
Automata Theoretic Account of Proof Search
Aleksy Schubert∗1, Wil Dekkers2, and Henk P. Barendregt2

1 University of Warsaw, ul. Banacha 2, 02-097 Warsaw, Poland
alx@mimuw.edu.pl

2 Radboud University, Nijmegen, Faculty of Science, Postbus 9010, 6500 GL
Nijmegen, The Netherlands

Abstract
Techniques from automata theory are developed that handle search for inhabitants in the simply
typed lambda calculus. The resulting method for inhabitant search, which can be viewed as
proof search by the Curry-Howard isomorphism, is proven to be adequate by a reduction of the
inhabitant existence problem to the emptiness problem for appropriately defined automata. To
strengthen the claim, it is demonstrated that the latter has the same complexity as the former.
We also discuss the basic closure properties of the automata.

1998 ACM Subject Classification E.1 Data structures, F.1.1 Models of computation, F.4.1
Mathematical logic, F.4.3 Formal languages

Keywords and phrases simple types, automata, trees, languages of proofs

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.128

1 Introduction

A recent book on typed lambda calculi [1] contains a considerable number of graphical
representations for constructing inhabitants of given types (or, by the Curry-Howard iso-
morphism, proofs for propositional intuitionistic logic). These follow the mechanics of the
Ben-Yelles-Wajsberg algorithm [3, 9, 21], explain intuitively its operations, and materialise
its mechanics for particular inputs. In this way, the runs of the algorithm become a particular
compact data structure that can in itself, when defined formally, be subject to further
computations, as finite automata are in automata theory.

However, it is not immediate how to turn the intuitive pictures into a formal notion.
First of all, finite automata work on a finite alphabet, while λ-terms can contain bound
variables from an infinite set. One approach available here is to restrict the language to
a fixed set of first-order constants so that there is no need to introduce binders. This method
was used in the work of Düdder et al. [6], where automata in this fashion were proposed
for synthesis of programs in a simple functional language. Another approach would be to
restrict the inhabitant search to a limited subset of the normal terms, that is sufficiently
well distributed so that existence of a type inhabitant implies it is possible to find one of
this form. Typically, total discharge terms are used for this purpose. In terms of this form,
only one bound variable is needed for each subtype of the original type. Based upon this
idea Takahashi et al [18] developed a context-free grammar approach to inhabitant search
(which can be viewed as inhabitant search using tree automata due to known correspondence
between grammars and tree automata).

∗ This work was partly supported by NCN grant DEC-2012/07/B/ST6/01532.

© Aleksy Schubert, Wil Dekkers, and Henk P. Barendregt;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 128–143

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.128
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Schubert, W. Dekkers, and H. P. Barendregt 129

These approaches have as natural limitation that they do not make it possible to recognise
the collection of all inhabitants. For this a method is needed to deal with the infinite alphabet
in the language. Automata that work with infinite alphabets were proposed by Kaminski
and Francez [11] for strings and by Kaminski and Tan [12] for trees. These automata have,
in addition to the standard control arranged through states, a fixed set of registers where
data from an infinite set may be stored. Data elements stored in registers can be checked for
equality with data elements from the input. This restricted check operation on an infinite
domain makes it possible to work with such automata similarly to the usage of standard
finite automata. Still, these automata do not fit well with the type inhabitation problem,
as storing a fixed finite number of bound variable names is not sufficient to represent all
potential normal inhabitants. To overcome this limitation we propose here a different notion
of register, such that a set of data elements may be kept there and the check operation
verifies whether a data element from the input belongs to the set. It turns out that this
method recognises all trees that can be reasonably regarded as inhabitants of a particular
type. Moreover, we show how it relates to earlier approaches, in which the total discharge
forms are recognised.

Related work. Various kinds of finite automata have been proposed for dealing with
semantics of the simply typed λ-calculus. The work of Salvati and Walukiewicz expresses
the semantics through Krivine machines [15]. Another approach expresses semantics by
description of β-reduction in the context of the higher-order matching problem (Ong and
Tzevelekos [13], Stirling [17]). Another interesting related work goes in a different direction.
Broda and Damas [4] proposed the formula-tree proof method, which partially realises the
program of the current work, and concretisises the proof search procedure as a data structure.
We believe that the automata theoretic view proposed here has the additional benefit of
bridging proof theory with the rich theory of automata, enabling mutual influence.

Organisation of the paper. We fix the notation in Section 2. Next, we define our inhabita-
tion machines in Section 3. This is continued by demonstration of the PSPACE-completeness
of the emptiness problem for the machines in Section 4. We summarise the account in
Section 5 by giving conclusions and showing the potential for further work.

2 Preliminaries

To make this paper self-contained we introduce some basic notation. In the automata
theoretic setting it is convenient to use the notion of a signature, usually denoted by Σ,
that is an indexed family of sets that contain elements called symbols. We sometimes abuse
the notation by identifying Σ with

⋃
Σ and write e.g. a ∈ Σ for some symbol a in one of

the members of Σ. The indices of the family are natural numbers and are called arities.
The arity of a symbol f is written arity(f). For a natural number k we write k for the set
{0, . . . , k − 1}. The set of all subsets of a given set A is written P (A), and for the set of all
finite subsets of A we write Pfin(A). Concatenation of two sequences π, π′ of elements from
some set A is written π · π′. A special case here is when π′ is a single symbol i ∈ A, then the
concatenation is π · i. The prefix order on sequences of natural numbers is written �. A set
C of finite sequences over N that is closed on the prefixes can be used as a domain of a tree.
A labelled tree over L is a function t : C → L where L is called the set of labels. We write
dom(t) for C. Elements of dom(t) are called nodes in the tree t. We write t|π for the subtree
rooted at the node π ∈ dom(C), i.e. the tree with the domain C ′ = {π′ | π · π′ ∈ dom(t)}

CSL 2015

130 Automata Theoretic Account of Proof Search

and labelling t′ defined as t′(π′) = t(π · π′) being t restricted to C ′. Usually, the set of labels
is a signature (flattened to

⋃
Σ) and then we assume that the tree respects the arity, i.e. if

arity(t(π)) = n then π · i ∈ dom(t) for i ∈ n. For a function f : A→ B we define its update
f [a 7→ b] for a ∈ A and b ∈ B as f [a 7→ b](x) = f(x) for x 6= a and f [a 7→ b](a) = b.

