
On the Equivalence of the Bidirected and
Hypergraphic Relaxations for Steiner Tree
Andreas Emil Feldmann1, Jochen Könemann1, Neil Olver2, and
Laura Sanità1

1 Department of Combinatorics and Optimization, University of Waterloo
{andreas.feldmann,jochen,laura.sanita}@uwaterloo.ca

2 VU University & CWI, Amsterdam
n.olver@vu.nl

Abstract
The bottleneck of the currently best (ln(4)+ε)-approximation algorithm for the NP-hard Steiner
tree problem is the solution of its large, so called hypergraphic, linear programming relaxation
(HYP). Hypergraphic LPs are NP-hard to solve exactly, and it is a formidable computational
task to even approximate them sufficiently well.

We focus on another well-studied but poorly understood LP relaxation of the problem: the
bidirected cut relaxation (BCR). This LP is compact, and can therefore be solved efficiently. Its
integrality gap is known to be greater than 1.16, and while this is widely conjectured to be close
to the real answer, only a (trivial) upper bound of 2 is known.

In this paper, we give an efficient constructive proof that BCR and HYP are polyhedrally
equivalent in instances that do not have an (edge-induced) claw on Steiner vertices, i.e., they do
not contain a Steiner vertex with 3 Steiner neighbors. This implies faster ln(4)-approximations for
these graphs, and is a significant step forward from the previously known equivalence for (so called
quasi-bipartite) instances in which Steiner vertices form an independent set. We complement our
results by showing that even restricting to instances where Steiner vertices induce one single star,
determining whether the two relaxations are equivalent is NP-hard.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases Steiner tree, bidirected cut relaxation, hypergraphic relaxation, polyhed-
ral equivalence, approximation algorithms

Digital Object Identifier 10.4230/LIPIcs.APPROX-RANDOM.2014.176

1 Introduction

In an instance of the well-studied, NP-hard [5, 14] Steiner tree problem one is given an
undirected graph G = (V,E), a non-negative cost cost(e) for each edge e ∈ E, and a set
of terminals R ⊆ V . The goal is to find a minimum-cost tree spanning R. Steiner trees
arise in a host of practical applications (e.g., see the survey [12] and the current DIMACS
implementation challenge [8]), and therefore have been extensively studied in the network
design community.

In this paper, we focus on the problem’s efficient approximability. In a recent breakthrough,
Byrka et al. [2] presented the currently best (ln(4) + ε)-approximation algorithm for the
problem. The algorithm crucially relies on the repeated solution of a large, so called
hypergraphic LP relaxation (henceforth abbreviated by HYP) for the problem. It was later
shown by Goemans et al. [11] that it is possible to achieve the same approximation guarantee
while only solving HYP once. However, solving hypergraphic Steiner tree relaxations

© Andreas Emil Feldmann, Jochen Könemann, Neil Olver, and Laura Sanità;
licensed under Creative Commons License CC-BY

17th Int’l Workshop on Approximation Algorithms for Combinatorial Optimization Problems (APPROX’14) /
18th Int’l Workshop on Randomization and Computation (RANDOM’14).
Editors: Klaus Jansen, José Rolim, Nikhil Devanur, and Cristopher Moore; pp. 176–191

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.APPROX-RANDOM.2014.176
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 177

is challenging: Goemans et al. [11] also showed that solving them exactly is strongly
NP-hard, and even their approximation amounts to (exactly) solving LPs with more than
|R|k variables and constraints (where k is a constant that needs to be ∼ 100 in order to yield
an approximation to HYP of sufficient quality).

Another well-known formulation for the Steiner tree problem is the bidirected cut relaxation
(BCR) [6, 20]. BCR is an appealing relaxation as its compactness implies efficient solvability.
As one way of obtaining a faster approximation algorithm for the Steiner tree problem, we
therefore propose to first compute a solution to HYP from a solution to BCR. Then, we
apply the algorithm of Goemans et al. [11] in order to compute a Steiner tree with cost at
most ln(4) times that of the given HYP solution. Since HYP has a smaller integrality gap
than BCR in general (we present the largest known gap ratio of 12/11 below), we cannot
hope to compute a solution to HYP of the same cost as the optimum BCR solution. We
therefore ask when these two LPs have the same integrality gap.

The integrality gap of BCR is not well-understood. It is known to be at least 36/31 ≈
1.16 [2], and while the latter number is widely conjectured to be close to the truth, the only
thing known is an almost trivial upper bound of 2. HYP on the other hand has an integrality
gap of at least 8/7 ≈ 1.14 [15] and at most ln(4) ≈ 1.39 [11]. Hence comparing the gaps of
these two LPs can shed some light on the gap of BCR.

Previously it was known that the integrality gaps of BCR and HYP are equal for quasi-
bipartite instances where no two Steiner vertices (the vertices in V \R) are connected by an
edge [3, 9, 11]. For these graphs the Steiner tree problem remains NP-hard [18]. In this paper
we significantly extend the class of instances where the integrality gaps are identical. In our
main result, we show that as long as the input graph G has no Steiner vertex with three
Steiner neighbors (we will refer to this as a Steiner claw), BCR and HYP are polyhedrally
equivalent. Specifically, we will provide a cost-preserving, and efficiently computable map
between feasible solutions to BCR and those of HYP. We will also show that our results are
nearly best possible by exhibiting instances with a single star on Steiner vertices for which it
is NP-hard to decide whether BCR and HYP have the same integrality gap.

In the following we describe the relaxations BCR and HYP in more detail before formally
stating our contributions.

1.1 Bidirected and Hypergraphic LPs for Steiner Trees
In the bidirected cut relaxation one usually considers a directed auxiliary graph that has two
arcs (u, v) and (v, u) of cost cost(uv) for each original edge uv ∈ E. The LP, which we will
refer to as BCR*, has a variable for each of these arcs, and its constraints force at least one
arc to cross each directed cut that separates a chosen root r ∈ R from at least one other
terminal (see [6, 20]). More concretely, if the set ~E contains the directed arcs (u, v) and
(v, u) for all edges uv ∈ E, δ+(S) := {(u, v) ∈ ~E | u ∈ S, v /∈ S} is the set of arcs crossing a
set S ⊆ V , and z(δ+(S)) =

∑
a∈δ+(S) za, the LP is

min
∑
a∈~E

za cost(a) s. t. (BCR*)

z(δ+(S)) ≥ 1 ∀S ⊆ V \ {r}, S ∩R 6= ∅
z ≥ 0

In this paper, we importantly choose to work with an equivalent undirected formulation
(see [10]) which we will refer to as BCR. We state this LP below, where we associate a
variable ze with each (undirected) edge e ∈ E, and a variable yv with each vertex v ∈ V . For

