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Abstract
Recently a new connection between proof theory and formal language theory was introduced.
It was shown that the operation of cut elimination for proofs with prenex Π1-cuts in classical
first-order logic corresponds to computing the language of a particular type of tree grammars.
The present paper extends this connection to arbitrary (i.e. non-prenex) cuts without quantifier
alternations. The key to treating non-prenex cuts lies in using a new class of tree grammars,
constraint grammars, which describe the relationship of the applicability of its productions by a
propositional formula.
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1 Introduction

The constructive content of proofs has always been a central topic of proof theory. A helpful
perspective on the constructive content of proofs in classical first-order logic is provided by
Herbrand’s theorem [7] (see also [2]). It states that from a valid first order formula one can
obtain a quantifier-free tautology by expanding existential quantifiers to finite disjunctions of
instances and universal quantifiers to finite conjunctions of instances. Provided one is willing
to speak about provability instead of validity this result even extends to higher-order logic,
see e.g. [17].

It is straightforward to read off a Herbrand expansion from a cut-free proof. On the
other hand, proofs with cut can be non-elementarily shorter than the shortest Herbrand
expansion [20, 18, 19]. Therefore, in order to compute a Herbrand expansion from a proof
with cut, cut-elimination (or another equivalent normalization process) is necessary.

This paper is part of a line of research which was started in [8] and is dedicated to applying
methods from formal language theory in proof theory. In [8] a class of tree grammars has
been introduced which describe the Herbrand expansion obtained from proofs with prenex
Π1-cuts. The size of the grammar is bound by the size of the proof from which it is read off.
The language of the grammar is a Herbrand expansion of size exponential in the size of the
grammar. Thus by computing the language of this grammar, the cumbersome computational
process of cut-elimination can be circumvented. These grammars owe their simplicity to
the fact that they fully abstract from the propositional structure of the proof by speaking
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only about witness terms. There are other formalisms which allow to compute a Herbrand
expansion in a way that abstracts from the propositional structure: the historically first such
formalism is Hilbert’s ε-calculus [14]. In [5] Gerhardy and Kohlenbach adapt Shoenfield’s
variant of Gödel’s Dialectica interpretation to a system of pure predicate logic. Recent work,
more similar to proof nets, is that of Heijltjes [6] and McKinley [16]. An approach similar
to [6, 16] in the formalism of expansion trees [17] can be found in [13].

What sets the grammars introduced in [8] and treated in the present paper apart from the
above-mentioned formalisms is that they do not only allow to compute a Herbrand expansion
but provide a (well-understood) abstract description of its structure. On the one hand
this has the consequence that problems from formal language theory such as membership,
inclusion, etc. assume a proof-theoretic meaning and hence standard algorithms can be used
for solving the corresponding proof-theoretic problems, usually with smaller asymptotic
complexity than the naive algorithms which rely on computing the normal form(s), see
e.g. [15]. On the other hand, the strong grip on the structure of a Herbrand expansion
afforded by a formal grammar opens the door to the following interesting theoretical and
applied investigations:

From strengthening the result of [8] one can show that all (infinitely many) normal
forms of the non-erasing Gentzen reduction lead to the same Herbrand expansion, see [12].
This property has been called Herbrand-confluence in [12]. Grammars have been used for a
cut-introduction algorithm in [11, 10]. This algorithm has been implemented and empirically
evaluated with good results in [9] and it has recently been extended to induction in [4]. In [3]
an incompressible sequence of word languages is constructed which via the result of [8] yields
a sequence of first-order formulas all of whose cut-free proofs are essentially incompressible
by Π1-cuts.

All of the results so far are limited to prenex Π1 cuts (with the exception of [1] which
treats prenex Π2 cuts) and consequently all of the applications mentioned above are so
as well. In this paper, which is a generalization and an improved presentation of the
results obtained in [21], we remove the limitation to prenex formulas by employing a more
general class of grammars. This opens the way for extending the results and techniques
of [12, 11, 10, 9, 4, 3, 1] to non-prenex cuts and induction formulas.

2 Previous Work

In this paper we will use the proof system LK which was introduced by Gentzen in the 1930s.
It is a sequent calculus, which means that unlike most other proof systems, derivations do
not operate directly on formulas, but rather on so-called sequents. A sequent is a structure of
the form Γ ` ∆, where Γ and ∆ are multisets of formulas, respectively called the antecedent
and succedent of the sequent. The natural interpretation of Γ ` ∆ is “the conjunction over Γ
implies the disjunction over ∆”.

We shall now define the inference rules of LK as used in this paper. They are easily seen
to be sound given the above interpretation.

I Definition 1 (Rules of LK).
1. Axioms: A ` A with A atomic.
2. Contraction:

A,A,Γ ` ∆
A,Γ ` ∆

cl
Γ ` ∆, A,A

Γ ` ∆, A
cr
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3. Weakening:

Γ ` ∆
A,Γ ` ∆

wl
Γ ` ∆

Γ ` ∆, A
wr

4. Propositional rules:

A,Γ ` ∆ B,Π ` Λ
A ∨B,Γ,Π ` ∆,Λ

∨l
Γ ` ∆, A,B

Γ ` ∆, A ∨B
∨r

A,B,Γ ` ∆
A ∧B,Γ ` ∆

∧l
Γ ` ∆, A Π ` Λ, B
Γ,Π ` ∆,Λ, A ∧B

∧r

Γ ` ∆, A
¬A,Γ ` ∆

¬l
A,Γ ` ∆

Γ ` ∆,¬A
¬r

5. Quantifier rules:

A[x \ t],Γ ` ∆
∀xA,Γ ` ∆ ∀l

Γ ` ∆, A[x \α]
Γ ` ∆,∀xA ∀r

A[x \α],Γ ` ∆
∃xA,Γ ` ∆ ∃l

Γ ` ∆, A[x \ t]
Γ ` ∆,∀xA ∃r

Here, t is any term, while α is a variable that does not occur in Γ, ∆ or A, called an
eigenvariable. The inferences that use eigenvariables are called strong quantifier inferences,
the others weak quantifier inferences.

6. The cut rule:
Γ ` ∆, A A,Π ` Λ

Γ,Π ` ∆,Λ cut

The formula A is called the cut formula of the inference. We call a cut quantified if its
cut formula contains quantifiers. In the sequel, we will refer to the set of quantified cuts
in a proof π as QCuts(π).