3 Automata account of the inhabitation problem

In what follows we use a slightly modified exposition from [1]. The simply typed λ-calculus
λ→ in the Church style is a language of expressions that have the following syntax expressed
in simplified syntax BNF :

T 3 τ ::= α | τ0 → τ1
Λ→ 3 M ::= xτ |M0M1 | λxτ .M0

This means that the parentheses are left implicit in the grammar above. The elements of
T and Λ→ are called types and terms, respectively. We assume here that α are type atoms
that are from an infinite, countable set A. We use metavariables σ, τ etc. for types. Term
variables, noted x, y, F etc. are from an infinite countable set V. Compound expressions of
the form xτ are called typed term variables and the set that contains all of them is VΛ

→. As
usual we distinguish the set of free variables FV(M) and define it structurally over terms so
that the binding operation is λ, and xτ is bound in λxτ .M0. A term that has no occurrences
of free variables is called closed. The λ-terms are identified up to α-conversion that makes it
possible to rename bound variables. A context, usually written as Γ with possible ornaments,
is a finite set of typed term variables.

We follow here a slightly non-standard take on contexts since we make it possible for
a context to contain both xτ and xτ ′ for τ 6= τ ′. Observe that this solution is not essential
since the type makes the variables to be sufficiently distinct. One must only ensure that
when a type erasure operation is performed, such two variables are made distinct, which can
be done in different ways, e.g. by making the type a part of the variable name.

Terms of type τ in the context Γ, written ΛΓ
→(τ), are a family of sets defined as the

smallest family that satisfies the conditions:
xτ ∈ ΛΓ

→(τ) when xτ ∈ Γ,
if M0 ∈ ΛΓ

→(σ → τ) and M1 ∈ ΛΓ
→(σ) then M0M1 ∈ ΛΓ

→(τ),
if M0 ∈ ΛΓ∪{xσ}

→ (σ′) then λxσ.M0 ∈ ΛΓ
→(σ → σ′) where σ → σ′ = τ .

We often abbreviate Λ∅→(τ) as Λ→(τ).
Proof search procedures usually look for proof terms in normal form, i.e. ones that do

not use a form of the cut rule. In the context of λ-calculi, the cut operation is represented as
a beta redex. In case of λ→ in the Church style, this redex is

(λxτ .M0)M1 →β M0[xτ := M1]

where M0[xτ := M1] is understood as the term that results from M0 by replacing all
occurrences of the typed variable xτ with M1. This substitution, as usual, renames bound
variables in M0 so that no free variable in M1 is captured by binding λ operators in M0.
The relation →β is defined by syntax closure of the above mentioned redexes. The reflexive-
transitive closure of →β is written in →∗β . It is known that the relation →β is strongly
normalising, i.e. each sequence of terms M0,M1, . . ., such that Mi →β Mi+1, has a finite
number of elements ([1, Theorem 2.2.1]).

It is easy to see that normal terms of type τ in the context Γ, written ΛΓ
n,→(τ), are

a family of sets defined as the smallest family that satisfies the conditions stated below. This
definition uses a supplementary set ΛΓ

s,→(τ) (the letter ‘s’ stands for ‘spine’ here).

A. Schubert, W. Dekkers, and H. P. Barendregt 131

if xτ ∈ Γ then xτ ∈ ΛΓ
n,→(τ) and xτ ∈ ΛΓ

s,→(τ),
if M0 ∈ ΛΓ

s,→(σ → τ) and M1 ∈ ΛΓ
n,→(σ) then M0M1 ∈ ΛΓ

s,→(τ) and M0M1 ∈ ΛΓ
n,→(τ),

if M0 ∈ ΛΓ∪{xσ}
n,→ (σ′) then λxσ.M0 ∈ ΛΓ

n,→(σ → σ′) where σ → σ′ = τ .
A standard inductive argument shows the following proposition.

I Proposition 1. If N is a subterm of M ∈ ΛΓ
n,→(τ) then N ∈ ΛΓ′

n,→(σ) where Γ ⊆ Γ′ and
all types in Γ′ and σ are either subexpressions of τ or subexpressions of types in Γ.

Note that the context Γ′ may contain variables that do not occur in N .
The proof search when considered in the field of λ-calculi turns out to be, due to the Curry-

Howard isomorphism, the search of inhabitants for types. Here is the precise formulation of
the inhabitation problem.

I Definition 2 (inhabitation problem). The inhabitation problem for λ→ (or the decision
problem for implicational fragment of propositional intuitionistic logic) is defined as follows
Input: A type τ .
Question: Is there a closed Church-style term M such that M has type τ?

I Example 3. Consider types 1 = 0→ 0, 2 = 1→ 0 and 3 = 2→ 0. A normal inhabitant
of the type must have the form λF 2.Ma where Ma is of type 0 (we use here the variable F
instead of x to underline that it represents a functional). Next the only option we have is to
use the typed variable F 2, so Ma = F 2Mb where Mb is of type 1. Subsequently, we cannot
use F 2 so Mb must start with λ. Thus Mb = λy0.Mc where Mc must be of type 0. We can
now complete the process and let Mc = y0, but we can continue the process by steps similar
to the ones we used for Ma and obtain a sequence of terms

λF 2.F 2(λy0.y0), λF 2.F 2(λy0.F 2(λy0
1 .y

0
1)), λF 2.F 2(λy0.F 2(λy0

1 .F
2(λy0

2 .y
0
2))), . . . (1)

Note that this sequence does not exhaust the whole set of inhabitants of 3 since only the
last variable of form y0

i is used here while we have the liberty to use any of them.

In the following a special kind of terms called total discharge terms (or terms in Prawitz
natural deduction style) [14, 19] is used as a technical device that helps in effective search for
witnesses for non-emptiness. Suppose that we have an injection φ : T→ V. Let us represent
φ(τ) as xτ . We can now define a set of terms Λcnst

→ as the smallest subset of Λ→ such that
all xττ belong to Λcnst

→ ,
if M0,M1 belong to Λcnst

→ then M0M1 does,
if M0 belongs to Λcnst

→ and xττ is a typed variable then λxττ .M0 does.
The following proposition holds for λ→.

