
Improved Approximation Algorithm for Steiner
k-Forest with Nearly Uniform Weights
Michael Dinitz1, Guy Kortsarz∗2, and Zeev Nutov3

1 Johns Hopkins University
mdinitz@cs.jhu.edu

2 Rutgers University, Camden
guyk@camden.rutgers.edu

2 The Open University of Israel
nutov@openu.ac.il

Abstract
In the Steiner k-Forest problem we are given an edge weighted graph, a collection D of node pairs,
and an integer k ≤ |D|. The goal is to find a minimum cost subgraph that connects at least k
pairs. The best known ratio for this problem is min{O(

√
n), O(

√
k)} [8]. In [8] it is also shown

that ratio ρ for Steiner k-Forest implies ratio O(ρ · log2 n) for the Dial-a-Ride problem: given an
edge weighted graph and a set of items with a source and a destination each, find a minimum
length tour to move each object from its source to destination, but carrying at most k objects at
a time. The only other algorithm known for Dial-a-Ride, besides the one resulting from [8], has
ratio O(

√
n) [4]. We obtain ratio n0.448 for Steiner k-Forest and Dial-a-Ride with unit weights,

breaking the O(
√
n) ratio barrier for this natural special case. We also show that if the maximum

weight of an edge is O(nε), then one can achieve ratio O(n(1+ε)·0.448), which is less than
√
n if ε is

small enough. To prove our main result we consider the following generalization of the Minimum
k-Edge Subgraph (Mk-ES) problem, which we call Min-Cost `-Edge-Profit Subgraph (MC`-EPS):
Given a graph G = (V,E) with edge-profits p = {pe : e ∈ E} and node-costs c = {cv : v ∈ V },
and a lower profit bound `, find a minimum node-cost subgraph of G of edge profit at least `.
The Mk-ES problem is a special case of MC`-EPS with unit node costs and unit edge profits. The
currently best known ratio for Mk-ES is n3−2

√
2+ε (note that 3− 2

√
2 < 0.1716) [5]. We extend

this ratio to MC`-EPS for arbitrary node weights and edge profits that are polynomial in n, which
may be of independent interest.

1998 ACM Subject Classification G.2.2 Graph Theory: Graph algorithms

Keywords and phrases k-Steiner Forest, Uniform weights, Densest k-Subgraph, Approximation
algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.115

1 Introduction

We consider the following problem, originally introduced by Hajiaghayi and Jain [9]:

Steiner k-Forest
Instance: A graph G = (V,E) with edge-weights w = {we : e ∈ E}, a collection D of
node pairs (called the demand pairs), and an integer k ≤ |D|.
Objective: Find a minimum weight subgraph of G that connects at least k pairs from D.

∗ Partially supported by NSF award number 1218620.

© Michael Dinitz, Guy Kortsarz, and Zeev Nutov;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 115–127

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.115
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


116 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

Steiner k-Forest generalizes several well known problems, among them the following:
For k = |D| we get the Steiner Forest problem, which admits a 2-approximation al-
gorithm [1].
When the demand pairs form a star (namely, when there is a node that belongs to
all the demand pairs) and |D| = n − 1 we get the k-MST problem, which admits a
2-approximation algorithm [7].
When k = |D| and the demand pairs form a star we get the Steiner Tree problem, which
admits a (ln 4 + ε)-approximation scheme [3].
When G contains a spanning star and all edges have unit weights, we get the Minimum
k-Edge Subgraph (Mk-ES) problem: given a graph G and an integer k, find a subgraph of
G with k edges and minimum number of nodes (see [9] for the reduction details). This
problem admits an n3−2

√
2+ε-approximation scheme [5] (note that 3− 2

√
2 < 0.1716).

The best known ratio for Steiner k-Forest is min{O(
√
n), O(

√
k)} [8], even for the case

of unit weights. For k = O(n) this ratio is essentially no better than the best known ratio
k1/2+ε for the directed version of the problem [6], even though undirected network design
problems are usually much easier to approximate than their directed variants. We prove the
following.

I Theorem 1. Steiner k-Forest with unit weights admits an n
1
3 (7−4

√
2)+ε-approximation

scheme.

Note that 1
3 (7− 4

√
2) < 0.44772, so this is a polynomial improvement over the previous

O (
√
n)-approximation.

To prove Theorem 1 we consider the following generalization of the Mk-ES problem,
which we call Min-Cost `-Edge-Profit Subgraph, or MC`-EPS for short.

Min-Cost `-Edge-Profit Subgraph (MC`-EPS)
Instance: A graph G = (V,E) with edge-profits p = {pe : e ∈ E} and node-costs
c = {cv : v ∈ V }, and a profit lower bound `.
Objective: Find a minimum node-cost subgraph of G of profit at least `.

MC`-EPS with unit node costs and unit edge profits (and ` = k) is the Mk-ES problem.
As was mentioned, the currently best known ratio for Mk-ES is n3−2

√
2+ε [5]. We extend this

ratio to MC`-EPS by modifying the algorithm of [5] to handle weights and profits (essentially
by adding an extra preprocessing step). Our extension can handle general node weights and
profits bounded by a polynomial in n. Thus the node costs can be exponential in n or beyond.
When the edge profits are exponential in n we can only give a bicriteria approximation: the
algorithm will find a subgraph in which the total node weight is at most n3−2

√
2+ε worse

than the optimum, but it only covers edges with at least `(1− 1/poly(n)) profit rather than
the desired profit of ` (where poly(n) is any polynomial in n). However, in the application
to Steiner k-Forest edge profits are at most n2, and hence we do not have to resort to the
bicriteria approximation.