In all of these cases, the sequents above the line are called premises and the one below
is called the conclusion. Additionally, the emphasized formulas in the premises are called
auxiliary formulas, while the emphasized formula in the conclusion is called the main or
principal formula. Note that some rules (e.g. weakening) do not have auxiliary formulas and
the cut rule does not have a main formula.

Often a given formula will occur several times in a proof and these occurrences have
different properties. We will mark important formula occurrences like this: A[µ], B[ν], etc.

We can formalize the notion of a formula occurrence being an ancestor of another: µ
is an immediate ancestor of ν if there is an inference such that µ is its auxiliary formula
and ν its main formula. The “ancestor” relation is then simply the transitive closure of
the “immediate ancestor” relation. When we say that a formula is an “ancestor of the end
sequent”, we mean “ancestor of a formula in the end sequent”.

We often visualize proofs as two-dimensional structures with axioms at the top and
the conclusion at the bottom. In this context, it makes sense to say that an inference is
“above” or “below” another or to talk about “left” and “right” subproofs. We also generally
regard proofs as being constructed top-down, so we say for instance that the weakening rule
“introduces” a formula.

Gentzen proved that every LK-proof can be algorithmically transformed into a cut-free
proof, i.e. one that does not contain any cut inferences. The standard proof of cut-elimination
in LK employs the following set of cut-reduction rules.
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I Definition 2 (Cut reduction). Let c be a cut in a proof π and let Ac be the cut formula of
c. We define the following steps of cut reduction according to the inferences immediately
above the cut:

1. On one side of c, there is a unary or binary inference r whose active formula is not Ac:

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π′ ` Λ′
Ac,Π ` Λ

r

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π′ ` Λ′

Γ,Π′ ` ∆,Λ′ cut

Γ,Π ` ∆,Λ
r

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π1 ` Λ1

(ψ2)
Π2 ` Λ2

Ac,Π ` Λ
r

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac

(ψ2)
Ac,Π1 ` Λ1

Γ,Π1 ` ∆,Λ1
cut

(ψ3)
Π2 ` Λ2

Γ,Π ` ∆,Λ
r

The case where r is on the left side of c works entirely symmetrically.

2. Ac is introduced by an axiom on one side of c:

Ac ` Ac
(ψ)

Ac,Γ ` ∆
Ac,Γ ` ∆ cut

 
(ψ)

Ac,Γ ` ∆

3. Ac is introduced by a weakening on one side of c:

(ψ1)
Γ ` ∆

Γ ` ∆, Ac
wr

(ψ2)
Ac,Π ` Λ

Γ,Π ` ∆,Λ cut

 
(ψ1)

Γ ` ∆
Γ,Π ` ∆,Λ w∗

The case where the weakening is on the right side is symmetrical.

4. Ac is the main formula of a contraction on one side of c:

(ψ1)
Γ ` ∆, Ac, Ac

Γ ` ∆, Ac
cr

(ψ2)
Ac,Π ` Λ

Γ,Π ` ∆,Λ cut

 

(ψ1)
Γ ` ∆, Ac, Ac

(ψ′′2 )
Ac,Π ` Λ

Γ,Π ` ∆,Λ, Ac
cut

(ψ′2)
Ac,Π ` Λ

Γ,Π,Π ` ∆,Λ,Λ cut

Γ,Π ` ∆,Λ c∗

Here, ψ′2 and ψ′′2 each arise from ψ2 by replacing all eigenvariables introduced in ψ2 with
fresh copies. The case where the contraction is on the right is treated analogously.

5. Ac = ∃xB and Ac is introduced by ∃-inferences immediately above the cut:

(ψ1)
Γ ` ∆, B[x \ t]

Γ ` ∆,∃xB ∃r

(ψ2)
B[x \ t],Π ` Λ
∃xB,Π ` Λ ∃l

Γ,Π ` ∆,Λ cut

 
(ψ1)

Γ ` ∆, B[x \ t]
(ψ2[α \ t])

B[x \ t],Π ` Λ
Γ,Π ` ∆,Λ cut

6. Ac = ∀xB: Analogous to the previous case, but with switched sides.
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7. Ac = B ∧ C and Ac is introduced by ∧-inferences immediately above the cut:

(ψ1)
Γ1 ` ∆1, B

(ψ2)
Γ2 ` ∆2, C

Γ ` ∆, B ∧ C
∧r

(ψ3)
B,C,Π ` Λ
B ∧ C,Π ` Λ

∧l

Γ,Π ` ∆,Λ cut

 

 
(ψ1)

Γ1 ` ∆1, B

(ψ2)
Γ2 ` ∆2, C

(ψ3)
C,B,Π ` Λ

B,Γ2,Π ` ∆2,Λ
cut

Γ,Π ` ∆,Λ cut

8. Ac = B ∨ C: Analogous to the previous case.
9. Ac = ¬B and both ¬-inferences introducing Ac are immediately above the cut:

(ψ1)
B,Γ ` ∆

Γ ` ∆,¬B
¬r

(ψ2)
Π ` Λ, B
¬B,Π ` Λ

¬l

Γ,Π ` ∆,Λ cut

 
(ψ2)

Π ` Λ, B
(ψ1)

B,Γ ` ∆
Γ,Π ` ∆,Λ cut

If π′ arises from π by finitely many applications of these rules, then we write π  ∗ π′.

It will often be useful to consider signed formulas, i.e. formulas annotated as either
occurring in the antecedent or the consequent of a sequent. The former will be written as
A `, the latter as ` A.

I Definition 3 (Herbrand set). Let S = A1, . . . , Am ` B1, . . . , Bn be a sequent. An Herbrand
set of S is a set H for which the following two conditions hold:
1. H = Ha∪̇Hs where

Every element of Ha is of the form A ` with A an instance of some Ai
Every element of Hs is of the form ` B with B an instance of some Bj

2. Let H′ be the image of H under the function
{
A ` 7→ ¬A,
` B 7→ B

. Then
∨
H′ is a tautology.

For the sake of simplicity, we abbreviate the latter condition as “H is a tautology”.

It is straightforward to extract an Herbrand set of S from a cut-free proof of S. By
extension, one could in principle also extract an Herbrand set from a proof with cuts by
performing cut elimination. There is another possibility, however: an Herbrand set can be
viewed as a finite tree language by viewing both · ` and ` · as well as the propositional
connectives and the predicate symbols as function symbols. Finite tree languages can be
compactly represented by tree grammars. Our aim is to extract a tree grammar from a
proof with cuts such that computing the language’s grammar corresponds to performing cut
reduction on the proof.