APPROX/RANDOM’14

178 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

brevity we use E(S) for the collection of edges with both ends in S ⊆ V , z(E′) =
∑
e∈E′ ze,

y(S) =
∑
v∈S yv, and ymax(S) as a shorthand for maxv∈S yv.

min
∑
e∈E

ze cost(e) s. t. (BCR)

z(E(S)) ≤ y(S)− ymax(S) ∀S ⊆ V
z(E) = y(V)− 1
yt = 1 ∀t ∈ R
y, z ≥ 0

We note that the LP becomes Edmonds’ famous subtour formulation for the spanning
tree polyhedron [7] when y is replaced by the vector of ones. Furthermore, BCR can be
solved efficiently: simply compute a solution to a compact flow formulation of its directed
counterpart BCR*, and observe that it can be mapped to a solution of the same value for
BCR (see [10]): set yv in BCR to the sum of outgoing arc values from v ∈ V \ {r} in BCR*
(this corresponds to the amount of flow that v can send to the root). The value yr of the
root of BCR* is simply 1 in BCR. The value ze for an edge in BCR is given by the sum of
the corresponding two arc values in BCR*.

Hypergraphic LPs are inspired by the observation that the Steiner tree problem can be
equivalently phrased as that of computing a minimum-cost spanning tree in an appropriately
defined hypergraph on the terminals. There are multiple equivalent, directed and undirected
forms of HYP [3]. Corresponding to our undirected choice of BCR, we will henceforth focus
on the hypergraphic subtour relaxation introduced in [19]. The LP has one variable for each
full-component of the instance. A full-component is a tree all of whose leaves are terminals,
and whose internal nodes are Steiner vertices. We let K be the set of all full-components of
the instance, and note that K may have multiple full-components spanning the same set of
terminals, but having different edges. The cost of a full-component is equal to the sum of
the cost of its edges. In the following hypergraphic subtour formulation we let (a)+ be a
short-hand for max{0, a}, and R(C) denote the set of terminals included in C .

min
∑
C∈K

xC cost(C) s. t. (HYP)∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ |S| − 1 ∀S ⊆ R,S 6= ∅∑
C∈K

xC(|R(C)| − 1)+ = |R| − 1

x ≥ 0

As mentioned, solving HYP is strongly NP-hard. However, restrictingK to full-components
spanning at most k terminals (for some fixed k) renders the LP polynomial-time solvable,
and it can be shown that its optimal value increases by at most a factor of (1 + 1/blog kc) [1].
We may therefore choose k = k(ε) appropriately to obtain a 1 + ε approximation to HYP,
for any ε > 0. As mentioned above, to achieve solutions of sufficient quality, k needs to
be ∼ 100, which implies LPs with more than |R|100 variables and constraints.

1.2 Our Contributions
We call a Steiner tree instance Steiner claw-free if the graph G has no Steiner vertex
with at least three Steiner neighbors. Our main result is the following, which implies

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 179

faster ln(4)-approximations for Steiner claw-free graphs. In particular, our running time is
dominated by solving BCR, which in its compact flow formulation has O(|R||E|) variables
and constraints.

I Theorem 1. In a Steiner claw-free Steiner tree instance, any minimal solution to BCR
can be efficiently converted to a solution to HYP of no larger cost.

Figure 1 Example
instance with HYP 6=
BCR. Terminals are
circles, Steiner vertices
are squares.

As an immediate consequence, we obtain an integrality gap bound
of ln(4) for BCR in Steiner claw-free instances via [11], improving
the previously known bound of 2. The only class of Steiner tree
instances where BCR was previously known to exhibit an integrality
gap smaller than 2 is that of quasi-bipartite graphs. Previous work
in [4, 11] showed that their integrality gap is at most 73/60 ≈ 1.216.

Theorem 1 implies that BCR and HYP are equivalent in every
instance of the Steiner tree problem where Steiner vertices induce
subgraphs in which the maximum degree of each vertex is 2 (i.e.
paths and cycles). On the other hand, Figure 1 shows a graph with 4
Steiner vertices inducing a subgraph with only one vertex of degree 3,
where BCR and HYP are not equivalent. If we assume all edges to have unit cost, BCR
is easily seen to admit a solution of cost 5.5: let ze = 1 for the thick edge, and ze = 1/2
otherwise. All white vertices v in the figure have yv = 1, and others have yv = 1/2. The
optimum Steiner tree has cost 6 and this is also the value of HYP. Hence in general the gap
ratio between the two LPs is at least 12/11.

At a high level, our algorithmic proof of Theorem 1 follows the greedy approach taken
in [9, 11] for quasi-bipartite instances. Roughly, the above papers first solve the directed
version BCR* of BCR, and convert it into a solution for a directed version of HYP, commonly
referred to as directed component relaxation DCR (see [17]). This directed formulation is
equivalent to HYP [3]. For DCR, each full-component is directed, i.e. it is an in-arborescence
to one of its terminals, called its head. We call the set of all directed full-components ~K.
By ∆+(S) we denote all full-components C ∈ ~K for which the head lies outside S, while
some other terminal of C lies inside. Also let x(∆+(S)) =

∑
C∈∆+(S) xC . The directed

hypergraphic (component) relaxation then is:

min
∑
C∈~K

xC cost(C) s. t. (DCR)

x(∆+(S)) ≥ 1 ∀S ⊆ R \ {r}, S 6= ∅
x ≥ 0

The approach of [9, 11] is to iteratively and greedily shave off fractional capacity uniformly
from the arcs of a directed full-component in the support of the given directed BCR* solution.
In the case of quasi-bipartite instances, this approach works and yields a feasible solution for
DCR of the same cost as the original BCR* solution. As soon as Steiner vertices are allowed
to have Steiner neighbors, the above strategy runs into problems, however. Figure 2(a)
shows a Steiner claw-free instance, and two optimal solutions to BCR* in Figures 2(b)
and 2(c). One can show that there is no DCR solution whose canonical projection yields
(or more precisely, is dominated by) the BCR* solution in 2(c). Hence the outlined greedy
strategy taken in [9, 11] will not work here. On the other hand, the solution given in 2(b) is
the projection of a feasible solution to DCR. The crux appears to be that both solutions
in Figure 2(b) and 2(c) project to the same undirected solutions of BCR. By considering
undirected relaxations we avoid the complication inherent in the directed nature of the LPs.

APPROX/RANDOM’14

180 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

2
2

2 3

3

1

1

3

3

1

1

r r

(a) Edge costs.
(b) Decomposable: one

full-component is marked a, the
other b, each with value 1/2.

(c) Not decomposable.

Figure 2 An instance with edge costs as given in (a). Some optimal solutions to BCR* are
decomposable (b) into a DCR solution, and others (c) are not (we omit the proof). In the BCR*
solutions the root is marked r, bold arcs have capacity 1, and the others 1/2.

