integer sorting algorithm by Han [21].

2 Preliminaries

2.1 Definitions

Linear algebra. Let R, denote the field of nonnegative real numbers. Given matrices
A, B € R,™" we denote their product by C := AB. The ith row of a matrix A is written
as A; «, the jth column as A, ;. We use the term entry to identify a position in the matrix,
not its value. Thus, the weight of the entry (i,7) in A is the value in the ith row and jth
column, A;j, i,j € [n], for [n] :={0,1,...,n — 1}. When clear from the context however, we
will omit weight. For example, nonzero entries will refer to entries whose weight is different
from 0 and by heavy entries we mean entries with large weight.

The outer product of a column vector u € R;" and a row vector v € R." is a matrix
wv € Ry"™™ such that wv; j = v, 4,7 € [n]. The rank of a positive real number a € Ry in
a matrix A, denoted as r4(a), is the number of entries strictly smaller than a, plus 1. Note
that a does not need to be present in A.

The p-norm of a vector u € R™ is ||ull, = (>, |uz|p)% for p > 0. Similarly, we define
the entrywise p-norm of a matrix A € R"*™ as [[Al|lgp := (32, je[n) |A; j|P)}/P for p € N. The
case p = 2 is the Frobenius norm of A denoted as ||A||p. The k-residual entrywise p-norm
|| Al| gx is the entrywise p-norm of the matrix obtained from A after replacing the k entries
with the largest absolute values in A, ties resolved arbitrarily, with 0.

Data streaming. Our algorithms have strong connection to data streaming, therefore
we will use the respective terminology. A stream S is a sequence of N updates (i,v) for
items ¢ € Z and v € R. We assume Z = [n]. The frequency of i is f; = Z(M)esv and
fs = (fo,..., fn—1) is the frequency vector of the stream S. The insert-only model assumes
v > 0 for all updates and in the non-strict turnstile model there are no restrictions on v and
the values in fg [27]. Similarly to matrix entries, we will also refer to the frequency of an
item ¢ as the weight of i. Ttems with weight above || f||1/b, for a user-defined b, will be called
b-heavy hitters or just heavy hitters when b is clear from the context. Ordering the items in
S according to their absolute weight, the heaviest b items in S are called the top-b entriesin S.

Skewed distributions. A common formalization of the skewness in real-life datasets
is the assumption of Zipfian distribution [36]. The elements in a given set M over N different
elements with positive weights follow Zipfian distribution with parameter z > 0 if the weight
of the element of rank ¢ is % where ((z) = vazl i~* and | M| denotes the total weight of
elements in M. We will analyze only the case when the skew in the data is not light and
z>1. For z > 1, ZZ\; i~% converges to a small constant. We will also use the facts that for

2> 1, 30, i =00) and for 2 > 1/2, 1, 0% = O(b' 7).

K. Kutzkov

2.2 The column row method and memory efficient matrix
multiplication

The naive algorithm for the multiplication of input matrices A, B € R™*™ works by computing
the inner product of A;. and B, ; in order to obtain AB;; for all ¢,j € [n]. An alternative
view of the approach is the column row method computing the sum of outer products
Zie[n] A, iB; . While this approach does not yield a better running time, it turns out
to admit algorithmic modifications resulting in more efficient algorithms. Schnorr and
Subramanian [31] and Lingas [25] build upon the approach and obtain faster algorithms for
Boolean matrix multiplication. Assuming that A is stored as column-major ordered triples
and B as row-major ordered triples [8], the approach yields a memory efficient algorithm

since the matrix product AB can be computed in a single scan over the input matrices.

Recently, Pagh [28] presented a new randomized algorithm combining the approach with
frequent items mining algorithms [1, 11]. Inspired by this, we present another approach
to modify the column-row method building upon ideas from deterministic frequent items
mining algorithms [15, 16, 24, 26].

3 An algorithm for nonnegative matrix products

3.1 Intuition and key lemma

Recall first how the MAJORITY algorithm [6] works. We are given a multiset M of cardinality
N and want to find a majority element, i.e. an element occurring at least N/2 + 1 times in
M. While there are two distinct objects in M we remove them from M. It is easy to see
that if there exists a majority element a, at the end only occurrences of a will be in M.