It is well-known that cut-elimination leads to a non-elementary increase in proof length [20,
18, 19]. On the other hand, the size of a Herbrand set is closely related to the length of
a cut-free proof. Consequently, for this approach to make sense, the tree grammar must
be polynomial in the length of the proof with cut. It thus provides a representation of a
Herbrand set as compressed as the proof with cut.

I Definition 4 (Regular tree grammar). A regular tree grammar is a tuple G = 〈ϕ,N,Σ, P 〉,
where
1. Σ is a finite ranked alphabet; its elements are called terminal symbols (or terminals for

short);
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2. N is a finite set, disjoint from Σ; its elements are called nonterminals;
3. ϕ ∈ N is the starting symbol;
4. P is the set of productions, i.e. elements of the form α→ t where α ∈ N and t is a term

over N ∪ Σ.

Let G be a regular tree grammar. A derivation in G is a finite sequence d = 〈ϕ =
t0, t1, . . . , tn〉 such that ti can be obtained from ti−1 by application of a production of G;
that is, there is a production αi → si ∈ P such that replacing one occurrence of αi in ti−1
with si yields ti. We say that tn can be derived in G.

Now we can define the language L(G) of G: L(G) is the set of terms over Σ that can be
derived in G.

I Example 5. Consider the regular tree grammar G = 〈ϕ,N,Σ, P 〉 with

N = {ϕ, x, y}
Σ = {a/0, b/0, g/1, f/2}
P = {ϕ→ f(x, y), x→ a|g(y), y → a|b}.

The language of G is {f(a, a), f(a, b), f(g(a), a), f(g(a), b), f(g(b), a), f(g(b), b)}.

I Definition 6. A totally rigid tree grammar is a regular tree grammar G = 〈ϕ,N,Σ, P 〉
with an additional restriction on derivations. Let d be a derivation of G in the sense of
regular tree grammars. Then d is a derivation of the totally rigid grammar G if for each
α ∈ N , at most one production beginning with α is used in d.

I Example 7. Let G be the grammar from Example 5. If we view it as a totally rigid
grammar, its language is reduced to {f(a, a), f(a, b), f(g(a), a), f(g(b), b)}.

It is easy to see that the language of a totally rigid grammar is always finite.
The following theorem was proved in [8].

I Theorem 8. Let π be a proof with the following properties:
1. The end sequent of π is of the form ` ∃x̄A with A quantifier-free;
2. All cut formulas in π are of the form ∃yB with B quantifier-free.
Then there is a totally rigid tree grammar G(π) such that L(G(π)) is an Herbrand set of
∃x̄A. Moreover, if |G| is the number of productions of G and |π| the number of inferences in
π, then |G| ≤ |π|.

In this paper we will generalize this result to non-prenex cut formulas and arbitrary end
sequents. In order to do that, we will need more powerful grammars.

3 Constraint grammars

Totally rigid grammars are obtained from regular tree grammars by placing restrictions on
how many productions can be used per nonterminal in a derivation. Similarly, constraint
grammars allow us to restrict which combinations of productions of different nonterminals
can be used. This is essential if we want to deal with cut formulas that are non-prenex and
contain more than one quantifier.

I Definition 9 (Constraint grammar). A constraint grammar is a tuple G = 〈ϕ,N,Σ, P, C〉
consisting of a totally rigid grammar G′ = 〈ϕ,N,Σ, P 〉 together with a constraint formula C,
which is a propositional formula that uses the productions in P as atoms.
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When writing constraint formulas, we will use the symbol “→” to denote productions
and “⇒” for implications.

Any derivation d of the underlying totally rigid grammar of G induces an interpretation
vd of C in the following manner: If α ∈ N such that α does not occur in d, then vd(p) = >
for all p ∈ Pα. If α occurs in d, vd evaluates the α-productions used in d as > and the others
as ⊥. This leads to the definition of a valid derivation of G: d is valid iff vd(C) = > (i.e. vd
is a model of C).

A term over Σ is derivable in G if it is derivable in G′ via a valid derivation.
Note that determining whether a given derivation is valid for G can be done in linear

time relative to the size of d and C.

I Example 10. Let G be the totally rigid grammar from Example 7. If we extend it to
a constraint grammar G′ by adding the constraint formula C := x → a ∨ y → a, then
L(G′) = {f(a, a), f(a, b), f(g(a), a)}.

4 The grammar of a proof

In this section we will give the central definition of this paper: the constraint grammar
induced by a proof.

When working in sequent calculus, it is customary to distinguish between weak and strong
quantifiers. Briefly, a quantifier is said to be “strong” if it is universal and below an even
number of negations or existential and below an odd number of negations. Conversely, it
is called “weak” if it is universal and below an odd number of negations or existential and
below an even number. Note that in this context, both the left side of an implication and
the antecedent of a sequent count as one negation each.

In the sequel, we always place some restrictions on the proofs we consider.
The names of bound variables in the end sequent are distinct. This can always be ensured
via renaming.
There are no strong quantifiers in the end sequent. This assumption is justified because
we can perform validity-preserving Skolemization, i.e. replace all strong quantifiers by
Skolem symbols.
Each cut formula contains only weak or strong quantifiers, but not both. We call a cut
formula Σ1 or Π1 accordingly.

From now on, we will call proofs with these properties simple.
The above restriction on cut formulas allows us to define the “weak side” and the “strong

side” of a cut: Let Ac be the cut formula of a cut c and assume that Ac contains quantifiers.
If Ac is Σ1, each quantifier in c is introduced via a weak quantifier inference in the left
subproof of c and a strong inference in the right subproof. Consequently, the left and right
subproof are called the “weak” and “strong” side, respectively. In the case of a Π1 cut
formula, the sides are switched. Each quantifier in Ac may be introduced several times on
both the weak and the strong side of c; this happens via eigenvariables on the the strong
side and arbitrary terms on the weak side. We refer to those eigenvariables and terms as
“belonging to” or “being associated with” the quantifier.

We shall now define a constraint grammar G(π) = 〈ϕ,N(π),Σ, P (π), C(π)〉 piece by piece.

IDefinition 11 (Terminals and nonterminals of G(π)). Let π be a simple proof of A1, . . . , Am `
B1, . . . , Bn.
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Terminals: The terminal symbols Σ of G(π) consist of the language of π together with a
new symbol w. w will be used to mark places where a formula is introduced by weakening
in π.
Nonterminals: We define sets NES(π) and NCuts(π). Let BV (A) be the set of bound
variables in the formula A and ϕ a new symbol. Then NES(π) = {ϕ} ∪

⋃m
i=1BV (Ai) ∪⋃n

i=1BV (Bi). Since there are no strong quantifiers in the end sequent of π, all strong
quantifier inferences must act on ancestors of cut formulas. Thus each eigenvariable is
uniquely associated with a particular cut. We write EV (c) for the eigenvariables associated
with cut c and EV (π) for all eigenvariables in π. This leads to NCuts(π) = EV (π).