The results for the quasi-bipartite case [3, 9, 11] at their heart rely on the property that
tight sets that intersect in terminals can be uncrossed. To move beyond the quasi-bipartite
case, however, we require a deeper understanding of the interaction of tight sets, including
those that are not terminal-intersecting. We believe that our techniques may be helpful in
the quest for a better-than-2 bound on the integrality gap of the bidirected cut relaxation:
while a mapping from BCR to HYP that preserves cost is not possible, one that only loses a
small factor may be. In fact, it can readily be seen that the algorithm we present in the rest
of this paper can be used to compute an approximate solution to HYP for the example given
in Figure 1. For this we set yv = 1 for any one of the gray Steiner vertices v, and also ze = 1
for the edge e connecting v to the white Steiner vertex. This again yields a feasible solution
to BCR for which our algorithm computes a solution to HYP of the same cost 6.

Our main result of this paper shows that the property of being Steiner claw-free, which is
polynomially checkable, is a sufficient condition for equivalence of the two relaxations. We
also show that there is no good characterization of this equivalence. Even if we restrict to
instances where the Steiner vertices induce a single star, deciding equivalence is NP-hard.
We defer the proof of the following theorem to the full version of the paper.

I Theorem 2. It is NP-hard to decide for a given Steiner tree instance whether BCR has
the same optimum value as HYP, even if the Steiner vertices induce a single star.

2 A Constructive Map Between BCR and HYP

In this section, we will give a detailed description of an algorithm that converts a minimal
feasible BCR solution into a solution for HYP. At a high level, the arguments are structured
similarly to those used in [9, 11]. Crucially, however, we will be using the undirected
relaxations BCR and HYP introduced in the previous section instead of their directed
analogs.

Our algorithm computes a solution to BCR and in each step identifies a tree C∗ in the
support of this solution. We then carefully choose ε > 0, and remove it from ze for all
e ∈ E(C∗) as well as from yv for all v ∈ V (C∗) \ R. Subsequently, we then add ε to the
x-variable of a maximal full-component contained in C∗. In order to facilitate our discussion
of this greedy process, we define the following “mixed LP” (M), which is a hybrid of BCR
and HYP.

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 181

Algorithm 1 Finding a full component.
1: Choose an arbitrary Steiner vertex ` ∈ V (H) and let V (C∗) = {`}.
2: As long as there is a Steiner vertex v neighboring a vertex w ∈ V (C∗), add it and the

edge vw to C∗ as long as C∗[S] is connected for all tight sets S.
3: As long as there is a terminal t neighboring a Steiner vertex w ∈ V (C∗), add it and the

edge wt to C∗ as long as C∗[S] is connected for all tight sets S.
4: Obtain C from C∗ by deleting Steiner leaves as long as these exist.

min
∑
e∈E

ze cost(e) +
∑
C∈K

xC cost(C) s. t. (M)

z(E(S)) +
∑
C∈K

xC(|R(C) ∩ S| − 1)+ ≤ y(S)− ymax(S) ∀S ⊆ V (1)

z(E) +
∑
C∈K

xC(|R(C)| − 1)+ = y(V)− 1 (2)

yv = 1 ∀v ∈ R (3)
x, y, z ≥ 0.

Note that if for a feasible solution (x, y, z) to this LP, z = 0 and yv = 0 for all v ∈ V \R,
then x is a solution to HYP. On the other hand, if x = 0, then (y, z) is a solution to BCR.
Hence we want to begin with a feasible solution to (M) with x = 0, and end with one where
z = 0 and y = χ(R), where χ(R) is the characteristic vector of the terminal set.

Let H be the support graph of (y, z), where V (H) = {v ∈ V : yv > 0} and E(H) = {e ∈
E : ze > 0}. Observe that, whenever there is an edge uv ∈ E(H) connecting two terminals
u, v ∈ R, we may transfer the value zuv to the x variable of the corresponding full component
without affecting the feasibility or cost of our solution. We will therefore now assume that H
has no edge connecting terminals.

We first describe an algorithm for picking a specific tree C∗ in H. Define the slack of a
vertex set S ⊆ V as

sl(S) := y(S)− ymax(S)− z(E(S))−
∑
C∈K

xC(|R(C) ∩ S| − 1)+,

and note that sl(S) ≥ 0 in a feasible solution (x, y, z) to (M). We will call a set S tight if
sl(S) = 0. Furthermore, we denote by C∗[S] the subgraph of C∗ induced by the vertices in
S ∩ V (C∗). We will use Algorithm 1 to compute C∗.

It turns out to be the case that for Steiner claw-free instances, C∗ always contains a
terminal. We will not assume this for the following analysis however, and so it is convenient
to include an “empty” full-component in K, which contains no terminals. Such a component
of course has no impact on (M). We also allow full-components containing only a single
terminal, which also have no impact on (M). In any case, C ∈ K is always a maximal
full-component contained in the tree C∗, and R(C) = R(C∗).

Given C∗ and full-component C as computed by Algorithm 1, and some ε > 0, we
obtain (x(ε), y(ε), z(ε)) from (x, y, z) by adding ε to xC , and subtracting ε from yv and ze
for v ∈ V (C∗) \R and e ∈ E(C∗), respectively. Note that this does not increase the cost of
the solution. We will argue that if our input instance has no Steiner claw, (x(ε), y(ε), z(ε))
is feasible for (M) for some choice of ε > 0 small enough. This leads to Algorithm 2.

APPROX/RANDOM’14

182 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

Note that at the end of the algorithm, y = χ(R) but also z = 0. This is because for every
edge uv with v /∈ R, Constraint (1) on the set S = {u, v} implies zuv ≤ yv = 0. Moreover, we
explicitly moved all z-value from edges between terminals. Hence if the algorithm succeeds,
we computed a solution to HYP of the same cost as the solution to BCR we started from.

Algorithm 2 can be implemented in polynomial time. The details of this can be found in
Section 4. It is necessary to show that (i) C∗ can be efficiently computed for a given solution
to (M), (ii) the correct choice of ε in Step 5 of Algorithm 2 can be efficiently found, and
(iii) the number of iterations in Algorithm 2 is polynomially bounded. Roughly speaking, (i)
follows by reducing the problem of finding a set of minimum slack (under certain restrictions)
to a flow problem, and (ii) then follows by applying parametric search methods to this
reduction. For point (iii), we obtain a bound of O(|V |2) on the number of iterations. This is
done by arguing via uncrossing techniques that the number of “independent” tight constraints
of a certain form for a solution to (M) cannot be too large. A new constraint becomes tight
at the start of each iteration, with all previous ones remaining tight, and the bound follows.