I Proposition 4. For each context Γ if ΛΓ
→(τ) 6= ∅ then ΛbΓc→ (τ) ∩ Λcnst

→ 6= ∅, where bΓc =
{xττ | yτ ∈ Γ}.

Proof. Assume that some M ∈ ΛΓ
→(τ). We can now show by induction on the structure of

M that there is a term M ′ ∈ Λcnst
→ that belongs to ΛbΓc→ (τ). Details are left to the reader. J

I Example 5. The sequence of terms in (1) corresponds to the following sequence of terms
in total discharge form.

λF 2.F 2(λy0.y0), λF 2.F 2(λy0.F 2(λy0.y0)), λF 2.F 2(λy0.F 2(λy0.F 2(λy0.y0))), . . .

Note that we use here y0 only instead multiple y0
1 , y

0
2 . . . since in total discharge form only

one variable for a type is allowed.

CSL 2015

132 Automata Theoretic Account of Proof Search

Figure 1 The tree representing the term λF 2.F 2(λy0.y0).

3.1 Terms as trees
We identify terms in the Church style with trees in the following way. Let Tσ be the set of
all subexpressions of σ. We define ΣσT as the family with symbols {Varτ | τ ∈ Tσ} of arity 0,
symbols {λτ | τ ∈ Tσ} of arity 1 and the symbol @ of arity 2. For a term M ∈ ΛΓ

n,→(τ) the
tree tM it corresponds to is defined inductively as follows:

for M = xτ it is a tree with a single node labelled with 〈Varτ , x〉 and we write the tree as
〈Varτ , x〉,
for M = M0M1 it is a tree t such that tM |i = tMi , for i = 0, 1 and t(ε) = @, we write the
tree as @(tM0 , tM1),
for M = λxτ .M0 it is a tree t such that tM |0 = tM0 and t(ε) = 〈λτ , x〉, we write the tree
as 〈λτ , x〉(tM0).

A tree that represents the first term in the sequence (1) in Example 3 is presented in Figure 1.
We can identify terms of λ-calculus with such trees since the sets are clearly in bijection

one with the other. We introduce now the notion of α-conversion for trees and identify
α-equivalent trees. First, let us define variable renaming.

I Definition 6 (variable renaming). We define inductively t[y := x]τ in the following way
〈Varτ

′
, z〉[y := x]τ = 〈Varτ

′
, z〉 for z 6= y or τ ′ 6= τ ,

〈Varτ , y〉[y := x]τ = 〈Varτ , x〉,
@(t0, t1)[y := x]τ = @(t0[y := x]τ , t1[y := x]τ),
〈λτ ′

, z〉(tM0)[y := x]τ = 〈λτ ′
, z〉(tM0 [y := x]τ) when z 6= y, z 6= x or τ ′ 6= τ ,

〈λτ , x〉(tM0)[y := x]τ = 〈λτ , z〉(tM0 [x := z]τ [y := x]τ) where z 6= y and z 6= x,
〈λτ , y〉(tM0)[y := x]τ = 〈λτ , y〉(tM0).

The α-equivalence itself is defined as follows.

I Definition 7 (α-equivalence). For each variable x such that t does not have a free occurrence
of the node 〈Varτ , x〉 and each variable y we let 〈λτ , y〉(t) ≡0

α 〈λτ , x〉(t[y := x]τ). The closure
of ≡0

α over the structure of trees is defined as ≡sα. The α conversion ≡α is defined as the
reflexive-transitive closure of ≡sα.

As we can see, this definition is slightly non-standard since it makes it possible to use the
same variable name in two different types as if they were two different variables. Indeed the
variables are made different by their types. We admit that the term λxα→α.λxα.xα→αxα

is probably not legible for humans, but for machines it is as good as λxα→α.λyα.xα→αyα.
Note that this does not work well for Curry-style terms where there is no way to distinguish
different variables through their types. The advantage of this style is that it requires fewer
variable names to represent λ-terms.

3.2 Inhabitation machines
The proof search associated with the inhabitation problem can be done in two fashions.
In the generative fashion, we start with axioms and step-wise apply rules associated with

A. Schubert, W. Dekkers, and H. P. Barendregt 133

connectives bottom-up until the desired goal is reached. Another approach, called analytic
fashion, consists in step-wise decomposition of the formula top-down until axioms are reached.
Our definition of automaton follows the latter approach so it is a version of top-down tree
automata.

I Definition 8 (inhabitation machines). A (multiple assignment) inhabitation machine (IM) A
is a tuple 〈Σ, N,Q, qI ,R, δ〉 where Σ is a finite signature, N is an infinite set of data elements,
Q is a finite set of states, qI ∈ Q is the initial state, R is a finite set (of register names), and
δ ⊆ Σ×Q×Pfin(R)×Pfin(Q)×Pfin(R) is a set of rules written as a, q,R q0, q1, . . . , qn−1,W

where a ∈ Σ, q, q0, . . . , qn−1 ∈ Q, and R,W ∈ Pfin(R).

The machine traverses labelled trees where the set of labels is Σ × N ∪ Σ. The arity of
a pair 〈a, x〉 ∈ Σ×N is the arity of a. We assume that all the rules respect the arity so that
arity(a) = n in the rule above. In case all the rules are such that R,W are either empty or
singleton sets, the machines are called single assignment inhabitation machines.

Observe that the transition rules of the machine do not include elements of the set N of
data elements.

The operational semantics for such a machine is as follows. Configurations of A in a tree t
are elements of Config = dom(t)×Q×Reg where Reg = R → Pfin(N). Note that an element
of Reg models a situation when a finite set of elements is held in a register of a given name
from R. Suppose we are in a configuration 〈π, q, f〉. Consider a rule

a, q,R q0, q1, . . . , qn−1,W.

This rule is applicable in the configuration when
R = W = ∅ and t(π) = a, or
t(π) = 〈a, x〉 and x ∈ f(r) for all r ∈ R.