Finally, N(π) := NES(π) ∪NCuts(π).

For any formula A, let Â be the matrix of A, i.e. the formula that results from deleting
all quantifiers from A.

I Definition 12 (Productions of G(π)). Let π be a simple proof of A1, . . . , Am ` B1, . . . , Bn.
We define sets PES(π) and PCuts(π):

For i = 1, . . . ,m, (ϕ→ Âi `) ∈ PES(π). For j = 1, . . . , n, (ϕ→` B̂j) ∈ PES(π).

For x ∈ NES(π), if π contains an inference Γ ` ∆, A[x \ t]
Γ ` ∆,∃xA ∃r, then x → t ∈ PES(π).

Moreover, if x is introduced by weakening at least once in π, then x→ w ∈ PES(π).
Let α ∈ NCuts(π), then α is used to introduce a strong quantifier on some variable z

in a cut formula. If the weak side of the cut contains an inference Γ ` ∆, B[z \ s]
Γ ` ∆,∃zB ∃r, then

z → s ∈ PCuts(π). Moreover, if z is introduced by weakening at least once on the weak side
of the cut, then z → w ∈ PCuts(π). P (π) := PES(π) ∪ PCuts(π).

I Definition 13 (Constraint formula of G(π)). Let π be a simple proof and µ any formula
occurrence in π. We define a formula q(µ, π) by induction:

If µ is quantifier-free, then q(µ, π) := >.
If µ is introduced by a weakening, then let z1, . . . , zk be the weakly bound variables in
µ. There are two cases to consider. If µ is ancestor of a cut formula, then for each i let
αi,1, . . . αi,ni

be the eigenvariables used to introduce the quantifier over zi on the strong
side and q(µ, π) :=

∧k
i=1
∧ni

j=1 αi,j → w. If µ is ancestor of a formula in the end sequent,
then q(µ, π) :=

∧k
i=1 zi → w.

If µ is introduced by a quantifier rule, i.e.
Γ ` ∆, (A[x \ t])[µ′]

Γ ` ∆, (∃xA)[µ]
∃r, then we make a similar

case distinction as in the previous case. If µ is ancestor of a cut formula, then let
α1, . . . , αn be the eigenvariables of the quantifier of x on the strong side of the cut and
q(µ, π) :=

(∨n
j=1 αj → t

)
∧ q(µ′, π). Otherwise, q(µ, π) := x→ t∧ q(µ′, π). The case of a

∀l-inference is analogous.

If µ is introduced by a ∧r-rule, as in
Γ1 ` ∆1, A[ν1] Γ2 ` ∆2, B[ν2]

Γ ` ∆, (A ∧B)[µ]
∧r, then q(µ, π) :=

q(ν1, π) ∧ q(ν2, π). An ∨l-inference is treated analogously.

If µ is introduced by a ∧l-rule, as in
A[ν1], B[ν2],Γ ` ∆
(A ∧B)[µ],Γ ` ∆

∧l, then q(µ, π) := q(ν1, π) ∧

q(ν2, π), and analogously for ∨r.

If µ arises from a contraction on the right, i.e.
Γ ` ∆, A[ν1], A[ν2]

Γ ` ∆, A[µ]
cr, then q(µ, π) :=

q(ν1, π) ∨ q(ν2, π), and analogously for a contraction on the left.
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If µ is introduced by a ¬r rule, as in
Γ, A[ν] ` ∆

Γ ` ∆, (¬A)[µ]
¬r, then q(µ, π) := q(ν, π). A

¬l-inference is treated analogously.
We skip over all inferences whose active formula is not µ.
Now let A be any formula and µ1, . . . , µm and ν1, . . . , νn the occurrences of A in the

antecedent and the succedent of the end sequent, respectively. Then

CantA (π) := (ϕ→ Â `)⇒
m∨
i=1

q(µi, π)

CsucA (π) := (ϕ→` Â)⇒
n∨
j=1

q(νj , π)

This yields the constraint formula of the end sequent:

CES(π) :=
∧

A∈ES(π)

(CantA (π) ∧ CsucA (π))

Furthermore, let c ∈ QCuts(π) and µ0 the weak occurrence of its cut formula. Then

Cc(π) := q(µ0, π).

Finally we obtain

C(π) := CES(π) ∧
∧

c∈QCuts(π)

Cc(π), (1)

the constraint formula of π.
I Definition 14 (Grammar of a proof). Let π be a simple proof. The constraint grammar
G(π) := 〈ϕ,N(π),Σ(π), P (π), C(π)〉 is called the grammar of π.

The purpose of C(π) is to describe the set of tuples of instances that actually occur in
the proof.
I Example 15. Let π be the following proof:

(π1)
P (f(a, c)) ∨Q(b) ` Ac

(π2)
Ac ` ∃xP (x),∃yQ(y)

P (f(a, c)) ∨Q(b) ` ∃xP (x),∃yQ(y)
cut[c]

P (f(a, c)) ∨Q(b) ` ∃xP (x) ∨ ∃yQ(y)
∨r

where

π1 =

P (f(a, c)) ` P (f(a, c))
P (f(a, c)) ` ∃z2P (f(a, z2)) ∃r

P (f(a, c)) ` ∃z2P (f(a, z2)), Q(a)
wr

P (f(a, c)) ` ∃z2P (f(a, z2)) ∨Q(a)
∨r

P (f(a, c)) ` Ac
∃r

Q(b) ` Q(b)
Q(b) ` ∃z2P (f(b, z2)), Q(b)

wr

Q(b) ` ∃z2P (f(b, z2)) ∨Q(b)
∨r

Q(b) ` Ac
∃r

P (f(a, c)) ∨Q(b) ` Ac, Ac
∨l

P (f(a, c)) ∨Q(b) ` Ac
cr

π2 =

P (f(α, β)) ` P (f(α, β))
P (f(α, β)) ` ∃xP (x) ∃r

∃z2P (f(α, z2)) ` ∃xP (x) ∃l
Q(α) ` Q(α)
Q(α) ` ∃yQ(y) ∃r

∃z2P (f(α, z2)) ∨Q(α) ` ∃xP (x),∃yQ(y)
∨l

Ac ` ∃xP (x),∃yQ(y) ∃l

Here, Ac is the formula ∃z1(∃z2P (f(z1, z2)) ∨Q(z1)). The various parts of G(π) are:
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Terminals: P/1, Q/1, f/2, a/0, b/0, c/0, w/0
Nonterminals: ϕ, x, y, α, β
Productions:

ϕ→ P (f(a, c)) ∨Q(b) ` | ` P (x) ∨Q(y),
x→ f(α, β),
y → α,

α→ a|b,
β → c|w.