I Theorem 2. MC`-EPS with edge profits that are at most polynomial in n (but with arbitrary
node costs) admits an n3−2

√
2+ε-approximation scheme.

The following theorem establishes a relation between Steiner k-Forest and MC`-EPS, and
it implies Theorem 1 by substituting the value of γ = 3− 2

√
2 + ε from Theorem 2.

I Theorem 3. If MC`-EPS admits approximation ratio ρ = nγ, 0 ≤ γ ≤ 1/4, then Steiner
k-Forest with unit weights admits approximation ratio Õ

(
n1/3+2γ/3).



M. Dinitz, G. Kortsarz, and Z. Nutov 117

This theorem forms our core technical contribution, and most of the rest of the paper is
devoted to proving it.

Another problem closely related to Steiner k-Forest is the following:

Dial-a-Ride
Instance: A graph G = (V,E) with edge-lengths w = {we : e ∈ E}, a collection of items
with a source and a destination each, and an integer k.
Objective: Move every item from its source to its destination using a vehicle that can
carry at most k items, minimizing total travel length.

Charikar and Raghavachari [4] showed that this problem admits ratio O(
√
n), while Gupta

et al. [8] showed that ratio ρ for Steiner k-Forest implies ratio O(ρ·log2 n) for Dial-a-Ride. Note
that in Theorem 9 of [8], the Dial-a-Ride problem is approximated using the approximation
for Steiner k-Forest as a black box. Thus if the Dial-a-Ride problem has uniform edge costs,
the black box can be replaced by our approximation for Steiner k-Forest. This implies the
same approximation (up to polylog(n) factors) for uniform edge cost Dial-a-Ride.

I Corollary 4. There is an n 1
3 (7−4

√
2)+ε-approximation scheme for Dial-a-Ride with unit edge

weights.

We note that the unit weight versions of Steiner k-Forest and Dial-a-Ride are natural
special cases to consider. In addition, the Mk-ES problem is a special case of Steiner k-Forest
with unit weights.

It is easy to see (and is a relatively standard observation) that the input to Steiner k-Forest
can be replaced by a graph spanner with O(logn) stretch and O(n) edges, while only paying
an extra O(logn) in the approximation ratio [2]. Thus as long as the average edge weight in
the spanner is at most nε we can obtain an O(n(1+ε)0.448) approximation ratio by replacing
every edge by a path. This ratio is better than

√
n if ε is small enough. This is true, for

example, if the maximum cost of an edge in the original graph is at most O(nδ) for small
enough δ.

Our techniques may be the first step towards breaking the O(
√
n) barrier for both Steiner

k-Forest and Dial-a-Ride with general edge weights. If this is not possible, then we get the
somewhat rare case in which the unweighted version of a network design problem admits
an approximation ratio that is better by a polynomial factor than what is possible in the
weighted case.

2 A High Level Overview of the Main Ideas

We now turn to proving Theorem 3, which as discussed suffices to prove Theorem 1. Since it
is rather involved, in this section we give a quick outline of the main ideas. We assume that
we know the optimal solution value, which we denote by τ . This is without loss of generality,
since we can just run our algorithm on every possible τ .

At a high level, our algorithm is a two-step process. In the first step we find a set of
trees which together contain k demand pairs, and in the second step we connect all pairs of
terminals in different trees. In order to bound the cost of the second step, we will make sure
that we use very few trees, and that the distance between any two trees is at most τ . This
will let us connect the trees very cheaply, since we can just arbitrarily connect them together
and pay at most the number of trees times τ , losing us at most the number of trees in our
approximation ratio.

APPROX/RANDOM’14



118 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

So the problem boils down to finding a small set of trees that together contain many
demand pairs, and which are of pairwise distance at most τ . We first build a set of candidate
trees, and from them select a small set (possibly with some modifications to the trees). A
cluster decomposition is a collection of clusters, and a cluster is a collection T of trees with
some particular properties. We will guarantee that every terminal belongs to exactly one
tree of exactly one cluster. Moreover, trees in the same cluster are node-disjoint (not just
terminal-disjoint). Each tree has diameter at most 2d for some parameter d, and the distance
between every two terminals in different trees of the same cluster is at least 2d.

While the trees from the cluster decomposition cover the demand, there is no upper
bound on the number of trees or on the cost of any particular tree. We divide the trees
into light trees (those with few edges compared to τ) and heavy trees (those with many
edges). If we choose to take a light tree we can simply take the entire tree, since it is small
by definition. But heavy trees have to be handled differently: we might choose to take part
of a heavy tree, rather than the entire thing.

It turns out because of how we construct the clusters, we can prove that at most τ/d
trees from any cluster can intersect the optimum solution, and that there are always two
clusters which together contain a significant amount of demand pairs. This means that there
is a way of covering at least k demand pairs using few trees, since the optimum solution does.
Thus we can use the algorithm we develop for MC`-EPS to select few trees which together
contain at least k demand pairs. This is fine if they are light trees, but if they are heavy
trees we instead must select a subset of terminals in the tree to actually connect without
using too many edges. Fortunately this can be handled simultaneously using our MC`-EPS
algorithm.

3 Proof of Theorem 3

Fix some optimal solution J and a set DJ of k demand pairs connected by J . We will use
the following notation.