As a result of such a rule the machine splits its control and moves to all n sons of the node π
(recall that the arity must be respected both by the tree and by the rule) and for i ∈ n the
i-th resulting configuration is 〈π · i, qi, fW↓ 〉 where fW↓ : R → Pfin(N) is defined as

fW↓ (l) =
{
f(l) for l 6∈W,
f(l) ∪ {x} for l ∈W. (2)

Note that in case W = ∅ the condition in the second case of the definition is not possible so
this pattern defines fW↓ equal to f . We drop the superscript W whenever the set is clear
from the context.

Whenever it does not lead to confusion we flatten the rules and instead of

a, q, {i0, . . . , ik} q0, q1, . . . , qn−1, {j0, . . . , jl} (3)

we write simply a, q, i0, . . . , ik q0, q1, . . . , qn−1, j0, . . . , jl.

A run of a machine A on a tree t is a function r : dom(t) → Config that respects the
rules of δ, i.e. for each node π ∈ dom(t) there is a rule a, q,R q0, q1, . . . qn−1,W ∈ δ that
is applicable in the configuration r(π) and for each son i of the node π the configuration
r(π · i) is the i-th resulting configuration of the rule.

We say that a machine A accepts a tree t from a configuration 〈π, q, f〉 when there
is a correct run on t|π of A that starts with the configuration 〈ε, q, f〉. Let us define
fI : R → Pfin(N) so that fI(r) = ∅ for all r ∈ R. We say that the machine A accepts a tree
t when there is a correct run of the machine that starts in 〈ε, qI , fI〉. The set of all trees t
such that A accepts t is written L(A).

CSL 2015

134 Automata Theoretic Account of Proof Search

I Remark (a version for the Curry style). A slightly different notion of machine is necessary
to deal with terms in the Curry style. The definition of the resulting configuration must be
modified. The state of the registers should change in a different way and the definition of
the functions fW↓ from (2) should be replaced with the following one

fW↓ (l) =
{
f(l)\{x} for l 6∈W,
f(l) ∪ {x} for l ∈W. (4)

In this way, we maintain the interpretation that a particular variable name is active in
a given scope for only one λ binder. The whole development of this paper could be redone
for machines that use this version of register update. Its full examination is left for the full
version of the paper.

Hereafter, a theorem is presented that relates inhabitation in λ→ and our machines.
Before we formulate it, we define a crucial machine that is used there. The machine Aτ is
〈ΣτT ,V, Q, qI ,R, δ〉 where

ΣτT ,V are defined as in Section 3.1,
Q = {qσ, qsσ | σ is a subexpression of τ},
qI = qτ ,
R is the set of subexpressions of τ .

The rules of δ are as follows:
1. Varσ, qσ, σ ∅,
2. Varσ, qsσ, σ ∅,
3. @, qσ, ∅ qsσ′→σ, qσ′ , ∅,
4. @, qsσ, ∅ qsσ′→σ, qσ′ , ∅,
5. λσ, qσ→σ′ , ∅ qσ′ , σ.

Note that these rules are such that the resulting machine is a single assignment IM.

I Example 9. Let us see how this construction works for the type 3. First note that subex-
pressions of 3 form the set R3 = {0,1,2,3}. The automaton A3 = 〈Σ3

T ,V, Q3, q3,R3, δ3〉
where Σ3 = {Var0,Var1,Var2, Var3, λ0, λ1, λ2, λ3,@}, Q3 = {q0, q1, q2, q3, q

s
0, q

s
1, q

s
2, q

s
3}. The

rules of δ3 are

Var0, q0, 0 ∅, Var1, q1,1 ∅, Var2, q2,2 ∅, Var3, q3,3 ∅,
Var0, qs0, 0 ∅, Var1, qs1,1 ∅, Var2, qs2,2 ∅, Var3, qs3,3 ∅,
@, q0, ∅ qs0→0, q0, ∅, @, q0, ∅ qs1→0, q1, ∅, @, q0, ∅ qs2→0, q2, ∅,
@, qs0, ∅ qs0→0, q0, ∅, @, qs0, ∅ qs1→0, q1, ∅, @, qs0, ∅ qs2→0, q2, ∅,
λ0, q0→0, ∅ q0, 0, λ1, q1→0, ∅ q0,1, λ2, q2→0, ∅ q0,2.

The construction presented here is a little bit not optimal as not all states and rules are
reachable from the initial configuration. Yet, it is still simple in formulation and therefore
convenient to handle in proofs.

Figure 2 presents the states of A3 reachable from the initial configuration. An annotation
next to an edge there indicates the alphabet symbol that is used to traverse it. For comparison
with the machine in the book by Barendregt, Dekkers, and Statman [1, p. 36], the thick
edges in the picture correspond directly to the edges there, while the thin edges should be
collapsed to one edge labelled with F .

To demonstrate the operation of the automaton, we present here its run that witnesses
that A3 accepts the tree presented in Figure 1.

A. Schubert, W. Dekkers, and H. P. Barendregt 135

Figure 2 The automaton A3 after removing non-reachable states.

1. 〈ε, q3 , 0 1 2 3 〉 We start at the root position in the initial state and with empty
registers. The only possible rule to use is λ2, q2→0, ∅ q0,2.

2. 〈0, q0 , 0 1 2 3
F

〉 The register 2 was filled with a variable (F). We cannot apply
the rule Var0, q0, 0 ∅ since the register 0 is empty. The only
rules that remain are @, q0, ∅ qsσ, q0, ∅ where σ ∈ {0 → 0,
1 → 0,2 → 0}. After a while of analysis we can see that options
where σ 6= 1 → 0 cannot lead to a successful computation. Thus,
we follow the rule with σ = 1 → 0 and the computation forks to
points 3. and 4. below.

3. 〈0, qs1→0, 0 1 2 3
F

〉 Since 1 → 0 = 2 and the register 2 is not empty, we can apply
the rule Var2, qs2,2 ∅ and successfully terminate this branch
of computation.

4. 〈0, q1 , 0 1 2 3
F

〉 The register 1 is empty so we cannot apply the rule Var1, q1,1
∅. Therefore, the only option is to use λ0, q0→0, ∅ q0, 0 here
and come back to q0.