Constraint formula:

CES(π) = ((ϕ→` P (x) ∨Q(y))⇒(x→ f(α, β) ∧ y → α))
∧ ((ϕ→ P (f(a, c)) ∨Q(b) `)⇒>),

Cc(π) = (α→ a ∧ β → c) ∨ (α→ b ∧ β → w),
C(π) = CES(π) ∧ Cc(π).

Consequently, the language of G(π) is

L(G(π)) = {P (f(a, c)) ∨Q(b) ` , ` P (f(a, c)) ∨Q(a) , ` P (f(b, w)) ∨Q(b)}

The following theorem is the main result of this paper.

I Theorem 16. Let π be a simple proof of Γ ` ∆. Then L(G(π)) is an Herbrand set of
Γ ` ∆.

The first step towards proving this result will be to show that L(G(π)) is a Herbrand set
if π is almost cut-free, more precisely: if π contains only cuts without quantifiers.

I Lemma 17. Let π be a simple proof of Γ ` ∆ in which no cut formula contains a quantifier.
Then L(G(π)) is an Herbrand set of Γ ` ∆.

Proof. By induction on the length of π. The case of π a one-line proof of an axiom is trivial.
Now we consider the various possibilities for the lowest inference of π. We only consider
one of the cedents in each case; the other one is treated analogously. Moreover, we only
show the validity of the language; the fact that it consists of instances of the end sequent is
immediately obvious. Recall that we say ”L(G(π)) is a tautology” to mean “the image of

L(G(π)) under the function
{
A ` 7→ ¬A,
` B 7→ B

is a tautology”.

Weakening: Let π =
(π′)

Γ ` ∆
Γ ` ∆, A

wr
. Let x1, . . . , xn be the bound variables in A. Obviously

L(G(π)) = L(G(π′)) ∪ {` A[x1 \w, . . . , xn \w]} is an Herbrand set if L(G(π′)) is.

Contraction: Let π =
(π′)

Γ ` ∆, A[µ1], A[µ2]

Γ ` ∆, A[µ]
cr
. It is easy to see that the constraint formulas,

nonterminals and productions are unchanged between π and π′. Therefore, L(G(π)) =
L(G(π′)).
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Negation: Let π =
(π′)

A[µ′],Γ ` ∆
Γ ` ∆, (¬A)[µ]

¬r. Observe that if

CantA (π′) = (ϕ→ Â `)⇒(q(µ′, π′) ∨ B1),

Csuc¬A (π′) = (ϕ→` ¬Â)⇒B2,

then

CantA (π) = (ϕ→ Â `)⇒B1,

Csuc¬A (π) = (ϕ→` ¬Â)⇒(q(µ, π) ∨ B2).

It follows that ` ¬Â is derivable in G(π) iff Â ` is derivable in G(π′). Clearly, L(G(π))
is an Herbrand set if L(G(π′)) is.

Disjunction: Let π =
(π′)

Γ ` ∆, A[µ1], B[µ2]

Γ ` ∆, (A ∨B)[µ]
∨r

. The language of G(π′) can be written as

L`A ∪ L`B ∪ LΓ`∆, where L`A contains those derivable formulas that are obtained by
starting with the production ϕ→` Â, and analogously for L`B and LΓ`∆. Note that these
sets are not necessarily disjoint; for instance, A and B might coincide or one of them might
occur in the context. In G(π), the nonterminals and the constraint formula are unchanged,
but ϕ has the production ϕ →` Â ∨ B̂. This means that L(G(π)) = L`A∨B ∪ LΓ`∆,
where L`A∨B = {` A′ ∨ B′ : ` A′ ∈ LA,` B′ ∈ LB}. It follows that if L(G(π′)) is a
tautology, so is L(G(π)).

Conjunction: Let π =
(π′)

Γ ` ∆, A[µ1]

(π′′)
Π ` Λ, B[µ2]

Γ,Π ` ∆,Λ, (A ∧B)[µ]
∧r

. Similarly to the previous case,

write

L(G(π′)) = L`A ∪ LΓ`∆,

L(G(π′′)) = L`B ∪ LΠ`Λ,

L(G(π)) = L`A∧B ∪ LΓ`Π ∪ L∆`Λ

Given any interpretation of the atoms in L(G(π)), there are two possibilities. If any
element of LΓ`Π or L∆`Λ is true under the interpretation, we are done. If all of them
are false, then some ` A′ ∈ L`A and ` B′ ∈ L`B must be true by induction. This means
that ` A′ ∧B′ ∈ L`A∧B is also true. Thus, L(G(π)) is a tautology.

Existential quantifier: Let π =
(π′)

Γ ` ∆(A[x \ t])[µ′]

Γ ` ∆, (∃xA)[µ]
∃r [ι]

. In G(π), the production ϕ →

Â[x \ t] that exists in G(π′) is replaced by ϕ → Â and x → t. If C(π′) contains the
subformulas

CsucA[x \ t](π′) = (ϕ→ Â[x \ t])⇒(q(µ′, π′) ∨ B1),

Csuc∃xA(π′) = (ϕ→ Â)⇒B2,

then C(π) contains

CsucA[x \ t](π) = (ϕ→ Â[x \ t])⇒B1,

Csuc∃xA(π) = (ϕ→ Â)⇒(((x→ t) ∧ q(µ′, π)) ∨ B2).
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If ` C (or C `) ∈ L(G(π′)) is an instance of a formula in the context, then it can still
be derived in G(π). If ` C is an instance of A[x \ t] and d′ a derivation leading to it, d′
must begin with ϕ→ Â[x \ t]. We can transform d′ into a valid derivation d of G(π) by
replacing this first step with ϕ→ Â→ Â[x \ t]. Thus, the two languages coincide.
Cut: Let