In order for Algorithm 2 to produce a feasible HYP solution of no larger cost than the
initial BCR solution, we need to show that it is always possible to select ε > 0 at Step 5, while
maintaining feasibility for (x, y, z). If ε is small enough, all variables in (x(ε), y(ε), z(ε)) have
non-negative values, because C∗ is a subgraph of the support graph H of (y, z). Furthermore,
going from (x, y, z) to (x(ε), y(ε), z(ε)) does not change the value of yv for any terminal
v ∈ R, and thus (3) is unaffected by this change. It remains to check that (x(ε), y(ε), z(ε))
satisfies (1), and moreover that the constraint remains tight for S = V , so that (2) is
also satisfied. We begin by characterizing when a tight set in (x, y, z) remains feasible in
(x(ε), y(ε), z(ε)).

I Lemma 3. Let S ⊆ V be tight in a feasible solution (x, y, z) to (M), C∗ be a tree of the
support graph H of (y, z), V (C∗) ∩ S 6= ∅, and ε > 0 small enough. Then S is feasible in
(x(ε), y(ε), z(ε)) if and only if (i) C∗[S] is connected, and (ii) {v ∈ S : yv = ymax(S)} ⊆ V (C∗)
if S ∩R = ∅, or R(C∗) ∩ S 6= ∅ if S ∩R 6= ∅. Moreover, S remains tight in (x(ε), y(ε), z(ε)).

Proof. First consider the case when S ∩ R = ∅. Let Sm = {v ∈ S : yv = ymax(S)}, and
define ρ = 1 if Sm ⊆ V (C∗), and ρ = 0 otherwise. We use slε(S) for the slack of set S in
(x(ε), y(ε), z(ε)), and obtain

slε(S) = sl(S) + ε
(
−|V (C∗[S])|+ ρ+ |E(C∗[S])| − (|R(C∗) ∩ S| − 1)+)

= sl(S) + ε
(
−|V (C∗[S])| + ρ + |E(C∗[S])|

)
.

But since C∗[S] is a forest, |E(C∗[S])| ≤ |V (C∗[S])| − 1, with equality only if C∗[S] is
connected. The result follows.

Algorithm 2 Converting a BCR solution to an HYP solution.
1: Start with a solution (x, y, z) feasible for (M) with x = 0.
2: For any zvw > 0 with v, w ∈ R, move all weight to the corresponding x variable.
3: while y 6= χ(R) do
4: Apply Algorithm 1 to compute a tree C∗ and a full-component C.
5: Choose ε > 0 maximally such that (x(ε), y(ε), z(ε)) remains feasible for (M), and

replace (x, y, z) with this new solution.
6: end while
7: Output (x, y, z).

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 183

Note that if there was a Steiner vertex v with yv > 1, then Constraint (1) for the set V
would contradict Constraint (2). In particular this means that in a feasible solution to (M),
the terminals have maximal y-values. Hence in the case where S ∩R 6= ∅ we obtain

slε(S) = sl(S) + ε
(
−|V (C∗[S \R])|+ |E(C∗[S])| − (|R(C∗) ∩ S| − 1)+).

Thus S stays feasible if and only if |V (C∗[S \R])|+ (|R(C∗) ∩ S| − 1)+ ≤ |E(C∗[S])|. Let ρ′
be 1 if R(C∗)∩S 6= ∅ and 0 otherwise. Then, simplifying further, S stays feasible if and only
if |V (C∗[S])| − ρ′ ≤ |E(C∗[S])|. Again since C∗[S] is a forest, |V (C∗[S])| ≥ |E(C∗[S])|+ 1,
with equality if and only if C∗[S] is connected. So the inequality is satisfied if and only if
C∗[S] is connected and R(C∗) ∩ S 6= ∅, in which case it is satisfied with equality. J

Note that the constraint corresponding to V is tight in (x, y, z). Thus if it is feasible in
(x(ε), y(ε), z(ε)), by Theorem 3 it will remain tight, and (2) will be satisfied. The goal is
now to apply Theorem 3 to show that (x(ε), y(ε), z(ε)) satisfies (1) for some ε > 0 whenever
there is no Steiner claw. By construction (see Algorithm 1), C∗[S] is connected for all tight
sets S ⊆ V . Thus we can shift ε > 0 of the value of the y and z variables associated with
C∗ to xC , unless there is a tight set demanding the inclusion of (some of) its vertices with
maximum y-value (e.g. terminals) in C∗.

I Definition 4. A tight set S for which V (C∗) ∩ S 6= ∅ is called a demanding set if
R(C∗) ∩ S = ∅ in case S contains a terminal, or if there is some vertex v ∈ S \ V (C∗) for
which yv = ymax(S) in case S has no terminals.

3 Analysis of the Algorithm

In this section, we show that if a demanding set S exists, then we can identify a Steiner claw
in H. This implies that for Steiner claw-free instances, Algorithm 2 will always find an ε > 0
at Step 5, and therefore terminates successfully. As for the algorithm for quasi-bipartite
instances, we will rely on uncrossing arguments of tight sets. However, it will not be sufficient
to only uncross tight sets intersecting in terminals. Therefore we develop more advanced
uncrossing techniques in our arguments.

Demanding Sets and Blocked Edges

Let S be a demanding set for the tree C∗ chosen by Algorithm 1. Thus S ∩ V (C∗) 6= ∅ and
C∗[S] is connected.

I Lemma 5. Let U be a tight set of a feasible solution (x, y, z) to (M), and let H be the
support graph of (y, z). If U ∩R 6= ∅, then every connected component of H[U] contains a
terminal. If U ∩R = ∅, then H[U] is connected.

Proof. Assume the statement is wrong. Regardless of whether U contains terminals or not,
there must then be a connected component in H[U] with vertex set U1, such that U1 ∩R = ∅
and U2 := V (H[U])\U1 is non-empty. In particular, E(U) = E(U1)∪E(U2), |R(C)∩U1| = 0

APPROX/RANDOM’14

184 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

for every full component C ∈ K, and ymax(U2) > 0. Thus,

sl(U1 ∪ U2) = y(U)− ymax(U)− z(E(U))−
∑
C∈K

xC(|R(C) ∩ U | − 1)+

= y(U1) + y(U2)− ymax(U1 ∪ U2)− z(E(U1))− z(E(U2))

−
∑
C∈K

xC(|R(C) ∩ U2| − 1)+

> y(U1)− ymax(U1)− z(E(U1))−
∑
C∈K

xC(|R(C) ∩ U1| − 1)+

+ y(U2)− ymax(U2)− z(E(U2))−
∑
C∈K

xC(|R(C) ∩ U2| − 1)+

= sl(U1) + sl(U2).

By feasibility of U1 and U2, U1 ∪ U2 cannot be tight, a contradiction. J

Figure 3 Interaction of a
demanding set S and a block-
ing set S′.