5. 〈0, q0 , 0 1 2 3
y F

〉 The register 0 is no longer empty so we can apply this time the
rule Var0, q0, 0 ∅, which concludes the run of the automaton.

In step 5. we could use the rule with @ as in the step 2. and get into another turn of the
loop visible in Figure 2. Looping there makes it possible to obtain trees representing other
terms from (1) on page 131.

I Theorem 10. For each type τ the language L(Aτ) is the set of normal forms that are
closed inhabitants of τ .

Proof. Given a state of registers f ∈ Reg we can define a context Γf as Γf = {xσ | x ∈ f(σ)}.
Similarly, given a context Γ we can define a state of registers fΓ : R → Pfin(V) determined
as fΓ(σ) = {xσ | xσ ∈ Γ} where σ is a subexpression of τ . We have now the following fact:

1. Let σ be a subexpression of τ . If Γ is a context that contains only elements of
the form xσ

′ where σ′ is a subexpression of τ and M ∈ ΛΓ
n,→(σ) (M ∈ ΛΓ

s,→(σ))
then there is a tree tM such that Aτ accepts tM from a configuration 〈ε, qσ, fΓ〉
(〈ε, qsσ, fΓ〉, respectively).

2. If Aτ accepts a tree t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then there is a term
M ∈ ΛΓf

n,→(σ) (M ∈ ΛΓf
s,→(σ), respectively), where M is such that t = tM .

CSL 2015

136 Automata Theoretic Account of Proof Search

The proof of (1) is by induction over the structure of M

In case M = xσ, we observe that xσ ∈ ΛΓ
n,→(σ) is possible only when xσ ∈ Γ. This implies,

as σ is a subexpression of τ , that xσ ∈ fΓ(σ). As a result Aτ accepts the tree 〈Varσ, x〉 from
the configuration 〈ε, qσ, fΓ〉 through the rule Varσ, qσ, σ ∅. Similar argument applies for
xσ ∈ ΛΓ

s,→(σ), but we have to use the rule Varσ, qsσ, σ ∅.
In case M = M0M1, we observe that M0M1 ∈ ΛΓ

n,→(σ) is possible only when M0 ∈
ΛΓ
s,→(σ′ → σ) and M1 ∈ ΛΓ

n,→(σ′). By Proposition 1, the types σ′ → σ and σ′ are
subexpressions of τ . Note that by the induction hypothesis we obtain a tree tM0 such that
Aτ accepts it from the configuration 〈ε, qsσ′→σ, f

Γ〉 through a run r0 and a tree tM1 such that
Aτ accepts it from the configuration 〈ε, qσ′ , fΓ〉 through a run r1. Let us construct a tree
tM = @(tM0 , tM1) and a run r over tM such that r(ε) = 〈ε, qσ, fΓ〉, r(0 · π) = 〈0 · π, q′, f ′〉
where r0(π) = 〈π, q′, f ′〉, and r(1 · π) = 〈1 · π, q′, f ′〉 where r1(π) = 〈π, q′, f ′〉. It is easy to see
that the rule @, qσ, ∅ qsσ′→σ, qσ′ , ∅ is applicable in the root node of t and for other nodes
the function r respects δ as r0 and r1 did.

Similar argument applies for M0M1 ∈ ΛΓ
s,→(σ), but we have to use the rule @, qsσ, ∅

qsσ′→σ, qσ′ , ∅.
In case M = λxσ

′
.M0 we observe that λxσ′

.M0 ∈ ΛΓ
n,→(σ′ → τ ′) is possible only when

M0 ∈ ΛΓ
n,→(τ ′). By the induction hypothesis we obtain a tree tM0 such thatAτ accepts it from

the configuration 〈ε, qτ ′ , fΓ,xσ
′

〉 through a run r0. Let us consider the tree tM = 〈λσ′
, x〉(tM0)

and a run r over t such that r(ε) = 〈ε, qσ′→τ ′ , fΓ〉, and r(0 · π) = 〈0 · π, q′, f ′〉 where
r0(π) = 〈π, q′, f ′〉. It is easy to see that the rule λσ′

, qσ′→τ ′ , ∅ qτ ′ , σ′ is applicable in the
root node of tM , and for other nodes the function r respects δ as r0 did.

The proof of (2) is by induction over the structure of t

In case t = 〈Varτ
′
, x〉 and Aτ accepts it from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it can

happen only because a rule of the form

Varσ, qσ, σ ∅ (or Varσ, qsσ, σ ∅)

was used. Such a rule is applicable only when τ ′ = σ and the register σ contains x. As
a result xσ is in Γf . This means xσ ∈ ΛΓf

n,→(σ) (xσ ∈ ΛΓf
s,→(σ), respectively) and thus the set

is not empty.
In case t = @(t0, t1) and Aτ accepts t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it

can happen only because a rule of the form

@, qσ, ∅ qsσ′→σ, qσ′ , ∅ (or @, qsσ, ∅ qsσ′→σ, qσ′ , ∅)

was used. The machine Aτ accepts the tree t0 from the configuration 〈ε, qsσ′→σ, f〉 and
Aτ accepts t1 from the configuration 〈ε, qσ′ , f〉. By the induction hypothesis we obtain
that some M0 ∈ ΛΓf

s,→(σ′ → σ) and M1 ∈ ΛΓf
n,→(σ′). As a result M0M1 ∈ ΛΓf

n,→(σ) (or
M0M1 ∈ ΛΓf

n,→(σ), respectively).
In case t = 〈λσ′

, x〉(t0) and Aτ accepts t from a configuration 〈ε, qσ, f〉 (〈ε, qsσ, f〉) then it
can happen only because a rule of the form

λσ
′
, qσ′→τ ′ , ∅ qτ ′ , σ′

was used, where σ′ → τ ′ = σ. The machine Aτ accepts t0 from the configuration 〈ε, f ′, qτ ′〉
where f ′ = f [σ′ 7→ f(σ′) ∪ {x}]. By the induction hypothesis we obtain that some M0 ∈
ΛΓf

′

n,→(τ ′), which gives us that λxσ′
.M0 ∈ ΛΓf

n,→(σ′ → τ ′) = ΛΓf
n,→(σ).