τ = |J | is the optimum solution value, namely, the number of edges in J .
RJ is the union of the pairs in DJ , and q = |RJ | is the number of nodes in RJ .
Recall that ρ = nγ denotes the best known ratio for MC`-EPS.

In what follows, we may “guess” the right values of τ and q, by applying any of our
algorithms for all possible values of τ = 1, . . . , |E| and q = 1, . . . , n, and among the edge sets
computed return the best one. Note that q = |RJ | ≤ 2|J | ≤ 2τ , since every node in RJ is an
endnode of some edge in J .

We first give some bounds on q and τ by showing easy algorithms for special cases.

I Lemma 5. For any 0 ≤ θ ≤ 1/2 the following holds: unless n1/2−θ ≤ q ≤ 2τ ≤ n1/2+θ,
Steiner k-Forest with unit weights admits approximation ratio O(n1/2−θ).

Proof. Any maximal forest of G is a feasible solution that has at most n − 1 edges, so
if τ ≥ n1/2+θ then simply returning a maximal forest guarantees an approximation ratio
(n− 1)/n1/2+θ < n1/2−θ. If q < n1/2−θ, then we claim that the ratio O(n1/2−θ) follows from
the ratio O(

√
k) of [8]. This is since k ≤ q(q − 1)/2, and thus

√
k ≤ q < n1/2−θ. J

I Corollary 6. For any 0 ≤ γ ≤ 1/4, the following holds: if τ√q > n1−γ, then Steiner
k-Forest with unit weights admits approximation ratio O

(
n1/3+2γ/3).



M. Dinitz, G. Kortsarz, and Z. Nutov 119

Proof. Let θ = 1
6 −

2
3γ. Since γ ≤ 1

4 , θ ≥ 0. We claim that τ > n1/2+θ, and then ratio
O
(
n1/2−θ) = O

(
n1/3+2γ/3) follows from Lemma 5. To see this, note that if τ ≤ n1/2+θ then

also q ≤ n1/2+θ, so τ√q ≤ n1/2+θn1/4+θ/2 = n3/4+3θ/2 = n1−γ , which is a contradiction. J

The next lemma forms the technical heart of our paper, and is proved in Section 4. It
says that we can do step 1 from the overview: there is a way of finding a subgraph (i.e. the
collection of trees discussed in Section 2) that is relatively cheap, contains few components,
and contains a lot of demand pairs.

I Lemma 7. There exists a polynomial time algorithm that when given a Steiner k-Forest
instance and integers 1 ≤ d, h ≤ n/2, computes a subgraph G′ = (V ′, E′) of G such that the
following holds: G′ has Õ(ρτ/d+ n/h) connected components, V ′ contains Ω̃(k) pairs from
D, and |E′| = Õ(ρhτ/d+ ρqd).

We now want to give an algorithm that uses this lemma. We first need an easy lemma:
an algorithm for Steiner Forest where we bound the total cost by the number of nodes and
the maximum distance.

I Lemma 8. Steiner Forest (with arbitrary weights) admits a polynomial time algorithm that
computes a solution F ′ of size at most L(|R| − 1), where L = maxuv∈D distG(u, v) and R is
the union of the demand pairs.

Proof. Let (V,D′) be a spanning forest of the demand graph (V,D). The connected com-
ponents of (V,D′) coincide with those of (V,D). For every {u, v} ∈ D′ let Puv be the edge
set of a shortest uv-path, and let F ′ be the union of these edge sets. It is easy to see that
the graph (V, F ) connects every pair in D, and clearly its weight is at most L(|R| − 1). J

We can now give our algorithm: we simply connect each of the components we are given
to each other by using the above Steiner Forest algorithm. We write this a little more formally
as Algorithm 1.

Algorithm 1: Partial-Connect(G,D, τ, h, d)
1 Remove from D every pair u, v with distG(u, v) > τ .
2 Compute a graph G′ = (V ′, E′) using Lemma 7.
3 Contract every connected component of G′ into a single node and update the set of
demand pairs accordingly. For the obtained instance of Steiner Forest, compute an edge
set F ′ as in Lemma 8.

4 return E′ ∪ F ′

I Theorem 9. Given integers 1 ≤ d, h ≤ n/2, Algorithm 1 returns a graph that covers Ω̃(k)
demand pairs and has size at most τ · Õ(f(d, h)), where f(d, h) = ρτ/d+n/h+ρh/d+ρqd/τ .

Proof. We know from Lemma 7 that the number of components of G′ is at most Õ(ρτ/d+
n/h), and since each component of G′ is contracted to a single terminal the total number of
terminals in the Steiner Forest instance is also at most Õ(ρτ/d+n/h). Thus by Lemma 8, we
know that |F ′| ≤ τ · Õ(ρτ/d+n/h). We also know from Lemma 7 that |E′| ≤ Õ(ρhτ/d+ρqd)
and that the algorithm covers Ω̃(k) demand pairs. This proves the theorem. J

The attentive reader will note that we only proved the ability to cover Ω̃(k) demand
pairs, rather than k pairs. This is a minor technicality, though, as the next lemma shows.

APPROX/RANDOM’14



120 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

I Lemma 10. Suppose that Steiner k-Forest admits a bicriteria approximation algorithm that
returns a subgraph of weight ≤ f · τ that connects at least k/p demand pairs, where 1 < p < k.
Then Steiner k-Forest admits an f · dln k/ lnαe-approximation algorithm, where α = 1 + 1

p−1 .
In particular, if k = nε for some ε > 0 and p = polylog(n), then Steiner k-Forest admits a
Õ(f)-approximation algorithm.