The FREQUENT algorithm [16, 24, 26] builds upon this simple idea and detects b-heavy
hitters in an unweighted stream S of N updates (%, 1) for items i € [n]. We keep a summary of
b distinct entries together with a counter lower bounding their weight. Whenever a new item
i arrives we check whether it is already in the summary and, if so, update the corresponding
counter. Otherwise, if there is an empty slot in the summary we insert ¢ with a counter set
to 1. In the case all b slots are occupied we decrease the weight of all items by 1 and proceed
with the next item in the stream. The last step corresponds to removing b + 1 distinct items
from the multiset of items occurring in S and a simple argument shows that b-heavy hitters
will be in the summary after processing the stream. By returning the estimated weight of the
item in the summary and 0 for not recorded items, the weight of each item is underestimated
by at most ||f||1/b where f is the frequency vector of the stream. Implementing the summary
as a hash table and charging the cost of each item deletion to the cost incurred at its arrival
the expected amortized cost per item update is constant. A sophisticated approach for
decreasing the items weights in the summary leads to a worst case constant time per item
update [16, 24].

Generalizing to nonnegative matrix multiplication by the column row method is intuitive.

Assume the input matrices consist of {0,1}-valued entries only. We successively generate
the n outer products and run the FREQUENT algorithm on the resulting stream associating
entries with items. There are several problems to resolve: First, we want to multiply arbitrary
nonnegative matrices, thus our algorithm has to handle weighted updates. Second, we have
to consider ©(n?) occurrences of weighted items in the stream. Third, we cannot apply any
more the amortized argument for the running time analysis since a group of b — 1 heavy
items might be followed by many lighter items causing expensive updates of the summary
and it is not obvious how to extend the deterministic approach from [16, 24] guaranteeing

469

STACS’13

470

Deterministic algorithms for skewed matrix products

function COMPUTESUMMARY

Require: matrices A, B € R,™*", summary S for b entries
1. for i € [n] do

2: Denote by R := A, ; - B; .« the outer product of the ith column of A and ith row of
B

3: Find the weight wlﬁl of the entry of rank b+ 1 in R

4: Let £ be the b entries in R with rank less than b+ 1, i.e. the largest b entries

5: Decrease the weight of each entry in £ by wlﬁrl

6: for each entry e occurring in § and £ do

7: add e’s weight in £ to e’s weight in S

8: remove e from £

9: Find the weight wy{* of the entry of rank b+ 1 in SU L, if any
10: Update S to contain the largest b entries in SU L and decrease their weight by wfff

function ESTIMATEENTRY
Require: Entry (i,)
1. if (4,7) is in the summary S then

2: return the weight of (i,) in S
3: else
4: return 0

Figure 1 A high-level pseudocode description of the algorithm. In COMPUTESUMMARY we iterate
over the n outer products and to each one of them apply Lemma 1 such that only the b heaviest
entries remain. We update the summary with the entries output by the outer product. After
processing the input matrices we can estimate the weight of an individual entry by checking the
summary.

constant time updates in the worst case.
The first issue is easily resolved by the following

» Lemma 1. Let f be the frequency vector of an insert only stream S over a domain [n].
After successively decrementing ¢ times the weight of at least b distinct items by A; > 0,
1 <4 <, such that at each step f; > 0 for all 0 < ¢ <n —1, it holds fi > 0 for all b-heavy
hitters, k € [n], for all t € N.

Proof. Since f; > 0 for all i € [n] holds, the total decrease is bounded by ||f||1. A decrement
of A; in the weight of a given item is witnessed by the same decrement in the weights of
at least b — 1 different items. Thus, we have b3'_| A; < ||f||z which bounds the possible
decrease in the weight of a heavy hitter to ||f]|1/b. <

In the next section we show that the specific structure of an outer product allows us to
design efficient algorithms resolving the last two issues.

3.2 The algorithm

We assume that A € R*™ is stored in column-major order and B € R}*" in row-major
order. We show how to modify the column row method in order to obtain an additive
approximation of each entry in AB in terms of the entrywise 1-norm of AB.