A direct check verifies that the terms M constructed above have the property that t = tM .
We can apply the proven above fact to the subexpression τ ′ = τ and obtain the desired

conclusion of Theorem 10. J

A. Schubert, W. Dekkers, and H. P. Barendregt 137

The proof of the theorem above easily generalises to the formulation that involves open
terms as follows – given a fixed set Γ of free variables, type τ the language L(AΓ

τ) is the set
of normal forms that are closed inhabitants of τ with free variables in Γ. It is simply enough
to start the automaton with registers appropriately filled with variables from Γ.

Although a precise account of the remark below goes beyond the scope of this paper, it is
worth observing that we could omit from the construction the (spine) states of the form qsσ
and we would still obtain representations of typable terms. These terms would not need to
be in normal form, though. Still, we would not be able to obtain all typable terms as we are
limited by the finite number of registers that hold variables of types being subexpressions of
the original type. Notably, this kind of restriction is natural in certain scenarios, in particular
non-normal accessible terms considered in the decidability proofs for various versions of the
higher-order matching problem could be accepted by our machines.

3.3 Invariance of α-conversion
The machines accept trees that are constructed from a particular set of variables. Still,
λ-terms are understood up to renaming of bound variables, i.e. α-conversion. To establish
the connection with terms rather than their α-representants we need to establish that the
languages of trees accepted by the IM’s defined before the proof of Theorem 10 cannot
separate two different α-equivalent trees. Let us start with a definition which are the machines
of interest here.

I Definition 11 (variable consistent IM’s). Let A = 〈Στ
T ,V, Q, qI ,R, δ〉 where R is the set

of subexpressions of τ . We say that A is a variable consistent IM when all its rules with
symbols Varσ have the form Varσ, q, σ W for some σ ∈ R.

I Proposition 12. If t1, t2 are trees representing λ-terms such that t1 ≡0
α t2 and A is

a variable consistent IM that accepts t1 from a configuration 〈ε, q, f〉 then it accepts t2 from
the same configuration.

Proof. Observe that t1 ≡0
α t2 means that t1 = 〈λτ , y〉(t) and t2 = 〈λτ , x〉(t[y := x]τ). Let

A = 〈ΣσT ,V, Q, qI ,R, δ〉. The proof is by induction over the size of the tree t.
In case t = 〈Varτ

′
, z〉 we observe that A accepts t1 from the configuration 〈ε, q, f〉, it

must be the case that two rules are used to accomplish this

λτ , q1, R q2,W, Varτ
′
, q2, R

′ W ′ (5)

where R,W,R,W ′ ∈ Pfin(R).
We have now two subcases, (a) τ = τ ′ with z = y, (b) τ = τ ′ with z 6= y or τ 6= τ ′. In

case (a), we have t1 = 〈λτ , y〉(〈Varτ , y〉), t2 = 〈λτ , x〉(〈Varτ , x〉). By a direct check we can
verify that the same two rules can be used to accept t2. The only non-trivial case is when
R′ 6= ∅, and then the check for presence of element in a register i ∈ R′ in both cases is
positive since either i 6∈ W and then in both cases f(i) is the same or i ∈ W and then in
both cases the variable being checked is exactly the one that was added.

In case (b), we observe first that the case τ 6= τ ′ is impossible in variable consistent IM’s.
Thus, we obtain that t1 = 〈λτ , y〉(〈Varτ , z〉), t2 = 〈λτ , x〉(〈Varτ , z〉). In this case, W ∩R = ∅
as otherwise the presence of z in any register of the intersection would mean z = y. This
implies that only registers that were not modified by the rule with λτ can be checked and
this makes the rules in (5) trivially accept t2.

In case t = @(t0, t1), we observe that A accepts t1 with a run that starts with the rules

λτ , q1, R q2,W, @, q2, ∅ q′0, q
′
1, ∅.

CSL 2015

138 Automata Theoretic Account of Proof Search

Note that once the machine is started in the initial configuration 〈ε, q, f〉 where q = q1,
it moves to two configurations 〈i, qi, f↓〉 for i = 0, 1 where f↓ = f in case W = ∅ or
f↓ = f [r1 7→ f(r1) ∪ {y}] · · · [rl 7→ f(rl) ∪ {y}] when W = {r1, . . . , rl}. We accept ti from
configurations 〈ε, q′i, f↓〉 for i = 0, 1. We take now two mild modifications Ai for i = 0, 1 of
A obtained by adding the transition

λτ , q•, ∅ q′i,W

respectively, where q• is a fresh state. We can directly verify that for Ai with the configuration
〈ε, q•, f〉 at the root of ti1 = 〈λτ , y〉(ti), the resulting configuration is 〈0, q′i, f↓〉, and this
configuration accepts ti1 provided that the machine accepts ti from 〈ε, q′i, f〉 for i = 0, 1. This
is guaranteed by the fact that this holds for A and each its run is also a run of Ai. We
can now use the induction hypothesis to verify that Ai accept ti2 = 〈λτ , x〉(ti[y := x]τ) from
respective configurations for i = 0, 1. Note that the runs arrive at the configurations 〈0, q′i, f↓〉
respectively. They can be then turned to runs that accept ti[y := x]τ from 〈ε, q′i, f〉. As the
initial state does not occur on the right-hand sides of the rules they are actually runs of A
too. Since the rule λτ , q1, R q2,W transforms the initial configuration to a tuple 〈i, q′i, f↓〉
and these are accepting when 〈ε, q′i, f↓〉 are accepting for ti, we obtain our conclusion that A
accepts 〈λτ , x〉(t[y := x]τ).

In case t = 〈λτ , x〉(t) the proof is similar as in the previous case. The details are left to
the reader. J

In case the machines are not variable consistent, we can find two trees, namely t1 =
〈λτ , y〉(〈Varσ, z〉) and t2 = 〈λτ , x〉(〈Varσ, z〉), that are in the relation ≡0

α but t1 is accepted
by a machine that rejects t2.

I Proposition 13. For any variable consistent IM A, if t1 ≡sα t2 and t1 ∈ L(A) then
t2 ∈ L(A).