Proof. We run the bicriteria algorithm iteratively, as follows. Let ki denote the residual
demand (the number of pairs we still need to connect) at the beginning of iteration i, where
k1 = k. While ki ≥ 1, we run the bicriteria algorithm, remove from D the pairs connected in
the current iteration, and set ki+1 = ki − pi, where pi is the number of pairs connected at
iteration i. Clearly, at the beginning of each iteration i there exists a solution to the residual
problem (namely, a subgraph that connected ki pairs from the remaining pairs) of weight at
most τ , where τ is the optimal solution value to the original problem. Hence the weight of
the bicriteria solution computed at each iteration is at most f · τ .

We have ki = ki−1 − pi−1 ≤ ki−1 − (1 − 1/α)ki−1 = ki−1/α, hence ki ≤ k/αi. The
least integer i such that αi ≥ k is i = dln k/ lnαe, and it bounds the number of iterations.
Consequently, the overall weight of the solution computed is at most f · dln k/ lnαe · τ , as
claimed.

The last statement follows from the observation that for p = polylog(n) we have lnα =
ln(1 + 1

p−1 ) ≈ 1
p−1 and hence ln k/ lnα ≈ p ln k = polylog(n). J

We now instantiate some parameters to show that for certain ranges of values, our
algorithm gives a good approximation ratio.

I Lemma 11. If τ√q ≤ n/ρ then Steiner k-Forest with unit weights admits approximation

ratio Õ
((

ρ2nq
τ

)1/3
)
.

Proof. Let f(d, h) = ρτ/d+ n/h+ ρh/d+ ρqd/τ be as in Theorem 9 and let

d =
(
nτ2

ρq2

)1/3

and h =
(
n2τ

ρ2q

)1/3

= d ·
(
nq

ρτ

)1/3
.

Elementary computations show that

ρτ

d
=
(
ρ4q2τ

n

)1/3

and n

h
= ρh

d
= ρqd

τ
=
(
ρ2nq

τ

)1/3

.

The statement follows from Theorem 9 and Lemma 10, since the condition τ
√
q ≤ n/ρ

implies d, h ≤ n/2 and ρ4q2τ
n ≤ ρ2nq

τ . J

I Corollary 12. For any 0 ≤ γ ≤ 1, the following holds: if ρ = nγ and τ√q ≤ n1−γ, then
Steiner k-Forest with unit weights admits approximation ratio Õ

(
n1/3+2γ/3).

Proof. This follows from Lemma 11, since ρ2nq
τ = q

τ ρ
2n ≤ 2ρ2n = 2n1+2γ . J

From Corollaries 12 and 6 it follows that Steiner k-Forest with unit weights admits
approximation ratio Õ

(
n1/3+2γ/3), as claimed in Theorem 3. It only remains to prove

Lemma 7.



M. Dinitz, G. Kortsarz, and Z. Nutov 121

4 Proof of Lemma 7

As discussed in Section 2, we will prove Lemma 7 by first constructing a clustering and then
selecting a carefully chosen subset of that clustering. We begin by defining a clustering and
proving a few simple results about them. We will then show how to use an algorithm for
MC`-EPS to prove Lemma 7.

4.1 Clustering
I Definition 13. A (d, r)-cluster of a subset S of nodes in a graph G is a collection TS of
node-disjoint rooted subtrees of G of radius at most r each, such that distG(u, v) > d for
any two nodes u, v ∈ S that belong to distinct trees. A (d, r)-cluster-decomposition of S is a
collection of (d, r)-clusters {TA : A ∈ A} where A is a partition of S.

I Lemma 14. There exists a polynomial time algorithm that given a graph G = (V,E), a
node subset S ⊆ V , and an integer 1 ≤ d ≤ n/2 (called the clustering parameter), constructs
a (d, d(lg |S|+ 1))-cluster TA of a subset A ⊆ S with |A| ≥ |S|/2, where lg i = log2 i.

Proof. For a subtree T of G let Bd(T ) = {v ∈ S \ T : distG(T, v) ≤ d} denote the set of
nodes in S \ T of distance at most d from T . The algorithm is as follows.

Algorithm 2: Cluster-Construct(G,S, d)
1 initialize T ← ∅, A← ∅
2 while S 6= ∅ do
3 Choose root s ∈ S and set T ← ({s}, ∅)
4 while |Bd(T )| ≥ |S ∩ T | do
5 Expand(T ): For each v ∈ Bd(T ), add to T the shortest path from T to v.

6 Update(T , S,A): Add T to T , move T ∩ S from S to A, and remove Bd(T ) from S.
7 return T

The lines in the loop add nodes to the trees as long as the number of terminals in the
“boundary” is at least equal to the number of terminals inside the tree. When this is no
longer the case, the update line removes the boundary of the new tree from the graph.

Each time we expand T , the radius of T increases by at most d while |T ∩ S| is at least
doubled. Thus the radius of T is bounded by d(lg |S|+ 1).

Note that at the update step, the set Bd(T ) of nodes within distance d from T is removed
from S, and thus none of them will belong to A. This implies that at the end of the algorithm,
distG(u, v) > d for any two nodes u, v ∈ A that belong to distinct trees. Note also that the
number of nodes moved from S to A and included in T is at least half the number of nodes
removed from S (since at this point |Bd(T )| ≤ |T ∩ S|). This implies that |A| ≥ |S|/2.