Essentially, we run the FREQUENT algorithm for the stream of n outer products: we
keep a summary S of b distinct items and for each outer product we want to update the

K. Kutzkov

summary with the incoming weighted entries over the domain [n] x [n]. The main difference
is that for b = o(n?) we can use the specific structure of an outer product and update the
summary in o(n?) steps. In COMPUTESUMMARY in Figure 1 for each of the n outer products
we simulate the successive application of Lemma 1 until at most b entries with weight larger
than 0 remain in the outer product. We then update S with the remaining entries.

Correctness.

» Lemma 2. Let w be the weight of an entry (4, j) in the product C = AB. After termination
of COMPUTESUMMARY for the estimated weight w of w returned by ESTIMATEENTRY,
i,j € [n], holds max(w — ||C||g, /b,0) < W < w.

Proof. The product AB equals Z?;Ol a; - b; for the columns ag,...,a,_1 of A and the rows
bo,...,bn_1 of B. We consider each outer product as n? updates for different entries over
the domain [n] x [n] in an insert only stream with positive real weights. We show how the
algorithm updates the summary for a single outer product R. First, in line 3 the algorithm
finds the entry of rank b+ 1 in R. In line 4 we decrease the weight of the b largest entries
by w,ﬁ_l which yields the same result as the following iterative procedure: While there
are at least b + 1 nonzero entries in R, find the entry with smallest weight wp;, in R and
decrease the weight of all non-zero entries by wpi,. Equivalence holds because we always
decrease the weight of an entry with the smallest weight and thus the decrease of the largest
b entries weights can never exceed wlﬁ_l. Also, the decrease can not be smaller than wﬁ_l
since otherwise we would have more than b non-zero entries in the outer product. Thus, we
always decrease by the same amount the weight of at least b + 1 different entries which by
Lemma 1 guarantees the claimed approximation error. In lines 6-10 we apply essentially
the same procedure again for the nonzero entries in the outer product and the entries in the
summary. The remaining at most b nonzero entries constitute the updated summary. <

Running time. In the following lemmas we present efficient deterministic algorithms for
the subroutines used in COMPUTESUMMARY. We concentrate how the algorithm updates
the summary for a single outer product. Before presenting our approach, we give the main
building blocks that will be used to achieve an efficient solution.

» Lemma 3. Given two sorted vectors u,v € R.™ we can find the entry of rank b in the outer
product uv in time and space O(n).

Proof. First note that we can ignore all u; = 0 and v; = 0 since they will result in a row,
respectively column, in the outer product with all entries having weight 0, and clearly we do
not need to update the summary with such entries. We reduce the problem to selection of
the element of rank b in a Cartesian sum X +Y ={x +y: 2 € X,y € Y} for sorted sets of
real numbers X and Y. Setting U = {logu; : u; € u} and V = {logv; : v; € v} and searching
in the Cartesian sum U + V for the element of rank b corresponds to searching for the entry
of rank b in the outer product wwv, this follows from monotonicity of the log : R;\{0} — R
function. The best known deterministic algorithm for selection in a Cartesian sum of two
sorted sets [19] runs in time and space O(n). <

» Lemma 4. Given vectors u,v € R.", with elements sorted in descending order, we can
output an implicit representation of the largest b elements from the outer product uv in a
data structure £ in time and space O(n).

Proof. Assume we have found the entry of rank b as outlined in Lemma 3, let this element
be c. Let i, j be two pointers for v and v respectively. Initialize i = 0,7 = n — 1. Assume

471

STACS’13

472

Deterministic algorithms for skewed matrix products

i is fixed. We compare c to u;v;. While it is larger or equal, we move left v’s pointer by
decreasing j by 1. At the end we add the pair (¢,) to £, denoting that the entries in ith
row of uv bigger than ¢, and thus of rank less than b, are all (¢,£) for £ < j. Then we go
to the next row in wv by incrementing ¢ and repeat the above while-loop starting with the
current value of . When 7 = n or j = 0 we know that all entries smaller than ¢ have been
found. Correctness is immediate since the product u;v; is monotonically increasing with %
and decreasing with j, and thus for each row of the outer product we record the position
of the entries smaller than ¢ in £. Both ¢ and j are always incremented or respectively
decremented, thus the running time is linear in n. We need to explicitly store only u, v and
L, this gives the claimed space usage. <

Next we present an efficient approach for updating the summary for a given outer product
after finding the entries of rank at most b.