Consider a path P1 in H[S] for the demanding set S, that
connects S ∩ V (C∗) to some vertex v ∈ S \ V (C∗) with yv =
ymax(S) (e.g. a terminal). By Theorem 5 this path exists,
whether or not S contains terminals. Traversing the path
from v, let b1 be the first vertex of C∗, and let a1 be its
immediate predecessor (see Figure 3). Note that b1 must be
a Steiner vertex, otherwise S would not be a demanding set.
We will in fact be able to show later that a1 must also be a
Steiner vertex.

Edge a1b1 is called a blocked edge: its endpoint b1 is part
of C∗, but a1 was not added to C∗ by Algorithm 1. Thus, there
must be a tight set S′ for which C∗ ∪ {a1b1} is disconnected
in S′, and thus blocks the addition of a1b1; we call S′ a blocking set. S′ contains a1, not b1,
but some other vertex c ∈ V (C∗). The following technical lemma helps us to argue that a
demanding set must have two distinct blocked edges. In its statement, we use δH(A,B) for
the collection of edges of H with one endpoint in vertex set A, and the other in B.

I Lemma 6. Let U be a tight set with a partition {U1, U2} such that |δH(U1, U2)| = 1,
ymax(U1) ≥ ymax(U2), and U2∩R = ∅. If u1u2 ∈ δH(U1, U2) where u2 ∈ U2, then zu1u2 = yu2 .
Moreover, U1 and U2 are tight sets.

Proof. Let K12 = {C ∈ K : R(C) ∩ U1 6= ∅ ∧R(C) ∩ U2 6= ∅} be those full-components that
intersect both U1 and U2. Noting that ymax(U) = ymax(U1), consider the slack of U1:

sl(U1) = sl(U1) + sl(U2)− sl(U2)
= y(U1) + y(U2)− ymax(U1)− ymax(U2)− z(E(U1))− z(E(U2))

−
∑
C∈K

xC(|R(C) ∩ U1| − 1)+ −
∑
C∈K

xC(|R(C) ∩ U2| − 1)+ − sl(U2)

= sl(U) − ymax(U2) + zu1u2 +
∑
C∈K12

xC − sl(U2).

We know that U is tight so that sl(U) = 0, and our solution is feasible which means
sl(U2) ≥ 0. Also there are no terminals in U2 so that

∑
C∈K12

xC = 0. From Constraint (1)
on the set {u1, u2} we get zu1u2 ≤ yu2 ≤ ymax(U2). Hence

sl(U1) = zu1u2 − ymax(U2)− sl(U2) ≤ 0.

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 185

By feasibility, sl(U1) ≥ 0 and therefore sl(U1) = 0. Moreover, the above inequality can only
be satisfied with equality if sl(U2) = 0 and zu1u2 = ymax(U2). This means that also U2 is
tight, and zu1u2 = yu2 = ymax(U2), which proves the claim. J

The above lemma enables us to prove that there must be a second blocked edge a2b2 ∈
H[S], a1b1 6= a2b2, that crosses from S \ V (C∗) to S ∩ V (C∗).

I Lemma 7. Every demanding set S has at least two blocked edges.

Proof. Suppose that there is a single edge a1b1 ∈ δH(S \ V (C∗), S ∩ V (C∗)), for the sake of
contradiction. Since S is a demanding set, we have ymax(S \ V (C∗)) ≥ ymax(S ∩ V (C∗)) and
S ∩ V (C∗) ∩R = ∅. Thus, by Theorem 6, za1b1 = yb1 .

Now consider the set S′ ∪ {b1} where S′ is the blocking set
for a1b1. Since a1 ∈ S′ and b1 /∈ S′, this set includes the edge a1b1,
while S′ does not. We know that S′ is tight and therefore Con-
straint (1) on S′ ∪ {b1} can only be feasible if a1b1 is the only
edge in H added to this set, i.e. E(S′ ∪ {b1}) \ E(S′) contains
only a1b1. Moreover, for the same reason S′ ∪ {b1} must be tight.
Also, S′ contains some other vertices of V (C∗), which cannot be adjacent to b1 as otherwise
E(S′ ∪ {b1}) \ E(S′) would contain more than one edge. Hence S′ ∪ {b} is a tight set for
which C∗[S′ ∪ {b1}] is disconnected. This contradicts our construction of C∗. J

To show that the vertices a1, a2, b1, b2, and c that we have found can be used to construct
a Steiner claw, we need to show that they are Steiner vertices. For this we will analyze the
intersections of demanding sets and their blocking sets. In particular we show next that the
intersection does not contain any terminal. Note that for our main result we can assume
w.l.o.g. that the considered demanding set is inclusion-wise minimal.

I Lemma 8. Let S be an inclusion-wise minimal demanding set, and S′ a blocking set for S.
Then S ∩ S′ ∩R = ∅.

To prove this lemma we need the following standard fact about tight sets sharing terminals.

I Lemma 9. For any feasible solution (x, y, z) to (M), suppose U1 and U2 are tight sets, such
that U1∩U2∩R 6= ∅. Then U1∩U2 and U1∪U2 are also tight. Also, (i) δH(U1\U2, U2\U1) = ∅,
where H is the support graph of (y, z), and (ii) for all C ∈ K with xC > 0 and R(C)∩Ui 6= ∅
for both i ∈ {1, 2}, R(C) ∩ U1 ∩ U2 6= ∅.

Proof. Since U1 ∩ U2 ∩R 6= ∅, we have that

ymax(U1) = ymax(U2) = ymax(U1 ∩ U2) = ymax(U1 ∪ U2) = 1.

We also have that S → z(E(S)) and S → (|R(C)∩S|−1)+ are both supermodular functions,
which means that

z(E(U1)) + z(E(U2)) ≤ z(E(U1 ∪ U2)) + z(E(U1 ∩ U2)), (4)

and, for any C ∈ K,

(|R(C) ∩ U1| − 1)+ + (|R(C) ∩ U2| − 1)+ ≤
(|R(C) ∩ (U1 ∩ U2)| − 1)+ + (|R(C) ∩ (U1 ∪ U2)| − 1)+. (5)

APPROX/RANDOM’14

186 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

Hence

sl(U1 ∪ U2) + sl(U1 ∩ U2) ≤ sl(U1) + sl(U2) = 0. (6)

Each term on the left-hand side is non-negative by feasibility, and thus U1 ∩ U2 and U1 ∪ U2
are tight as well.

For the second part, since (6) holds with equality, (4) must hold with equality as well. This
can only be if z(δ(U1 \U2, U2 \U1)) = 0. Whenever xC > 0, also (5) must hold with equality.
If R(C) ∩ Ui 6= ∅ for both i ∈ {1, 2} then this is only possible if R(C) ∩ U1 ∩ U2 6= ∅. J

Proof of Theorem 8. Assume the claim is wrong and the intersection of S and S′ contains
a terminal. Consider the case when S and S′ do not intersect in V (C∗). Note however
that both sets contain vertices of V (C∗). Let U1 = S ∩ V (C∗) and U2 = S′ ∩ V (C∗). Since
δH(S \ S′, S′ \ S) = ∅ by Theorem 9, no vertex in U1 is adjacent to a vertex in U2. But
by the same lemma S ∪ S′ is a tight set in which C∗ is disconnected. This contradicts our
construction of C∗.