It remains to prove that the trees in T are pairwise node-disjoint. Suppose to the contrary
that there is v ∈ V that belongs to two trees T1, T2 ∈ T , where T2 was constructed after T1.
Let T ′2 denote the tree stored in T2 right before the expansion step when v was added to T2.
When v was added to T ′2, this was because there was a path of length ≤ d that goes through
v from T ′2 to some t ∈ S. In particular, distG(v, t) ≤ d. Now let T ′1 denote the tree stored in
T1 right after the expansion step when v was added to T1. At this point, t was not added to
T ′1, hence we must have distG(v, t) > d. This is a contradiction. J

APPROX/RANDOM’14



122 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

I Corollary 15. There exists a polynomial time algorithm that given a graph G = (V,E),
a node subset S ⊆ V , and an integer 1 ≤ d ≤ n/2, returns a (d, d(lg |S| + 1))-cluster-
decomposition of S with at most lg |S|+ 1 clusters.

Proof. We construct the clusters in the decomposition sequentially, using the algorithm
from Lemma 14. After construction of each cluster TA we remove from S the corresponding
set A of nodes and add A to A. Clearly, at the end A is a partition of S. After each
cluster construction the number of nodes in S decreases by a factor of at least 2, hence
|A| ≤ lg |S|+ 1. J

Lemma 14 and Corollary 15 extend to edge-weighted graphs by an elementary construction
of replacing every edge e of weight we by a path of length we.

I Lemma 16. Given a Steiner k-Forest instance, let {TA : A ∈ A} be a cluster-decomposition
of the set R of terminals as in Corollary 15 (so |A| ≤ lg |R|+ 1), and let D′ be an arbitrary
set of demand edges. Then there exist A,B ∈ A (possibly A = B) such that Ω(|D′|/ lg2 |D|)
pairs in D have one node in A and the other node in B.

Proof. Let D′(A,B) denote the set of pairs in D′ with one node in A and the other in B. The
statement follows by an averaging argument from the observations that

∑
{A,B}⊆A |D′(A,B)| =

|D′|, and that |{{A,B} : {A,B} ⊆ A}| = |A|(|A|+ 1)/2. J

For simplicity of exposition, let us assume that we know the sets A,B as in the above
corollary (we can try all possible choices) and that A 6= B (the analysis of the case A = B is
similar). Furthermore, by Lemma 16, we lose only a polylogarithmic factor by replacing D
by D(A,B); hence we assume that D = D(A,B) (and that an optimal solution connects k
pairs from D), and denote by TA, TB the corresponding pair of clusters.

4.2 Choosing Trees
Now that we have two clusters which contain a lot of demand pairs, we want to find a cheap
way of connecting much of it. Recall that J denotes an optimal solution, τ = |J | is the
number of edges in J , DJ is a set of k demand pairs connected by J , RJ is the union of all
pairs in DJ , and q = |RJ |. The two parameters d and h from Lemma 7 are related to the
cluster decomposition, and have the following meaning:

d is the cluster decomposition parameter as in Corollary 15.
h is a threshold on tree size in a cluster; a tree T is heavy if it has more that h edges,
and T is light otherwise.

Let us consider the case that distJ (u, v) ≥ 2d holds for at least half of the pairs in DJ . In
this case, we can remove from D all pairs {u, v} with distJ (u, v) < 2d, losing only a constant
factor of 2 in the number of connected pairs. For simplicity of exposition, we will assume
that distJ(u, v) ≥ 2d holds for all pairs in DJ .

I Lemma 17. Suppose that distJ (u, v) ≥ 2d for every {u, v} ∈ DJ . Then at most τ/d trees
in TA contain a node from a pair in DJ .

Proof. For every tree T ∈ TA that intersects the optimum, fix some pair {uT , vT } ∈ DJ ,
where uT ∈ T . Let PT be the set of the first d nodes on the uT vT -path in J . Note that this
path is completely unrelated to the trees in the cluster. Its a path in the optimum, and so
we can not know what the path is. Nevertheless we get the following property: The sets PT
are disjoint, since the distance between any two terminals that belong to distinct trees is



M. Dinitz, G. Kortsarz, and Z. Nutov 123

larger than 2d. Thus every tree that intersects J is associated with its own path of length d.
Since the paths are edge disjoint and the number of total edges is at most τ , there are at
most τ/d trees that intersect J . J

Let us partition DJ into three sets: DLL of LL-pairs with both nodes in light trees, DHH

of HH-pairs with both nodes in heavy trees, and DLH = DJ \ (DLL ∪DHH) of LH-pairs
with one node in a light tree and the other in a heavy tree. At least one of these sets has
size at least k/3. We execute three different algorithms, and choose the outcome of one of
them. Intuitively, in each algorithm, we have the following three procedures.

1. Construct: This procedure constructs a MC`-EPS instance from the graph (R,D).
2. Compute: This procedure computes a ρ-approximate solution to the obtained MC`-EPS

instance, which determines a certain set R′ of terminals.
3. Connect: This procedure returns a graph G′ = (V ′, E′) obtained by connecting some

pairs of chosen terminals.

Algorithm 3: Heavy-Heavy(G,D, T )
1 Construct a MC`-EPS instance with ` = k/3 by removing from the graph (R,D)
nodes that belong to light trees.