» Lemma 5. For a given outer product wv, u,v € R."™ we update the summary S in time
O(b + sort(n)).

Proof. We first sort the vectors u and v in decreasing order according to the values u; and
v;, respectively. Let us call the sorted vectors u® and v®. Each entry in v® and v® will be of
the form (val, pos) such that upes = val and vpes = val, respectively, i.e. pos will record the
position of a given value in v and v. We define the entry (¢, 7) in the outer product u*v® as
a (valyvaly, (posy,posy)) such that ui = (valy,pos,) and uj = (val,, pos,). Comparing the
entries on the val,val, values, we can assume that we compute the outer product of two
sorted vectors.

Assume we have computed the data structure £ implicitly representing the largest b
entries in u®v®, as shown in Lemma 4. Now we show how to update the summary with
the entries in £ in time O(b + sort(n)). We introduce a position total order on entries such
that (i1,71) < (i2,72) iff i4n + j1 < ian + ja, i,j € [n]. We will keep the entries in S in the
summary sorted according to this order. Assume we can output the b heaviest entries from a
given outer product sorted according to the position total order in £. Then in a merge-like
scan through S and £ we update the entries in S N L, remove those from £ and obtain a
sorted data structure containing the entries from S and £ in O(b) steps. The entry of rank
b+ 1 in the set £LUS, which has size at most 2b, can be found in O(b) by [4]. Thus, if the
entries in £ are sorted according to the position total order, updating the summary will run
in O(b) steps.

We output the b heaviest entries sorted according to the position total order by the
following algorithm. Let £ be implicitly given as a sorted column vector u® and a sorted row
vector v® as described above, and ¢ < n integer pairs (¢,7,) denoting that in the ¢th row in
the outer product u®v® the first r, > 0 entries have rank not more than b. Clearly, 7, will
monotonically decrease as g increases. We start with ¢ = £, namely the shortest interval,
sort the r, entries according to the position total order. We then decrease ¢ by 1 and sort
the next r,_1 entries according to the position total order. However, we observe that due to
monotonicity r4—1 > r4 and all elements from v® appearing in the gth row of u*v® also appear
in the (¢ — 1)th row. Thus, we can sort only the new r,_; — r, elements and then merge the
result with the already sorted 7, elements. We continue like this until the elements in each
row of the outer product have been sorted. Then we sort the elements in the column vector
u® according to their position, keeping a pointer to the corresponding sorted subinterval of v*
for each entry in u°. From this we build the set £ with entries sorted according the position
total order. By setting ry+1 = 0 the running time for the ¢ mergings and sortings amounts
to Zf:o(ri + Sort(r; — 7;+1)). We can bound this sum by O(b 4+ Sort(n)) since Zf:o r; =0,

K. Kutzkov

Zf:o (ri —riy1) <nand Z?;Ol (x;) < f (Z?;Ol x;) for a monotonically increasing convex
function f and numbers z;, i € [n], in its domain. <

3.3 Analysis of the approximation guarantee

The only remaining component is how to efficiently answer queries to the summary after
processing all outer products. We use a static dictionary with constant look-up time.
Observing that the entries are from a universe of size n?, the best known result by Ruzi¢ [29]
provides a construction in time O(blog®logb) and space O(b). Note that b < n?, therefore
as a first result we observe that Lemmas 2 and 5 immediately yield the following

» Lemma 6. Given n X n-matrices A, B with non-negative real entries, there exists a
deterministic algorithm approximating the weight of each entry in the product C' of A and
B within an additive error of ||C||g,/b. The algorithm runs in time O(nb + nSort(n)) and
space O(b+ n) in one pass over the input matrices.

It was first observed by Bose et al. [5] that the FREQUENT algorithm guarantees tighter
estimates for items with weight significantly larger than N/b in a stream of length N and
summary of size b. Berinde et al. [3] develop a general framework for the analysis of so called
heavy-tolerant counter based algorithms and show that FREQUENT falls in this class.