Hence it must be that S ∩ S′ ∩ V (C∗) 6= ∅. In this case we consider the set S ∩ S′, which
we know is tight by Theorem 9. We also know that one of the vertices incident to the edge
that S′ blocks in S is not in S′, i.e. there is a vertex b ∈ S such that b /∈ S ∩ S′. Hence
S ∩ S′ is a strict subset of S, which contains no terminal of C∗. However it does contain
some terminal and a vertex from V (C∗), and is therefore a demanding set. This contradicts
the minimality of S. J

Using the insight of Theorem 8 we can finally prove that a demanding set implies the
existence of a Steiner claw. We distinguish the cases of whether the demanding set and its
blocking set intersect in C∗.

I Lemma 10. Let S be an inclusion-wise minimal demanding set, and S′ a blocking set
for S. If S ∩ S′ ∩ V (C∗) = ∅ then there is a Steiner claw.

Proof. By Theorem 7, S has two blocked edges a1b1 and a2b2 with ai /∈ V (C∗) and bi ∈ V (C∗)
for i ∈ {1, 2}. We know that for i ∈ {1, 2}, bi must be a Steiner vertex since S ∩R(C∗) = ∅,
and the same is true for ai by Theorem 8. Let S′ be a blocking set for a1b1. Recall that in
Algorithm 1 we first add Steiner vertices and only then terminals. Since S′ blocks the addition
of the Steiner vertex a1, it was already a blocking set in Step 2 of the algorithm, before any
terminals had been added to C∗. Thus there exists some Steiner vertex c ∈ V (C∗)∩S′. Also
note that by the assumptions of the lemma, c /∈ S.

Since C∗[S] is connected, there must be a path P on the
Steiner vertices of C∗[S] from b1 to b2. Every Steiner vertex of
P has at least two Steiner neighbors, since a1 and a2 also are
Steiner vertices and are neighbors to the endpoints of P . Note
that c cannot be part of P since c is not in S. However it is in
the component C∗. Let w be the first vertex of P reached by
the unique path Q in C∗ from c to P . The path Q has non-zero
length, and since a1 and a2 are not in C∗, Q contains neither a1 nor a2. Moreover, Q contains
only Steiner vertices since c also is a Steiner vertex. Hence w has at least three Steiner
neighbors: two since it is in P and an additional one from Q. J

We are left with the case where demanding and blocking sets intersect in C∗. Hence the
following lemma completes the proof of correctness for Algorithm 2, and therefore also that
of Theorem 1.

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 187

I Lemma 11. Let S be an inclusion-wise minimal demanding set, and S′ a blocking set
for S. If S ∩ S′ ∩ V (C∗) 6= ∅ then there is a Steiner claw.

Proof. Assume the claim is false, so that the intersection of S and S′ contains a vertex of
C∗ and every Steiner vertex has at most two Steiner neighbors. Let ab be an edge blocked
by S′. Consider a path P in H[S] starting with ab and continuing from b along vertices of
C∗ until a vertex u ∈ S ∩ S′ is reached, i.e. V (P) ∩ S′ = {a, u} and V (P) \ V (C∗) = {a}.
Such a path exists since C∗[S] is connected.

}

Let U = V (P) \ S′ be the vertices on P exclusively in S. Note that
this set is non-empty since b ∈ U , and it contains only Steiner vertices
since S ∩ R(C∗) = ∅. Our goal is to show that the z-values of E(P)
are small compared to the y-values of U . As a consequence we will see
that removing U from S gives a demanding set, thus contradicting the
minimality of S.

The edge set E(S′ ∪ U) is a superset of E(S′) ∪ E(P). Thus from
Constraint (1) on the set S′ ∪ U we can conclude that

z(E(S′)) + z(E(P)) +
∑
C∈K

xC(|R(C) ∩ (S′ ∪ U)| − 1)+

≤ z(E(S′ ∪ U)) +
∑
C∈K

xC(|R(C) ∩ (S′ ∪ U)| − 1)+

≤ y(S′ ∪ U) − ymax(S′ ∪ U) = y(S′) + y(U) − ymax(S′ ∪ U).

Note that
∑
C∈K xC(|R(C)∩ (S′ ∪U)| − 1)+ =

∑
C∈K xC(|R(C)∩S′| − 1)+ since U contains

only Steiner vertices. Hence substituting z(E(S′)) from Constraint (1) on the tight set S′ in
the above inequality and eliminating superfluous terms gives z(E(P)) ≤ y(U) + ymax(S′)−
ymax(S′ ∪ U) ≤ y(U).

We now remove U from S and bound z(E(S \ U)). Consider an edge vw ∈ E(S) where
v ∈ U and w ∈ S \ (U ∪ {u, a}). Since any Steiner vertex from U has at most two Steiner
neighbors, w must be a terminal, i.e. a maximum valued vertex in S. However S does
not contain any terminals of C∗ and therefore vw must be a blocked edge for S. This
also means that there is a blocking set S′′ preventing w to be part of C∗. However by
Theorem 8, S and S′′ do not share terminals. Hence such an edge vw cannot exist. This
means that the edges in E(S) can be partitioned into E(S \ U) and E(P) and therefore
z(E(S \ U)) = z(E(S))− z(E(P)).

Some vertex v with maximum value in S lies outside of C∗ and is therefore not contained
in U , and thus ymax(S) = ymax(S \ U). Note that

∑
C∈K xC(|R(C) ∩ (S \ U)| − 1)+ =∑

C∈K xC(|R(C) ∩ S| − 1)+, as above. Hence the tightness of S together with the inequality
z(E(P)) ≤ y(U) gives

z(E(S))− z(E(P)) ≥ y(S)−
∑
C∈K

xC(|R(C) ∩ S| − 1)+ − ymax(S)− y(U)

= y(S \ U) − ymax(S \ U) −
∑
C∈K

xC(|R(C) ∩ (S \ U)| − 1)+.

Due to Constraint (1) on S \U of our feasible solution, this implies that S \U must be tight.
However this set is a strict subset of S, intersects V (C∗) (for instance at u), and it contains
the maximum valued vertex v, which is not in C∗. Hence S was not an inclusion-wise minimal
demanding set, which is a contradiction. J

APPROX/RANDOM’14

188 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

4 Algorithmic Issues

In order to show that Algorithm 2 can be implemented efficiently, we need to show that
(i) the number of iterations of the algorithm is polynomial, and (ii) that we can compute the
correct choice of C∗ in each iteration, and the amount that we should extract.