Proof. The proof is by a straightforward induction over the structure of t1. Details are left
to the reader. J

I Theorem 14 (invariance of α-conversion). For any variable consistent IM A, if t1 ≡α t2
and t1 ∈ L(A) then t2 ∈ L(A).

Proof. The proof is by induction on the number n of ≡sα steps to obtain t1 ≡α t2. The case
of 0 steps is trivial since then t1 = t2. In case n > 0 we have t′2 such that t1 ≡α t′2 ≡sα t2 and
t1 ≡α t′2 requires less than n steps of ≡sα. We obtain that t′2 ∈ L(A) by Proposition 13 and
then t1 ∈ L(A) by the induction hypothesis. J

3.4 Closure properties
The advantage of automata is that they make it possible to easily give constructs for the
sum or intersection of languages. This is done through closure constructions. We present
these for the (multiple assignment) IM’s proposed here.

I Theorem 15. For all tree languages L1, L2 over a signature Σ if there are IM’s Ai such
that Li = L(Ai) for i = 1, 2 then
1. there is a machine A such that L(A) = L1 ∪ L2,
2. there is a machine A such that L(A) = L1 ∩ L2.

A. Schubert, W. Dekkers, and H. P. Barendregt 139

Proof. Let us first assume that Ai = 〈Σ, N,Qi, qi,I ,Ri, δi〉 for i = 1, 2 where Q1 ∩Q2 = ∅
and R1 ∩R2 = ∅. This assumption does not weaken our proof.

For the proof of (1) we define the machine whose states are the sum of states from A1 and
A2 with registers R1 ∪R2. In addition the machine has a fresh initial state from which one
can move non-deterministically either to states of A1 or to states of A2 and then continue
the run according to the set of rules from the chosen this way machine. More precisely,
A = 〈Σ, N,Q′, q′I ,R′, δ′〉 where Q′ = Q1 ∪Q2 ∪ {q′I}, q′I is a fresh state, R′ = R1 ∪R2, and
at last

δ′ = δ1 ∪ δ2∪ {a, q′I , R q0, q1, . . . , qn−1,W | a, q1,I , R q0, q1, . . . , qn−1,W ∈ δ1} ∪
{a, q′I , R q0, q1, . . . , qn−1,W | a, q2,I , R q0, q1, . . . , qn−1,W ∈ δ2}.

The details of demonstration that this machine indeed recognises L1 ∪ L2 are left to the
reader.

For the proof of (2) we define the machine whose states are the product of the states from
A1 and A2 with registers R1 ∪R2. The resulting machine simulates a run of A1 on the first
coordinate and a run of A2 on the second one. When a set of registers R1 is read in a rule of
A1 and R2 is read in a rule of A2 we combine them in a rule of the resulting machine by
taking R1 ∪R2. Similarly for registers to write to. In this way, each time a set of registers is
checked for presence of the current element of data all the registers in the rule from A1 are
checked as well as ones for the rule from A2. Similarly for writes. In more detail the resulting
machine is A = 〈Σ, N,Q′, q′I ,R′, δ′〉 where Q′ = Q1 × Q2, qI = 〈q1,I , q2,I〉, R′ = R1 ∪ R2,
and at last

δ′ = {a,〈q1,0, q2,0〉, R1 ∪R2 〈q1,1, q2,1〉, 〈q1,2, q2,2〉, . . . 〈q1,n, q2,n〉,W1 ∪W2 |
a, q1,0, R1 q1,1, q1,2, . . . q1,n,W1 ∈ δ1, and
a, q2,0, R2 q2,1, q2,2, . . . q2,n,W2 ∈ δ2}.

The details of demonstration that this machine recognises L1 ∩ L2 are left to the reader. J

The constructions above use multiple assignments. An observant reader may have spotted
that the proof of Theorem 10 requires only singleton sets in rules of machines. As a result, the
machines there are single assignment IM’s. It is an open question if the automata are closed
on intersection. Therefore, we decided to introduce to the general model multiple register
manipulations in the fashion of multiple assignment automata considered by Kaminski and
Francez [11] where the closure can be obtained as above.

An immediate application of the above closure properties is the extension of the language
of closed terms typed in the simply typed λ-calculus to the calculus of intersection types of
rank 1 [20] or sum types of rank 1 [8].

4 The emptiness problem

To see how the design of the machines fits the inhabitation problem we show that the
emptiness problem for the machines has the same complexity as the one for λ→. For this,
we need to introduce another kind of automata for which the decidability of the emptiness
problem can be dealt with more straightforwardly. Although we do not explore this connection
in detail, the automata can be viewed as a reformulation of the term recognition by grammars
proposed by Takahashi et al. [18].

We give here a construction that works for single assignment IM’s with yet another
restriction. This restriction covers the machines defined for the proof of Theorem 10. The
general case requires more work and its demonstration would depart too much from the topic
of inhabitation for the simply typed λ-calculus.

CSL 2015

140 Automata Theoretic Account of Proof Search

I Definition 16 (one operation machines). A single assignment IM A is a one operation
machine when its rules have form a, q, R q0, . . . , qn−1,W where at most one of the sets
R,W is non-empty.

I Definition 17 (binary automata). A binary automaton (BA) A is a tuple 〈Σ, Q, qI ,R, δ〉
where Σ is a finite signature, Q is a finite set of states, qI ∈ Q is the initial state, R is a finite
set (of available register names), and δ is a set of rules of the form a, q,R q0, q1, . . . , qn−1,W

where a ∈ Σ, q, q0, . . . , qn−1 ∈ Q, and R,W ∈ {{r} | r ∈ R} ∪ {∅}.

The automaton traverses labelled trees where the set of labels is Σ. As before, we assume
that all the rules respect the arity so that arity(a) = n in the definition above.

The operational semantics for such automaton is as follows. Configurations of A in
a tree t are elements of Config = dom(t)×Q× Regb where Regb = R → {0, 1}. Suppose we
are in a configuration 〈π, q, f〉. Consider a rule

a, q,R q0, q1, . . . , qn−1,W

the rule is applicable when
R = ∅ and t(π) = a, or
R = {r} for some r ∈ R, t(π) = a, and f(r) = 1.