» Lemma 7. (Bose et al, [5]) For an entry (4,j) in C = AB with weight «|C| g1, ab > 1,
after termination of COMPUTESUMMARY it holds C;; > C;; — (1 — o) ||C||g1/(b — 1) where
C;; is the approximation of C;; returned by ESTIMATEENTRY (3, j).

» Lemma 8. (Berinde et al, [3]) ||C||gr1/(b — k) is an upper bound on the underestimation
of any C;; returned by ESTIMATEENTRY (3, j) for any k < b.

The above lemmas are important since they yield approximation guarantees depending
on the residual k-norm of the matrix product, thus for skewed matrix products the approx-
imation is much better than the one provided by Lemma 6.

Sparse recovery. The approximation of the matrix product C = AB in [18, 28, 30]
is analyzed in terms of the Frobenius norm of the difference of C' and the obtained approxim-
ation C ,Le ||C — C ||F. By simply creating a sparse matrix with all non-zero estimations in
the summary we obtain an approximation of C: the so called k-sparse recovery of a frequency
vector f aims at finding a vector f with at most k non-zero entries such that the p-norm
If — /f\Hp is minimized.

As shown by Berinde et al. [3] the class of heavy-tolerant counter algorithms yields the
best known bounds for the sparse recovery in the p-norm. The following Theorem 1 follows
from Lemma 5 and their main result.

» Theorem 1. Let A, B be nonnegative n X n real matrices and C' = AB their product. There

exists a one-pass approximation deterministic algorithm returning a matrix C' such that
~ 1 1

|C = Cllep < (1+¢)7(e/k)' " #||C|| gr1. The algorithm runs in time O(n - Sort(n) + (nk)/e)

and uses space O(n + k/¢) for any 0 < e <1 and k > 1.

Clearly, for k/e = o(n?) the algorithm runs in subcubic time and subquadratic memory. In
the next paragraph we show that for skewed output matrices ESTIMATEENTRY can provably
detect the most significant entries even for modest summary sizes.

Zipfian distributions. In the full version of the paper we discuss the practical motivation
for the assumption that the entries in the product adhere to a Zipfian distribution. The
results stated below not only give a better understanding of the approximation yielded by
the algorithm, but also allow direct comparison to related work.

473

STACS’13

474

Deterministic algorithms for skewed matrix products

» Lemma 9. (Berinde et al, [3]) If the entries weights in the product matrix follow a Zipfian
distribution with parameter z > 1, then ESTIMATEENTRY with a summary of size b

1. approximates the weight of all entries with rank ¢ < b with additive error of (1 —
1<l
((z)iz) o1
2. estimates the weight of all entries with additive error of ¢||C| g1 for b = O((%)%)

3. returns the largest k entries in the matrix product for b = O(k).

4. returns the largest k entries in a correct order for b = Q(kz(%)%)

3.4 Comparison to previous work

The randomized algorithm by Cohen and Lewis [13] for computing the product of nonnegative
matrices yields an unbiased estimator of each entry and a concentration around the expected
entry weight with high probability. However, their algorithm requires a random walk in a
bipartite graph of size ©(n?) space and is thus not space efficient. It is difficult to compare
the bounds returned by ESTIMATEENTRY to the bounds obtained in [18, 30], but it is natural
to compare the guarantee of our estimates to the ones shown by Pagh [28].

The approximation error of the matrix estimation C in [28], ||C' — C||#, is bounded
by (n]|C||#)/vb with high probability. The running time is O(n?logn + blogblogn) and
space usage is O(n + blogn). Our deterministic algorithm achieves an error guarantee
of (1+ 6)(5/k)17%||0||E1«1 for the approximation ||C — 6’||Ep for any p > 0. For a direct
comparison we set p = 2, k = 0 and b = [1/¢] and obtain an approximation error of
|C||z1/v/b which is at most (n||C|r)/vb by Cauchy-Schwarz inequality. The time and
space complexity of our algorithm is a polylogarithmic factor better. Note also that the
approximation guarantee does not depend on the dimension n as in [28].

For individual entries we achieve an error bounded by minge [|C|| gx1/(b — k) while [28]
shows that the error of the obtained estimates is bounded by ||C|| gs/xq/Vb for a suitably
chosen constant k > 2.