4.1 Bounding the Number of Iterations
We prove the following:

I Theorem 12. Given a Steiner tree instance with n nodes and m edges, the number of
iterations of Algorithm 2 is O(n2).

Let the Steiner tree instance be described by G = (V,E) and terminal set R. Let (y0, z0)
be the initial solution to BCR, which we extend to a solution (x0, y0, z0) of HYP with x0 = 0.
Let (xi, yi, zi) denote the solution obtained after i iterations, i.e., i components have been
maximally extracted. Let imax denote the index of the final iteration, so yimax = χ(R) and
zimax = 0.

We will first observe that once a set becomes tight, it remains tight from then on.

I Lemma 13. For all i ≤ j, if S ⊆ V is tight in iteration i, then it is tight in iteration j.

Proof. An immediate corollary of Theorem 3. J

It is also clear that if i ≤ j, then zie = 0 implies that zje = 0, and yiv = 0 implies that
yjv = 0. At the end of each iteration, a new constraint must become tight, and this constraint
must be independent of, i.e. not implied by, the previously tight constraints. So in order to
bound the number of iteration, it is enough to show that the number of independent tight
constraints can never be too large. This we will show via standard combinatorial uncrossing
arguments, albeit with some technicalities.

Let K′ = {C ∈ K : ximax
C > 0}. Let R = 2V ∪̇E denote the set of constraints of (M)

corresponding to (1) and the nonnegativity constraints for z. For any ` ∈ R, let Γ(`) denote
row ` of the constraints matrix of (M); so Γ(`) is a vector in RV ∪E∪K

′ .

I Lemma 14. For any i ∈ [imax], and any two sets S1, S2 with S1 ∩ S2 ∩ R 6= ∅ that are
tight in iteration i,

Γ(S1) + Γ(S2)− Γ(S1 ∪ S2)− Γ(S1 ∩ S2) ∈ span({Γ(e) : zie = 0}).

Proof. First, since S1 and S2 remain tight in the final iteration, and ximax
C > 0 for all C ∈ K′,

we may deduce from Theorem 9 applied to (ximax , yimax , zimax) that there are no components
“crossing” S1 and S2, meaning that if R(C) intersects both S1 and S2, it must intersect
S1 ∩ S2. It follows that for any C ∈ K′,

fC(S1) + fC(S2) = fC(S1 ∪ S2) + fC(S1 ∩ S2),

where fC(S) := (|R(C) ∩ S| − 1)+ = |R(C) ∩ S| − [R(C) ∩ S 6= ∅] is the coefficient of xC for
the constraint corresponding to S in (M).

Let F = {e ∈ δ(S1 \ S2, S2 \ S1) : zie = 0}. We may deduce from Theorem 9, this time
applied to (xi, yi, zi), that zi(δ(S1 \ S2, S2 \ S1)) = 0. Hence

χ(E(S1)) + χ(E(S2)) = χ(E(S1 ∪ S2)) + χ(E(S1 ∩ S2)) + χ(F).

Since also χ(S1) + χ(S2) = χ(S1 ∪ S2) + χ(S1 ∩ S2), the lemma follows. J

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 189

I Lemma 15. Fix any i ∈ [imax]. Let Rtight ⊆ R be the subset of R that are tight constraints
in (xi, yi, zi). Then

dim span({Γ(`) : ` ∈ Rtight}) = O(n2).

Proof. Let F = {Γ(e) : e ∈ E, zie = 0}. Fix any r ∈ R, and let

Rr = {Γ(S) : r ∈ S and sl(S) = 0} ∪ F.

Let Lr be a maximal laminar family of tight sets in (xi, yi, zi) containing r; so in fact, Lr is
a chain. We claim that

span({Γ(S) : S ∈ Lr} ∪ F) = span(Rr).

This follows immediately from Theorem 14 by an argument of Jain [13]. If for some tight set
U with r ∈ U , Γ(U) was not in span({Γ(S) : S ∈ Lr} ∪ F), we could uncross S w.r.t. Lr to
obtain a strictly larger laminar family, a contradiction.

Applying this reasoning for each r ∈ R, we conclude that

span
({

Γ(S) : S ∈
⋃
r∈R
Lr
}
∪ F
)

= span(Γ(`) : ` ∈ Rtight).

Since |Lr| = O(n) and |F| = O(m), the result follows. J

Theorem 12 is proven.

4.2 Determining the Minimal Tight Sets, and the Duration of Each
Iteration

The main observation here will be that checking if a solution (x, y, z) is feasible for (M), as
well as checking for tight sets under certain constraints, can be reduced to solving certain
maximum flow problems. This will allow for the efficient determination of the component C∗
for each iteration, as well as the duration of each iteration using parametric search methods.
The construction extends one for HYP described in [11] (as well as classical results for
separation over the forest polytope); no major new ideas are needed, though for convenience
some aspects of the construction are different.

We construct the directed graph D = (W,A) with capacities ξ as follows. Let W =
V ∪ {rC : C ∈ K, xC > 0} ∪ {s, t}, where rC is a new vertex for each component C, and s
and t will be source and sink vertices. Let M =

∑
C∈K xC . For each e ∈ supp(z), add both

orientations of the edge to A, giving both arcs capacity 1
2z(e); for each rC ∈ W \ V , add

an arc of capacity xC from rC to t, and infinite capacity arcs from each terminal in R(C)
to rC . For each v ∈ V , add the arc sv with capacity M + 1

2z(δ(v)), and the arc vt with
capacity M + yv −

∑
C∈K:v∈R(C) xC . The role of M is solely to ensure that all capacities are

nonnegative.

I Theorem 16. Let S, T be two disjoint subsets of V , with S nonempty and satisfying
maxw∈S yw = maxw∈V \T yw. Given a (feasible or infeasible) solution (x, y, z) to (M), a
set U∗ ⊆ V is of minimal slack under the constraint S ⊆ U∗ ⊆ (V \ T) if and only if
U∗ ∪ {rC ∈W \ V : R(C) ∩ S 6= ∅} is a minimum capacity ({s} ∪ S)-({t} ∪ T)-cut in D.

Note that, for example, in order to find an overall minimal slack set U∗, one may first guess
w ∈ V s. t. yw = ymax(U∗). Then apply the above theorem with T = {v ∈ V : yv > yw} and
S = {w}. Trying all possibilities for w, U∗ can be found with n maximum flow computations.

APPROX/RANDOM’14

190 On the Equivalence of the Bidirected and Hypergraphic Relaxations for Steiner Tree

Proof. Observe that if Q is an ({s}∪S)-({t}∪T)-cut in D, but with rC /∈ Q for some C ∈ K
where R(C) ∩Q 6= ∅, then ξ(δ+

D(Q)) = ∞. Conversely, if rC ∈ Q but R(C) ∩Q = ∅, then
removing rC from Q yields a cut of strictly smaller capacity.