2 Compute a ρ-approximate solution R′ for the obtained MC`-EPS instance (in fact,
here we get unit node-costs and unit edge-profits, so just a Mk-ES instance with k = `).

3 Connect: G′ = (V ′, E′) is the union of the shortest paths from each terminal in R′ to
the root of the tree it belongs to.

Algorithm 4: Light-Light(G,D, T )
1 Construct a MC`-EPS instance with ` = k/3 from the graph H = (R,D) as follows.

Remove nodes that belong to heavy trees.
For every light tree, shrink its terminals into a single node.
For every node pair u, v, replace the set Duv of parallel uv-edges by a single edge of
profit |Duv|.

2 Compute a ρ-approximate solution R′ for the obtained MC`-EPS instance (with unit
node-costs and with edge profits).

3 Connect: G′ = (V ′, E′) is the union of the light trees in T that correspond to R′.

Algorithm 5: Light-Heavy(G,D, T )
1 Construct a MC`-EPS instance with ` = k/3 from the graph (R,D) as follows: for
every light tree, shrink its terminals into a single node of cost dq/τ .

2 Compute a ρ-approximate solution R′ for the obtained MC`-EPS instance (with
node-costs in {1, dq/τ} and unit edge-profits).

3 Connect: G′ = (V ′, E′) is the union of the light trees that correspond to nodes in R′
and shortest paths from each terminal in R′ that belongs to a heavy tree to the root of
the heavy tree it belongs to.

I Lemma 18. Suppose that distJ(u, v) ≥ 2d holds for every {u, v} ∈ DJ .
(i) If |DHH | ≥ k/3 then Algorithm 3 computes a graph G′ = (V ′, E′) with O(n/h) connected

components, |E′| = Õ(ρqd), and V ′ contains Ω̃(k) pairs from D.
(ii) If |DLL| ≥ k/3 then Algorithm 4 computes a graph G′ = (V ′, E′) with O(ρτ/d) connected

components, |E′| = O(ρhτ/d), and V ′ contains Ω̃(k) pairs from D.
(iii) If |DLH | ≥ k/3 then Algorithm 5 computes a graph G′ = (V ′, E′) with O(ρτ/d+ n/h)

connected components, |E′| = Õ(ρhτ/d+ ρqd), and V ′ contains Ω̃(k) pairs from D.

APPROX/RANDOM’14



124 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

Proof. Suppose that |DHH | ≥ k/3. The MC`-EPS instance in Algorithm 3 has a feasible
solution of size at most q. Hence a ρ-approximate solution R′ has size at most |R′| ≤ ρq. We
connect each terminal in R′ by a path of length O(d lgn), hence |E′| = Õ(ρqd). The heavy
trees in each of TA, TB are node disjoint, and each of them has at least h nodes. Thus G′
has at most 2n/h connected components.

Suppose that |DLL| ≥ k/3. By Lemma 17, the MC`-EPS instance in Algorithm 4 has a
feasible solution of size at most τ/d. Hence a ρ-approximate solution R′ has size |R′| ≤ ρτ/d,
which bounds the number of trees from T and connected components that we include in G′.
As the number of edges in each tree is at most h, |E′| ≤ ρhτ/d.

Suppose that |DLH | ≥ k/3. Recall that in this case, in the obtained MC`-EPS instance,
the cost of each node that corresponds to a light tree is d · q/τ , while the other nodes have
unit costs and their number is at most q. By Lemma 17, at most τ/d trees contain a node
from a pair in DJ . Hence the obtained MC`-EPS instance admits a solution of node cost
(τ/d) · d · q/τ = O(q). The returned ρ-approximate solution R′ has node cost O(ρq), and
thus O(ρq) nodes. The number of light trees obtained is therefore bounded by O(ρq)

d·q/τ = τ ·ρ
d ,

which coincides with our bound on the number light trees returned in the DLL case. The
number of connected components of heavy terminals is O(ρ · q) which coincides with our
bound in the DHH case. This proves the claim. J

This completes the analysis of the case that distJ (u, v) ≥ 2d holds for at least half of the
pairs in DJ .

Now let us consider the case when distJ(u, v) < 2d holds for at least half of the pairs in
DJ . This is the case that most pairs can be connected by a relatively short path. In this
case, we remove from D all pairs {u, v} with distJ (u, v) ≥ 2d in the graph. The algorithm in
this case is essentially identical to Algorithm 3 as in case (i) of Lemma 18 (the |DHH | ≥ k/3
case). We construct a MC`-EPS instance as in Algorithm 3 with m = k/2. The obtained
MC`-EPS instance admits a solution with q nodes, and the returned ρ-approximate solution
R′ has O(ρq) nodes. The same analysis as in case (i) of Lemma 18 finishes the proof of this
case. Alternatively, we may also argue that since distJ (u, v) < 2d for all pairs in D, then by
Lemma 8, we can connect k/2 pairs by cost O(ρqd), a term that already appears in Lemma
18(iii). Summarizing, the case when distJ (u, v) < 2d holds for at least half of the pairs in DJ

appears in the analysis of Lemma 18(iii), and thus does not change the approximation ratio.
This ends the proof of Lemma 7, and thus proves Theorem 1.