Assuming Zipfian distribution with z > 1 the approximation error of the Frobenius
norm of the matrix product in [28] is bounded by O(nb=?||C|| g1) with high probability. By
setting k = 0 our deterministic algorithm achieves O(||C||g1/v/d) for the Frobenius norm
approximation error. For an ¢||C|| g1-approximation of individual entries both [28] and our
algorithm need a data structure, a sketch or a summary, of size O((1/¢)*) but [28] needs to
run O(logn) copies of the algorithm in parallel in order to guarantee that the estimates are
correct with high probability. In the full version of the paper we show that the approximation
guarantee of our algorithm is better than the one in [28] for some real data sets exhibiting
higher skew. However, Pagh’s algorithm achieves better bounds for lighter skew when
1/2 < z < 1 and more important it is not restricted to nonnegative input matrices.

4 An algorithm for arbitrary real-valued matrices

In this section we show how to efficiently extend the deterministic streaming algorithm
sketched in [15, 27] to matrix multiplication. The algorithm in [15, 27] works for streams in
the non-strict turnstile model where updates are of the form (7,v) for an item ¢ and v € R.
We only give an overview of how it works, a thorough description will appear in the full
version of the paper.

A majority item in a stream is an item whose absolute total weight is more than half
of the absolute sum of total weights of all other items in the stream. In [15] the authors
present an elegant group testing algorithm for finding a majority item in a stream in the
non-strict turnstile model. The algorithm works by keeping a counter for each bit set to

K. Kutzkov

1 in the binary representation of the items and a global counter for the total weight of all
items processed so far. A new item is processed by updating the corresponding bit counters
and the global counter. Once the stream is processed, a candidate for the majority item is
constructed from the bit counters and the global counter. In a second pass we verify whether
the candidate is indeed a majority item. Assuming the items are from the domain [m], we
need O(logm) counters. In the following we will call this algorithm BINARYMAJORITY. A
generalization of the algorithm to find the b items with nonzero weight after processing the
stream is presented in Theorem 14 in [27]. Let P be a set of suitably chosen consecutive
prime numbers and |P| denote its cardinality. Each item ¢ € [n] is distributed to p distinct
groups, depending on the value 7 mod p, for each prime p € P. In each such group we run
BINARYMAJORITY. The crucial observation is that for sufficiently large set of primes P, and
sufficiently big primes in P, each of the b nonzero items will be isolated in at least one group
and therefore BINARYMAJORITY will detect it.

Generalizing to matrix multiplication again builds upon the column row method. We

treat the matrix product as a stream of n updates to the n? entries by each outer product.

We assume that n = 2¢ for some ¢ > 0, otherwise we add less than n zero entries to each row
and column vector such that the assumption holds. We number the n? entries of the matrix
product as 0,1,...,n% — 1 such that the entry in the position (i,7) is assigned a number
i2° + 4,0 <14,5 < n—1. Now observe that the number of an entry in the outer product
consists of 2¢ bits and the term j determines only the least significant ¢ bits while the term i2¢
determines the most significant £ bits. In the sequence 0,1,...,n% — 1 the elements having 1
in the kth position, 0 < k < 2¢— 1, are the ones in positions {2F +428+1 .. (i +1)2F+1 — 1},
0 <4< 22=k=1 Thys, given a column vector a of A and a row vector b of B the entries in
the outer product ab, whose numbers have the kth bit equal to 1, are uniquely determined
by the position of the contribution from either a or b. This means that in order to obtain
the total contribution from all entries with the /th bit equal to 1, we simply need to nullify
half of the entries in either a or b, and compute the sum over all entries weights in the outer
product ab. The latter can be efficiently done by computing the sum of all entries weights in
each vector and then multiplying the results. Thus, a majority candidate can be constructed
in one pass over the input matrices, O(n?logn) steps and linear space.