L(G(π′)) = L′`A ∪ LΓ`∆,

L(G(π′′)) = L′′A` ∪ LΠ`Λ,

L(G(π)) = LΓ,Π`∆,Λ = LΓ,Π` ∪ L`∆,Λ

as before. Our goal is to show that
∨
LΓ,Π`∆,Λ is tautological. First of all, note that the

cut formula is quantifier-free and hence its occurrences only contribute one instance each
to the languages of their respective grammars, namely respectively ` A and A `. Now
pick any interpretation. If any element of LΓ,Π` is true, we are done. Otherwise either an
element of L`∆ or A must be true because L(G(π′)) is a tautology. In the former case we
are, again, done; in the latter case, an element of L(G(π′′)) must be true. This element
can be neither A itself nor anything in L`Π, so it must be an element of LΛ. Thus, under
each interpretation, an element of L(G(π)) evaluates to true. J

5 Cut elimination and grammars

I Definition 18 (≤ relation for formulas). We define a relation ≤ between formulas: A ≤ B
if B can be obtained by replacing occurrences of w in A with terms. Note that different
occurrences of w may be replaced with different terms. A strict semantic definition of A ≤ B
can be achieved in the following manner: Let A′ be the formula that results from making
all the occurrences of w in A distinct, i.e. replacing each w with a new constant symbol wi.
Then ∀w̄A′⇒B is valid.
≤ is clearly transitive and reflexive. For sets of formulas M and N , let M ≤ N if for each

A ∈M there is a B ∈ N such that A ≤ B.

I Lemma 19. Let π, π′ be simple proofs and π  π′ by one of the cut reduction steps defined
in 2, except contraction. Then L(G(π′)) ≤ L(G(π)).

Proof. None of the reduction steps for rule permutations, axioms, or propositional inferences
change the grammar1. Therefore, the only interesting cases are those of quantifier rules and
weakening. Let us consider quantifier inferences first. Let ι be the quantifier inference under
discussion. Obviously, there is only a single production for α in G(π), namely α→ t , and

Cc(π) = α→ t ∧ C′c(π).

In G(π′), α and its single production are deleted and any production β → s ∈ P (π) is
replaced by β → s[α \ t]. Moreover, the constraint formula of G(π′) is obtained by replacing
Cc(π) with C′c(π) and α with t, respectively, in C(π). Clearly, all other cuts are unaffected by
the transformation.

Let d = ϕ → . . . → C be a valid derivation of G(π). The derivation d′ of G(π′) that
is obtained from d by deleting all applications of α→ t and then simply replacing α with
t obviously generates C, so we only need to show that it is valid. There are two cases to

1 Note, though, that a binary propositional reduction “moves” a conjunction from the constraint formula
of one cut to between constraint formulas of two cuts, which makes no semantic difference.
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consider here. If α does not occur in d, then d = d′ and the validity of d′ follows immediately.
Now suppose α occurs in d. For every atom β → s in C(π) such that vd(β → s) = >, clearly
vd′(β → s[α \ t]) = >. This implies vd′(C(π′)) = > and hence d′ is valid in G(π′). The other
direction is proved similarly. Thus, L(G(π′)) = L(G(π)).

Now let’s consider the case that a cut formula is introduced by weakening on the weak
side of c. Let µ be a formula occurrence in the premise on the strong side of c, but not
the cut formula, and let x1, . . . , xn be the bound variables in µ. Assume further that µ
is an ancestor of a formula occurrence ν in the succedent of the end sequent. If d is any
derivation in G(π) that begins with ϕ →` ν̂, the xi are eventually replaced with terms
ti in d. Call the end result of this derivation A(t1, . . . , tn). Now consider that in π′, µ is
introduced via weakening. This means that each xi has the production xi → w in G(π′).
Consequently, we can construct a derivation d′ of A(w, . . . , w) that is valid for G(π′). Clearly,
A(w, . . . , w) ≤ A(t1, . . . , tn).

If the cut formula is introduced by weakening on the strong side, c has no nonterminals
and hence contributes nothing to the grammar. In this case, removing the cut clearly changes
nothing. J

We will need a minor proof transformation that allows us to make some simplifying
assumptions later on. The motivation behind this transformation is the following observation:
It is never necessary to introduce a strong quantifier twice on the same branch of a proof.

I Definition 20 (Pruning). Let π and π′ be proofs of the same end sequent. We say that
π′ is the result of “pruning” π, written as π  π′, if π′ is obtained from π by the following
subproof transformation:

(ψ)
A[x \β],Γ′′ ` ∆′′

∃xA,Γ′′ ` ∆′′ ∃l
....

A[x \α],Γ′ ` ∆′

∃xA,Γ′ ` ∆′ ∃l
....

C[∃xA], C[∃xA],Γ ` ∆
C[∃xA],Γ ` ∆

cl

 

(ψ[β \α])
A[x \α],Γ′′ ` ∆′′

∃xA,A[x \α],Γ′′ ` ∆′′
wl

....
A[x \α], A[x \α],Γ′ ` ∆′

A[x \α],Γ′ ` ∆′
cl

∃xA,Γ′ ` ∆′ ∃l
....

C[∃xA], C[∃xA],Γ ` ∆
C[∃xA],Γ ` ∆

cl

We say that a proof is “pruned” if it cannot be pruned further.

I Lemma 21. Let π, π′ be simple proofs such that π′ is obtained from π by pruning. Then
L(G(π′)) ⊆ L(G(π)).

Proof. We show that every derivation that is valid for G(π′) can be transformed to one
that is valid for G(π). This is possible because the eigenvariables that are identified by
pruning are associated with the same quantifier and thus have the same productions. Given
a derivation d′ that is valid for G(π′), suppose α, β are as in the definition of pruning and
d′ uses a production ν → t[β \α]. Clearly, ν → t is a production of G(π) and due to the
above considerations, α and β have the same productions. We can therefore replace the step
ν → t[β \α] in d′ with ν → t and add the required β-productions at any point after that. J

For technical reasons, we only allow the reduction of minimal cuts in this lemma. We
call a cut minimal if its strong side does not intersect with the weak side of any other cut. It
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is easy to prove that a minimal cut always exists. The nonterminals of a minimal cut never
occur on the right side of productions of other cuts.

I Lemma 22. Let π be a pruned simple proof and c a minimal cut in π. If π  π′ by
reducing c according to a contraction rule, then L(G(π)) = L(G(π′)).

Proof. We assume that c is Σ1; the case of a Π1-cut can be treated by switching the strong
and weak sides. Let G(π′) = 〈ϕ,N ′, ρ′,Σ, P ′, C′〉.