5 Proof of Theorem 2

We first make the node costs bounded by a polynomial in n. We remove nodes of cost more
than τ and zero the edges of cost at most τ/n2. The cost we ignore due to the zeroing of the
node costs is less than τ and is negligible in our context. Then we divide all the weights by
the minimum weight and round the value down. Note that the cost of any edge over the cost
of the minimum weight is at least 1. Hence the rounding down loses a negligible factor of
2: the worse case is that we may round a number that is at most 2 to 1. If the profits are
exponential in n or larger, we give a bicriteria approximation in which we have the same
ratio but we cover only `− `/poly(n) profit where poly(n) is an arbitrary polynomial function
of n. Thus our generalization of [5] is really for the case when node weights are arbitrary
and edge profits are polynomial in n.

We call an instance of MC`-EPS simple if all the edge-profits are the same and there
are at most two distinct node costs (say c1 and c2) such that every edge has exactly one
endpoint of each cost (note that it might be the case that c1 = c2).



M. Dinitz, G. Kortsarz, and Z. Nutov 125

I Lemma 19. If MC`-EPS admits an f -approximation algorithm on simple instances, then
MC`-EPS admits a bicriteria approximation algorithm that returns a graph of node-cost O(f)
times the optimal and edge-profit Ω(`/ log3 n).

Proof. Let 〈G = (V,E), c, p, `〉 be an instance of MC`-EPS. Recall that we may assume
that the node costs are polynomial in n because of the reduction described above. Also, by
assumption, the edge profits are bounded by a polynomial in n.

Partition E into O(logn) sets Eh = {e ∈ E : 2h ≤ pe < 2h+1}. Each e ∈ Eh is given
profit 2h. Partition the nodes similarly: Vi = {v ∈ E : 2h ≤ cv < 2h+1}. according to powers
of 2. Let Eijh be the set of edges in Eh with one end in Vi and the other in Vj . The edge sets
Eijh partition E, and there are O(log3 n) such sets. Each graph Gijh = (Vi ∪ Vj , Eijh) gives
a simple instance of MC`-EPS, and one of them contains Ω(`/ log3 n) profit of the optimum.
We run the algorithm for simple instances on each graph Gijh with Ω(`/ log3 n) instead of `,
and return the one of minimum node cost. The returned subgraph has node cost O(f) times
the optimal and Ω(`/ log3 n) edge-profit, as required. J

By the same argument as in Lemma 10 we have the following.

I Lemma 20. Suppose that MC`-EPS admits a bicriteria approximation algorithm that
returns a graph of node-cost f times the optimal and edge-profit at least (1− 1/α) · `, where
1 < α < `. Then MC`-EPS admits an f · dln `/ lnαe-approximation algorithm.

From Lemmas 19 and 20 we have the following.

I Corollary 21. Suppose that MC`-EPS on simple instances admits a bicriteria approximation
algorithm that returns a graph of node-cost f times the optimal and edge-profit Ω̃(`). Then
MC`-EPS admits a Õ(f)-approximation algorithm.

In the rest of this section we prove the following statement, which together with Corol-
lary 21 implies Theorem 2.

I Lemma 22. MC`-EPS on simple instances admits a bicriteria approximation algorithm
that returns a graph of node-cost f times the optimal and edge-weight Ω̃(`), where f =
Õ
(
n3−2

√
2+ε
)
for arbitrarily small constant ε > 0.

We need some definitions and results from [5].

I Definition 23 ([5]). A bipartite graph G = (V1 ∪ V2, E) is called (n1, d1, n2, d2)-nearly
regular if for every i = 1, 2 we have |Vi| = ni and the following condition on the degrees
holds:

di ≥ max
v∈Vi

d(v) ≥ min
v∈Vi

d(v) = Ω(di/ logn).

I Lemma 24 ([5]). Any graph H = (V,E) contains an (n1, d1, n2, d2)-nearly regular subgraph
with Ω(|E|/ log2 n) edges, for some n1, d1, n2, d2.

A key step in [5] was the following lemma:

I Lemma 25 ([5]). For any ε > 0 there exists a randomized polynomial time algorithm that
given a bipartite graph G on n nodes that contains an (n1, d1, n2, d2)-nearly regular subgraph,
returns a subgraph G′ = (V ′, E′) of G such that |V ′| ≤ f · (n1 + n2) (with probability 1) and
E[|E′|] = Ω̃(n1d1), where f = n3−2

√
2+ε.

We prove the following refinement of Lemma 25, which gives a more “balanced” guarantee.

APPROX/RANDOM’14



126 Improved Approximation Algorithm for Steiner k-Forest with Nearly UniformWeights

I Lemma 26. For any ε > 0 there exists a randomized polynomial time algorithm that
given a bipartite graph G on n nodes that contains an (n1, d1, n2, d2)-nearly regular subgraph,
returns a subgraph G′ = (V ′, E′) of G such that |V ′ ∩ V1| ≤ fn1 and |V ′ ∩ V2| ≤ fn2 (with
high probability) and E[|E′|] = Ω̃(n1d1), where f = n3−2

√
2+ε.

Proof. We will assume that n1 ≥ n2; otherwise we just switch indices. Note that if n1 ≤ 2n2,
then the algorithm from Lemma 25 produces a subgraph that satisfies the new stronger
requirement on the chosen nodes. So suppose that n1 > 2n2. For simplicity, let us also
assume that p = n1/n2 is an integer.