For distributing the n? entries in ab to different groups, we apply the technique presented
by Pagh [28]. Let p be a given prime number. We treat the column and row vectors a and
b as polynomials of degree p — 1: p, = S0 a;z"" ™4 P and p, = Z?:_Ol bjzd med P p,
and p;, are then multiplied by Fast Fourier Transformation in time O(plogp). The resulting
polynomial has degree 2(p — 1), thus we add the coefficients that have the same exponent
modulo p. The coefficient in front of ¥, k € [p], is now exactly the total sum of the entries
weights equal to £ modulo p. The approach can be combined with BINARYMAJORITY, which
yields the following

» Theorem 2. Let A, B be real n x n matrices and C' = AB their product. If the absolute
weight of each of the b entries with largest absolute weight is bigger than ||C||gs;, then
there exists a deterministic algorithm computing the b heaviest entries exactly in time
O(n? + nb?log® nlog? b) and space O(n + b®log® nlogb) in two passes over the input.

» Corollary 1. Let A, B be real n x n matrices and C = AB their product. If C has at most
b nonzero entries then there exists a deterministic algorithm computing C exactly in time
O(n? 4 nb?log® nlog? b) and space O(n + b*log® nlogb) in two passes over the input.

475

STACS’13

476

Deterministic algorithms for skewed matrix products

4.1 Zipfian distribution

For the case when the absolute values of the entries in the outer product adhere to Zipfian
distribution with parameter z > 1 we obtain the following

» Theorem 3. Let the absolute values of the entries weights in a matrix product adhere to
Zipfian distribution. Then for user-defined s > 0 and k£ > 0 there exists a deterministic al-
gorithm detecting the ks heaviest entries in the product in time O(s(n? +nk=T log® nlog? k))
and space O(n + ks + k=T log® nlog k) in 2s passes over the input matrices.

4.2 Comparison to previous work

The algorithm seems to be only of theoretical interest. Note that its complexity is much
worse than the one achieved by Pagh’s randomized one-pass algorithm [28]: the b non-
zero entries can be found in time O(n? + nblogn) and space O(n + blogn) with error
probability O(1/poly(n)). Nevertheless since the best known space lower bound for finding
b non-zero elements by a deterministic algorithm is O(blogn) there seems to be potential
for improvement. For example Ganguly and Majumder [20] present improvements of the
deterministic algorithm from [27] but their techniques are not suitable for our problem.

To the best of our knowledge this is the first deterministic algorithm for computing matrix
products in time O(n?T¢) for the case when the product contains at most O(y/n) non-zero
entries. The algorithm by Iwen and Spencer achieves this for an arguably more interesting
class of matrix products, namely those with n®, 8 < 0.29462, nonzero entries in each row,
but the algorithm relies on fast rectangular matrix multiplication and its simple version runs
in time O(n?*#).

Acknowledgements. I would like to thank my supervisor Rasmus Pagh and the anonymous
reviewers for valuable comments and suggestions.

—— References

1 N. Alon, Y. Matias, and M. Szegedy. The space complexity of approximating the frequency
moments. J. Comput. Syst. Sci, 58(1):137-147, 1999.
2 R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications. ICDT
2009, 121-126.
3 R. Berinde, P. Indyk, G. Cormode, M. J. Strauss: Space-optimal heavy hitters with strong
error bounds. ACM Trans. Database Syst. 35(4): 26 (2010)
4 M. Blum, R. W. Floyd, V. R. Pratt, R. L. Rivest, R. E. Tarjan. Time Bounds for Selection.
J. Comput. Syst. Sci. 7(4): 448-461 (1973)
5 P. Bose, E. Kranakis, P. Morin, Y. Tang. Bounds for Frequency Estimation of Packet
Streams. SIROCCO 2003: 33-42
6 R. Boyer and S. Moore A Fast Majority Vote Algorithm U. Texas Tech report, 1982
7 S. Brin, R. Motwani, C. Silverstein. Beyond Market Baskets: Generalizing Association
Rules to Correlations. SIGMOD 1997 265-276
8 A. Bulug. Linear Algebraic Primitives for Parallel Computing on Large Graphs. PhD thesis,
University of California, Santa Barbara.
9 P. Burgisser, M. Clausen, and M. A. Shokrollahi. Algebraic complexity theory. Springer-
Verlag, 1997
10 A. Campagna and R. Pagh. Finding associations and computing similarity via biased pair
sampling. Knowl. Inf. Syst. 31(3): 505-526 (2012)