First, suppose that the contraction that is reduced is on the left-hand (weak) side of c. The
first thing we note is that the only nonterminals that are affected by the proof transformation
are those introduced in ψ2. Due to the minimality of c, there are no quantified cuts in ψ2
and hence the only eigenvariables therein are those of cuts below c and those of c itself. Let
EV (c) = {α1, . . . , αn}. In G(π′), each αi is replaced by two new copies α′i and α′′i . Moreover,
if c̃ is a cut in π such that c is on the strong side of c̃, then there might be eigenvariables of c̃
that are introduced within ψ2. Let β1, . . . , βm be all such eigenvariables; it follows that π′
contains two new copies β′i, β′′i for each of them.

Let us now consider the effects of the reduction on the nonterminals and productions of
the end sequent. Let p : z → t be a production of the end sequent. If t contains no αi or βi,
p is unchanged; otherwise, p arises from some quantifier inference in ψ2 that is duplicated
along with ψ2. This means that in G(π′), p is replaced by two new productions

p′ : z → t[α1 \α′1, . . . , αn \α′n, β1 \β′1, . . . , βm \β′m],
p′′ : z → t[α1 \α′′1 , . . . , αn \α′′n, β1 \β′′1 , . . . , βm \β′′m].

Now we consider the rest of the grammar. If µ′ and µ′′ are the two occurrences of Ac on
the weak side of c, then one of them is arbitrarily designated as the cut formula of c′ and
the other as the cut formula of c′′; w.l.o.g we assume that µ′ is the cut formula of c′ and
µ′′ the cut formula of c′′. The productions of αi are split between α′i and α′′i accordingly,
that is, if αi → t is a production of G(π) and t introduces a quantifier in µ′, then α′i → t is a
production of G(π′) and analogously if t introduces a quantifier in µ′′. Note that these cases
are not mutually exclusive.

As for the βi, each of them originates from a cut below c whose weak side is entirely
unaffected by the duplication of ψ2, so β′i and β′′i simply inherit the productions of βi.

Let us now turn to the constraint formula. First of all, the constraint formula of c is
necessarily of the form B′ ∨ B′′; it follows that the constraint formulas of c′ and c′′ are B′
and B′′, respectively, up to replacement of nonterminals by their fresh copies:

Cc′(π′) = B′{α1 \α′1, . . . , αn \α′n},
Cc′′(π′) = B′′{α1 \α′′1 , . . . , αn \α′′n}

Moreover, if ν is any formula occurrence in the conclusion of c originating from ψ2, then

q(ν, π′) = q(ν, π){α1 \α′1, . . . , αn \α′n, β1 \β′1, . . . , βm \β′m}∨
∨ q(ν, π){α1 \α′′1 , . . . , αn \α′′n, β1 \β′′1 , . . . , βm \β′′m}

because ν is contracted in π′.
If c is above the strong side of c̃, then eigenvariables of c̃ might be duplicated, as noted

above. In that case, we obtain the new constraint formula of c̃ by replacing each βi → t in
C c̃(π) with β′i → t ∨ β′′i → t.

Now let d = ϕ →∗ s be a valid derivation of G(π). If no nonterminals belonging to c
are used in d then all we have to do to obtain a valid derivation of G(π′) is replace each
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βi that occurs in d with β′i. If, on the other hand, such nonterminals are used, then all of
them must be produced from nonterminals of the end sequent due to the minimality of c.
Let αi1 , . . . , αim be those nonterminals of c that occur in d and assume that each αij is later
replaced by a term tj . Then either all of these terms are above µ′ or all of them are above
µ′′. To see this, assume w.l.o.g. that αi1 is later replaced by a term t1 that introduces a
quantifier in µ′, but not in µ′′ and αi2 by a term t2 for which the converse is true. Since d is
valid, the atom αij → tj in C(π) is assigned the value > by vd and all other atoms beginning
with αij are assigned ⊥, due to rigidity. Cc(π) is certainly of the form B̃′ ∨ B̃′′. Since d is
valid, either vd(B̃′) = > or vd(B̃′′) = >; say the former w.l.o.g. But all αi2 -atoms that occur
in B̃′ evaluate to ⊥, which is a contradiction.

We now consider the case where all terms produced from the αij introduce quantifiers in
µ′. In this case, replacing all αij in d with α′ij yields productions of G(π′). An analogous
substitution applied to the c-nonterminals that are introduced by other end sequent nonter-
minals gives a new derivation d′. The derivation d might also contain some of the βi. Since
the β′i and the β′′i have the same productions in P ′ as the βi do in P , we can simply replace
their productions as necessary.

Thus, we obtain a derivation d′′ that consists of productions of G(π′); we now need to
show that it is in fact valid. First of all, note that by construction, d′′ obeys local rigidity.
As for the constraint formula, it is clearly sufficient to show that vd′′ validates the various
conjuncts of C(π′).

If c̃ is a cut with an eigenvariable among the βi, say βi0 , and βi0 has an associated term
t, then the atom βi0 → t in C c̃(π) is replaced with β′i0 → t ∨ β′′i0 → t in C c̃(π′) and since
vd(C c̃(π))↔ >, the same holds for vd′′(C c̃(π′)).
Clearly, vd′′(Cc′′(π′)) = > because none of the α′′i -productions are evaluated by vd′′ .
vd′′(Cc′(π′)) = > follows immediately from vd(Cc(π)) = >.
The constraint formulas of other cuts and the end sequent are easily seen to be valid
under vd′′ .

Conversely, suppose that we have a derivation d′ of G(π′). The first thing we need to
establish is that d′ can only contain nonterminals of c′ or c′′, but not both. This is the case
because there is no production that contains nonterminals of both and and CES(π′) forces
us to choose either ψ′2 or ψ′′2 in each derivation. We thus obtain a derivation d of G(π) by
replacing all α′i, β′i, α′′i , β′′i with their original versions. This d does not violate rigidity due to
the considerations above. As in the argument for the other direction, the satisfiability under
d of the various parts of C follows readily from the satisfiability of the corresponding parts of
C′.

Now suppose that the contraction happens on the strong side of c. Reducing the
contraction leaves us with two new cuts c′, c′′ whose cut formulas are both Ac. Let µ′ and
µ′′ be the occurrences of Ac that serve as cut formulas for c′ and c′′ respectively. Each
eigenvariable α of c introduces a quantifier in either µ′ or µ′′ and consequently belongs to
either c′ or c′′ accordingly. Consequently, EV (c) = EV (c′)∪̇EV (c′′), where either set on the
right-hand side might be empty. Thus, let EV (c) = {α1, . . . , αn} and assume for the sake of
simplicity that EV (c′) = {α1, . . . , αk} and EV (c′′) = {αk+1, . . . , αn}.