So consider any ({s} ∪ S)-({t} ∪ T)-cut Q satisfying {C ∈ K : rC ∈ Q} = {C ∈ K :
R(C) ∩Q 6= ∅}. Let U = Q ∩ V . Then

ξ(δ+
D(Q)) =

∑
v∈U

(
M + yv −

∑
C∈K:v∈R(C)

xC

)
+ 1

2z(δG(U))

+
∑

v∈V \U

(
M + 1

2z(δG({v}))
)

+
∑

C∈K:C∩R(U)6=∅

xC

= M · |V |+ y(U) + z(E)− z(E(U))−
∑
C∈K

xC(|R(C) ∩ U | − 1)+

= sl(U) +M · |V |+ ymax(U) + z(E).

By the conditions on S and T , ymax(U) = maxw∈S yw. Thus all terms in the above aside
from sl(U) are independent of U . The result follows. J

Choosing C∗

Given a solution (x, y, z) to (M) and any Steiner vertex ` with y` > 0, we will now show how
the choice of C∗ described in Section 2 can be efficiently computed.

Suppose we are considering adding v ∈ V to our current C∗, with vu ∈ supp(z) and
u ∈ V (C∗) \R. (Here, v could be either a Steiner node, if we are in step 2, or a terminal if
we are in step 3.) Let C ′ be the component obtained by adding v and vu to C∗. The only
reason to not add v is that there is some tight set U for which C ′ would be disconnected in U .
By assumption, C∗ is connected in U . Thus u /∈ U , and v ∈ U . By trying all possibilities for
w which might be a maximizer of y in U , and hence applying Theorem 16 with S = {w, v}
and T = {u} ∪ {v′ ∈ V : yv′ > yw}, we can determine whether such a tight set U exists or
not, and hence whether v should be added to C∗.

The Choice of ε in an Iteration

What remains is to determine what value ε should take in a particular iteration. Let (x, y, z)
denote the solution at the start of the iteration, and let (x(ε), y(ε), z(ε)) denote the solution
after an amount ε of the current component C∗ has been extracted. As before, let slε(S)
denote the slack of set S in (x(ε), y(ε), z(ε)).

It is of course easy to determine the maximum value of ε such that all nonnegativity
constraints remain satisfied. So the main challenge is to determine ε such that a new tight set
U forms (which would then be violated if a larger value of ε was chosen). It is clearly sufficient
to compute, for each w ∈ V , the maximum value of ε such that minU⊆V :yw=ymax(U) slε(U) ≥ 0.
(We may then simply take the minimum over all the values of ε obtained).

The maximum flow problem we have constructed has capacities that are linear functions
of (x, y, z). Moreover, (x(ε), y(ε), z(ε)) is a linear function of ε. Thus a parametric maximum
flow algorithm can be applied [16].

References
1 A. Borchers and D. Du. The k-Steiner ratio in graphs. SIAM Journal on Computing,

26(3):857–869, 1997.

A. E. Feldmann, J. Könemann, N. Olver, and L. Sanità 191

2 J. Byrka, F. Grandoni, T. Rothvoß, and L. Sanità. Steiner tree approximation via iterative
randomized rounding. Journal of the ACM, 60(1):6:1–6:33, 2013.

3 D. Chakrabarty, J. Könemann, and D. Pritchard. Hypergraphic LP relaxations for Steiner
trees. In International Conference on Integer Programming and Combinatorial Optimiza-
tion (IPCO), pages 383–396, 2010.

4 D. Chakrabarty, J. Könemann, and D. Pritchard. Integrality gap of the hypergraphic
relaxation of steiner trees: A short proof of a 1.55 upper bound. Operations Research
Letters, pages 567–570, 2010.

5 M. Chlebík and J. Chlebíková. Approximation hardness of the Steiner tree problem on
graphs. In Proceedings, Scandinavian Workshop on Algorithm Theory, pages 170–179, 2002.

6 J. Edmonds. Optimum branchings. Journal of Research of the National Bureau of Standards
B, 71B:233–240, 1967.

7 J. Edmonds. Matroids and the greedy algorithm. Math. Programming, 1:127–136, 1971.
8 DIMACS Center for Discrete Mathematics and Theoretical Computer Science. 11th

DIMACS implementation challenge in collaboration with ICERM: Steiner tree problems.
http://dimacs11.cs.princeton.edu/, 2014.

9 I. Fung, K. Georgiou, J. Könemann, and M. Sharpe. Efficient algorithms for solving hyper-
graphic steiner tree relaxations in quasi-bipartite instances. CoRR, abs/1202.5049, 2012.

10 M. X. Goemans and Y. Myung. A catalog of Steiner tree formulations. Networks, 23(1):19–
28, 1993.

11 M. X. Goemans, N. Olver, T. Rothvoß, and R. Zenklusen. Matroids and integrality gaps for
hypergraphic steiner tree relaxations. In Proceedings of the 44th Annual ACM Symposium
on Theory of Computing (STOC), pages 1161–11762, 2012.

12 F.K. Hwang, D.S. Richards, and P. Winter. The Steiner tree problem. Monograph in Annals
of Discrete Mathematics, 53. Elsevier, 1992.

13 K. Jain. A factor 2 approximation algorithm for the generalized Steiner network problem.
In IEEE Symposium on Foundations of Computer Science (FOCS), pages 448–457, 1998.

14 R. M. Karp. Reducibility among combinatorial problems. In Complexity of Computer
Computations, pages 85–103. Plenum Press, NY, 1972.

15 J. Könemann, D. Pritchard, and K. Tan. A partition-based relaxation for Steiner trees.
Math. Programming, 127(2):345–370, 2011.

16 N. Megiddo. Applying parallel computation algorithms in the design of serial algorithms.
Journal of the ACM, 30(4):852–865, 1983.

17 T. Polzin and S. Vahdati-Daneshmand. On Steiner trees and minimum spanning trees in
hypergraphs. Operations Research Letters, 31(1):12–20, 2003.

18 S. Rajagopalan and V. V. Vazirani. On the bidirected cut relaxation for the metric Steiner
tree problem. In ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 742–751,
1999.

19 D. Warme. Spanning Trees in Hypergraphs with Applications to Steiner Trees. PhD thesis,
University of Virginia, 1998.

20 R. T. Wong. A dual ascent approach for Steiner tree problems on a directed graph. Math.
Programming, 28:271–287, 1984.

APPROX/RANDOM’14

http://dimacs11.cs.princeton.edu/

	Introduction
	Bidirected and Hypergraphic LPs for Steiner Trees
	Our Contributions

	A Constructive Map Between BCR and HYP
	Analysis of the Algorithm
	Algorithmic Issues
	Bounding the Number of Iterations
	Determining the Minimal Tight Sets, and the Duration of Each Iteration