K. Kutzkov

11

12

13

14

15

16

17

18

19

20
21

22
23

24

25

26

27

28

29

30

31

32

33
34

35

36

M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
Theor. Comput. Sci, 312(1):3-15, 2004

E. Cohen, M. Datar, S. Fujiwara, A. Gionis, P. Indyk, R. Motwani, J. D. Ullman, C. Yang.
Finding Interesting Associations without Support Pruning. IEEFE Trans. Knowl. Data Eng.
13(1): 64-78 (2001)

E. Cohen and D. D. Lewis. Approximating matrix multiplication for pattern recognition
tasks. Journal of Algorithms, 30(2):211-252, 1999

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.
Journal of Symbolic Computation, 9(3):251-280, 1990

G. Cormode and S. Muthukrishnan. What’s hot and what’s not: Tracking most frequent
items dynamically. ACM Transactions on Database Systems, 30(1):249-278, 2005.

E. D. Demaine, A. Lopez-Ortiz, J. I. Munro. Frequency Estimation of Internet Packet
Streams with Limited Space. ESA 2002: 348-360

S. V. Dongen. Graph Clustering by Flow Simulation. PhD thesis, University of Utrecht,
2000

P. Drineas, R. Kannan, and M. W. Mahoney. Fast Monte Carlo algorithms for matrices I:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132-157, 2006

G. N. Frederickson, D. B. Johnson. The Complexity of Selection and Ranking in X+Y and
Matrices with Sorted Columns. J. Comput. Syst. Sci. 24(2): 197-208 (1982)

S. Ganguly and A. Majumder. Deterministic k-set structure. PODS 2006: 280-289

Y. Han. Deterministic sorting in O(nloglogn) time and linear space. J. Algorithms 50(1):
96-105 (2004)

J. Han, M. Kamber. Data Mining: Concepts and Techniques Morgan Kaufmann 2000

M. A. Iwen and C. V. Spencer. A note on compressed sensing and the complexity of matrix
multiplication. Inf. Process. Lett, 109(10):468-471, 2009

R. M. Karp, S. Shenker, C. H. Papadimitriou. A simple algorithm for finding frequent
elements in streams and bags. ACM Trans. Database Syst. 28: 51-55 (2003)

A. Lingas. A fast output-sensitive algorithm for boolean matrix multiplication. ESA 2009,
408-419.

J. Misra, D. Gries: Finding Repeated Elements. Sci. Comput. Program. 2(2): 143-152
(1982)

S. Muthukrishnan. Data Streams: Algorithms and Applications. Foundations and Trends
in Theoretical Computer Science, Vol. 1, Issue 2, 2005

R. Pagh. Compressed Matrix Multiplication. Proceedings of ACM Innovations in Theoret-
ical Computer Science (ITCS), 2012

M. Ruzié. Constructing Efficient Dictionaries in Close to Sorting Time. ICALP (1) 2008:
84-95

T. Sarl6s. Improved Approximation Algorithms for Large Matrices via Random Projections.
FOCS 2006: 143-152

C.-P. Schnorr, C. R. Subramanian. Almost Optimal (on the average) Combinatorial Al-
gorithms for Boolean Matrix Product Witnesses, Computing the Diameter. RANDOM
1998: 218-231

A. J. Stothers. On the complexity of matrix multiplication. Ph.D. thesis, University of
Edinburgh, 2010

V. Strassen. Gaussian Elimination is not Optimal. Numer. Math. 13, 354-356, 1969

R. Yuster and U. Zwick. Fast sparse matrix multiplication. ACM Transactions on Al-
gorithms, 1(1):2-13, 2005.

V. Vassilevska Williams. Multiplying matrices faster than Coppersmith-Winograd. STOC
2012, 887-898

G. Zipf. Human Behavior and The Principle of Least Effort. Addison-Wesley, 1949

477

STACS’13

	Introduction
	Preliminaries
	Definitions
	The column row method and memory efficient matrix multiplication

	An algorithm for nonnegative matrix products
	Intuition and key lemma
	The algorithm
	Analysis of the approximation guarantee
	Comparison to previous work

	An algorithm for arbitrary real-valued matrices
	Zipfian distribution
	Comparison to previous work