The duplication of the left subproof ψ1 has extensive effects on the grammar. We will
discuss these effects separately for each c̃ ∈ QCuts(π). First, if c̃ is below c, then c must
be on the strong side of c̃ due to c’s minimality. As a consequence, it is possible that there
are eigenvariables of c̃ that are introduced within ψ1. If γ is such an eigenvariable, then
γ is duplicated, giving rise to eigenvariables γ′ and γ′′. Each such γ′ and γ′′ inherits the
productions of γ in G(π). The constraint formulas of c̃ changes in a straightforward manner,
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by replacing γ → t with γ′ → t ∨ γ′′ → t for each γ that is duplicated. In the sequel, let
{γ1, . . . , γl} be all eigenvariables of the original proof duplicated in this manner.

Next, assume that c̃ is located in ψ1. In this case, c̃ is replaced with two new cuts c̃′ and
c̃′′. If {β1, . . . , βm} are all eigenvariables that belong to such cuts, then clearly each of them
is replaced by two new copies β′i and β′′i . The productions of these duplicates work out to

P ′β′ = Pβi
{β̄ \ β̄′, γ̄ \ γ̄′},

P ′β′′ = Pβi
{β̄ \ β̄′′, γ̄ \ γ̄′′}

for each i ∈ {1, . . . ,m}. Similarly, c̃′ and c̃′′ have the constraint formulas

C c̃′ = C c̃{β1 \β′1, . . . , βm \β′m},
C c̃′′ = C c̃{β1 \β′′1 , . . . , βm \β′′m}

respectively. The final case to consider is that of c itself: The productions of the αi in G(π′)
work out to

P ′αi
= Pαi [β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′l] for i ≤ k,

P ′αi
= Pαi

[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′l ] for i > k.

The constraint formula of c′ can be obtained from Cc by replacing each literal αi → t that
occurs in it with αi → t[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k] (for i ≤ k) or removing it
(for i > k). An analogous transformation yields Cc′′ . If c̃ is any other quantified cut, then c̃
is either within the strong side of c or on a different branch of the proof from c. The first
case is impossible due to minimality of c and in the second case, c̃ is unaffected by the proof
transformation.

The last thing that needs to be taken care of are the productions and constraint formula
of the end sequent. Each production zi → t is replaced by

zi → t[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k] and
zi → t[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ].

If t does not contain any βi or γi, then both of these duplicates obviously coincide with the
original production and it simply carries over to G(π′). As for CES(π′), there are formulas
B1, . . . ,Br such that

CES(π) = C[B1, . . .Br] and
CES(π′) = C[B1[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k]∨

∨ B1[β1 \β′′1 , . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ],
. . .

Br[β1 \β′1, . . . , βm \β′m, γ1 \ γ′1, . . . , γk \ γ′k]∨
∨ Br[β1 \β1, . . . , βm \β′′m, γ1 \ γ′′1 , . . . , γk \ γ′′k ]].

Let d be a valid derivation of G(π). If nonterminals of c occur in d, then due to the
minimality of c they can only be introduced from nonterminals of the end sequent. Let
αi1 , . . . , αir be those nonterminals of c that are used in d and are later replaced by terms
t1, . . . , tr. For each ij , we replace the production αij → tj with αij → tj [β̄ \ β̄′, γ̄ \ γ̄′] if
ij ≤ k or αij → tj [β̄ \ β̄′′, γ̄ \ γ̄′′] if ij > k. Also, if zi → t is a production of the end sequent
in d, we replace it with zi → t[β̄ \ β̄′, γ̄ \ γ̄′], obtaining a new derivation d′. This can lead to
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d′ containing both β′i and β′′i for some i, and similarly for the γi. Due to total rigidity, d uses
at most one production for each βi and γi and we can simply replace any such production by
one or both of its two variants in the new grammar, according to whether one or both copies
of the respective nonterminal occur in d′. We call the derivation obtained by this process d′′.

As before, it is sufficient to show that d′′ is totally rigid and validates the conjuncts
of C(π′). vd′′(Cc′) = > because up to renaming, the literals of Cc′ are a subset of those of
Cc and vd(Cc) = >. The satisfiability of vd′′(Cc′′) is shown in an analogous manner. The
constraint formulas of all other cuts are similarly easy to deal with because they contain the
same substitutions relative to their original counterparts as d′′ does to d. vd′′(CES(π′)) = >
is immediately obvious.

Now suppose that we have a valid derivation d′ of G(π′). First of all, there are some
important conclusions to be drawn from the form of CES(π′): Let x, y be nonterminals of
the end sequent such that x dominates y. If some production x → t(ᾱ) is used in d′, no
production of y that is used in d′ can contain any of the β′i or γ′i (or their ′′-versions), and vice
versa. Moreover, if there is a production x→ ti(β̄′, γ̄′) in d′, then productions y → tj(β̄′′, γ̄′′)
cannot occur in d′, and analogously with the ′- and ′′-nonterminals changed around. Since
π is pruned, no term in ψ2 contains two eigenvariables that introduce the same quantifier.
These facts imply that we can simply replace all ′- and ′′-nonterminals by their original
versions without violating total rigidity. The argument that the resulting derivation d is
valid then goes through just as in the previous cases. J

We can now finally prove the main result of this paper:

I Theorem 16. Let π be a simple proof of Γ ` ∆. Then L(G(π)) is an Herbrand set of
Γ ` ∆.

Proof. By combining Lemmas 17, 19, 21, and 22. J

6 Conclusion

In this paper we have given a description of the Herbrand set induced by a proof with
non-prenex Π1 and Σ1 cuts in terms of a tree grammar. This is a considerable extension of
the previously existing work for prenex formulas [8] since the structure of sequent calculus
proofs and the dynamics of cut-elimination changes significantly when non-prenex cuts
are allowed. The central tool for this description are constraint grammars, which permit
capturing the dependencies of the quantifier instantiations in the proof.

Applications of the connection between formal language theory and proof theory de-
scribed in [8] for prenex Π1 and Σ1 cuts include results on Herbrand-confluence [12], cut-
introduction [11, 10, 9], inductive theorem proving [4], and proof complexity [3]. In addition,
this connection has recently been extended to prenex Π2 and Σ2 cuts [1]. In this line of
research, this paper is the first to consider non-prenex formulas and thus opens the way for
extending the above results and techniques to non-prenex cuts and induction formulas.
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