Let Ĝ = (V1 ∪ V̂2, Ê), where V̂2 consists of p copies of V2 and Ê is obtained by putting
between V1 and each copy of V2 a copy of E. For a subgraph G′ = (V ′1 ∪ V ′2 , E′) of G let
Ĝ′ = (V ′1 ∪ V̂ ′2 , Ê′) denote the corresponding subgraph of Ĝ, i.e. where between each copy
of V ′1 and V ′2 we include a copy of E′. Note that |V̂ ′2 | = p|V ′2 |, that dĜ′(v) = pdG′(v) if
v ∈ V ′1 , and that if v̂ ∈ V̂2 is a copy of v ∈ V2 then dĜ′(v̂) = dG′(v). This implies that if G′
is (n1, d1, n2, d2)-nearly regular then Ĝ′ is (n1, d2, n1, d2)-nearly regular.

We run the algorithm from Lemma 25 on the instance 〈Ĝ, (n1, d2, n1, d2)〉 independently
Õ(n2) times, and among the subgraphs computed take one Ĝ′ = (V ′1 ∪ V̂ ′2 , Ê′) with maximum
number of edges. For each v ∈ V2, let Tv denote the number of copies of v in V̂ ′2 . We build
V ′2 by sampling each v ∈ V̂ ′2 independently with probability Tv/p. Let E′ be the set of edges
between V ′1 and V ′2 . We will return the graph G′ = (V ′1 ∪ V ′2 , E′).

We now prove the bounds on the sizes of V ′1 , V ′2 , and E′. Since we run the algorithm
as in Lemma 25, |V ′1 | ≤ 2fn1 and

∑
v∈V2

Tv ≤ |V̂ ′2 | ≤ 2fn1. By linearity of expectations,
we get that the expected size of V ′2 is at most n2

n1

∑
v∈V2

Tv ≤ 2fn2. Since each node in V2

was chosen independently, a simple Chernoff bound implies that |V ′2 | = Õ(fn2) with high
probability.

To bound |E′|, note that a Chernoff bound implies that with high probability |Ê′| =
Ω̃(n1d2) (since we ran Lemma 25 a polynomial number of times and took the best, and
each run was independent). An edge uv ∈ E with u ∈ V ′1 is included in our subgraph with
probability Tv/p = Tvn2/n1. Thus

E[|E′|] =
∑
u∈V ′

1

∑
v∈V ′

1 :uv∈E

Tv/p = n2

n1

∑
u∈V ′

1

∑
v∈V ′

2 :uv∈E

Tv

= n2

n1
· Ω̃(n1d2) = Ω̃(n2d2) = Ω̃(n1d1),

proving the lemma. J

Now we finish the proof of Lemma 22. Let 〈G = (V1 ∪ V2, E),m, (c1, c2)〉 be a simple
MC`-EPS instance. Let G∗ = (V ∗0 ∪ V ∗1 , E∗) be an optimal subgraph. Applying Lemma 24
to G∗ implies that there exist values of n1, d1, n2, d2 such that there is a (n1, d1, n2, d2)-
nearly regular subgraph of G of cost at most c(V ∗) = c1|V ∗1 |+ c2|V ∗2 | that contains at least
Ω̃(`) = Ω̃|E∗| edges (note that up to polylogs n1d1 = n2d2 = ` = |E∗|). So when we run the
algorithm from Lemma 26, we get a graph G′ = (V ′1 ∪ V ′2 , E′) with the properties that with
high probability |V ′1 | = Õ(fn1) and |V ′2 | = Õ(fn2) and in expectation |E′| = Ω̃(n1d1) = Ω̃(`).
The node-cost of this subgraph is Õ(fn1c1 + fn2c2) = Õ(f) · c(V ∗). This proves Lemma 22,
and thus also the proof of Theorem 2 is complete.

References
1 A. Agrawal, P. Klein, and R. Ravi. When trees collide: an approximation algorithm for

the generalized Steiner problem on networks. SIAM J. Computing, 24(3):440–456, 1995.



M. Dinitz, G. Kortsarz, and Z. Nutov 127

2 I. Althöfer, G. Das, D. P. Dobkin, D. Joseph, and J. Soares. On sparse spanners of weighted
graphs. Discrete & Computational Geometry, 9:81–100, 1993.

3 Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. An improved
LP-based approximation for Steiner tree. In Proceedings of the 42nd ACM Symposium on
Theory of Computing, STOC’10, pages 583–592, 2010.

4 M. Charikar and B. Raghavachari. The finite capacity dial-a-ride problem. In FOCS, pages
458–467, 1998.

5 E. Chlamtac, M. Dinitz, and R. Krauthgamer. Everywhere-sparse spanners via dense
subgraphs. In FOCS, pages 758–767, 2012.

6 M. Feldman, G. Kortsarz, and Z. Nutov. Improved approximation algorithms for directed
Steiner forest. J. Comput. Syst. Sci., 78(1):279–292, 2012.

7 N. Garg. Saving an epsilon: a 2-approximation for the k-MST problem in graphs. In STOC,
pages 396–402, 2005.

8 A. Gupta, M.T. Hajiaghayi, V. Nagarajan, and R. Ravi. Dial a ride from k-forest. ACM
Transactions on Algorithms, 6(2), 2010.

9 M.T. Hajiaghayi and K. Jain. The prize-collecting generalized Steiner tree problem via a
new approach of primal-dual schema. In SODA, pages 631–640, 2006.

APPROX/RANDOM’14


	Introduction
	A High Level Overview of the Main Ideas
	Proof of Theorem 3
	Proof of Lemma 7
	Clustering
	Choosing Trees

	Proof of Theorem 2