When the rule is applied, the automaton forks the computation to all n sons of the tree (note
that the arity must be respected both by the tree and by the rule) and for a node i ∈ n the
i-th resulting configuration is 〈π · i, qi, fW⇓ 〉 where fW⇓ : R → {0, 1} is defined as

fW⇓ (l) =
{
f(l) for l 6∈W,
1 for l ∈W. (6)

Note that in case W = ∅ the condition in the second case of the definition is not possible so
this pattern defines fW⇓ equal to f . Again, we drop W whenever it is clear from the context.

A run of an automaton A on a tree t is a function r : dom(t)→ Config that respects the
rules of δ, i.e. for each node π ∈ dom(t) there is a rule

a, q, R q0, q1, . . . , qn−1,W ∈ δ

that is applicable in the configuration r(π) and for each son i of the node π the configuration
r(π · i) is the i-th resulting configuration of the rule.

We say that an automaton A accepts a tree t from a configuration 〈π, q, f〉 when there
is a correct run of A on t|π that starts with the configuration 〈ε, q, f〉. Let us define the
function fI : R → {0, 1} so that fI(r) = 0 for r ∈ R. We say that the automaton A accepts
a tree t when there is a correct run of the automaton that starts in 〈ε, qI , fI〉. The set of all
trees that A accepts is written L(A).

We define a translation of one operation IM’s to binary automata. Given a one operation
inhabitation machine A = 〈Σ, N,Q, qI ,R, δ〉 we fix a set N0 ⊆ N of size equal to |R| together
with a bijection from R to N0. We write nr for the result of the bijection on an element
r ∈ R. We define a binary automaton B = 〈ΣB, QB, qB,I ,RB, δB〉 where ΣB = Σ ∪ Σ×N0,
QB = Q, qB,I = qI , RB = R, δB contains for each rule

a, q, R q0, q1, . . . , qn−1,W ∈ δ the rule a′, q, R q0, q1, . . . , qn−1,W

where

A. Schubert, W. Dekkers, and H. P. Barendregt 141

a′ = a when R = W = ∅,
a′ = 〈a, nr〉 when R = ∅ and W = {r},
a′ = 〈a, nr〉 when R = {r} and W = ∅.

We can now define the transformation operations for registers.

I Definition 18 (register transformations). For f : R → Pfin(N) we define f• : R → {0, 1} as
f•(r) = 0 when f(r) = ∅ and f•(r) = 1 otherwise.

For f : R → {0, 1} we define f• : R → Pfin(N) as f•(r) = ∅ when f(r) = 0 and
f•(r) = {nr} where nr ∈ N0 otherwise.

I Proposition 19.
1. If A accepts a tree t from a configuration 〈ε, q, f〉 then there is some t′ such that B accepts

t′ from the configuration 〈ε, q, f•〉.
2. If B accepts a tree t from a configuration 〈ε, f, q〉 then A accepts t from the configuration
〈ε, q, f•〉.

Proof. Both the proof of (1) and the proof of (2) are by induction over t. We only sketch
the proof due to the lack of space. For illustration we present here a fragment of the proof
for (1). The subcase concerns an internal node of the tree t. We know that a rule of the form

a, q,R q0, q1, . . . , qn−1,W ∈ δ

was applied in the configuration 〈ε, q, f〉 to accept t. We consider the subcase when R = ∅,
W = {r} and t(ε) = 〈a, x〉. We can consider the trees t|i and configurations 〈ε, qi, f↓〉 for
i ∈ n where f↓ is defined as in the pattern (2) on page 133. The automaton A accepts
these trees from respective configurations. By the induction hypothesis there are trees t′i for
i ∈ n that B accepts from the configurations 〈ε, qi, (f↓)•〉 for i ∈ n respectively. Note now
that (f↓)• = (f•)⇓ so actually B accepts the trees from the configurations 〈ε, qi, (f•)⇓〉. We
can now define the tree t′ = 〈a, nr〉(t′0, . . . , t′n−1) and by the definition of B the automaton
contains the rule a, q, ∅ q0, . . . , qn−1, r ∈ δB. This rule is applicable in the configuration
〈ε, q, f•〉 and leads to the mentioned above acceptable configurations 〈ε, qi, (f•)⇓〉, which
guarantees that B accepts t′. J

I Proposition 20. The emptiness problem for one operation IM’s is in PSPACE.

Proof. To certify that the emptiness problem is in PSPACE we give a polynomial time
alternating algorithm that given a machine A = 〈Σ, N,Q, qI ,R, δ〉 checks for emptiness of
L(A). We first transform A to its corresponding binary automaton B. Next, the algorithm
keeps in its memory the configuration of B and a counter i of the number of steps. The
initial configuration is 〈ε, qI , f〉 and the initial counter i = 0. The algorithm proceeds by
executing in loop the following three steps
1. it non-deterministically chooses a transition a, q,R q0, . . . , qn−1,W ∈ δB and then
2. it universally moves to n configurations that result from applying the rule and that have

q1, . . . , qn in their coordinates,
3. it increments i and in case i > imax = k · |Q| it leaves the loop with failure.
Observe that the loop is finished not only in step (3), but also in step (1) when a rule is
chosen so that there are no states on the right-hand side of the chosen rule. In case the
algorithm leaves the loop in this way it accepts. The bound k · |Q| is chosen so that in case
there are more steps the state with register content must repeat (note that once a register is
set to 1 it cannot be turned back to 0).

In this way the algorithm creates a potential tree t along a correct run on it. A closer
examination of the procedure shows that this tree is in total discharge form. J

CSL 2015

142 Automata Theoretic Account of Proof Search

I Proposition 21. The emptiness problem for IM’s is hard for PSPACE.

Proof. In Theorem 10, we defined machines that express inhabitation in λ→, which is
PSPACE-hard [16]. J

As an immediate corollary of Proposition 20 and 21 we obtain the following theorem.

I Theorem 22. The emptiness problem for one operation IM’s is PSPACE-complete.

5 Conclusions and further work

We have presented a model of automata and discussed how it corresponds to the inhabitation
problem for the simply typed λ-calculus. As this was done for syntax with named binders, it
is interesting to see how this would look like with de Bruijn indices. The binary automata
presented in Section 4 recognise the language of terms in total discharge form. It would be
interesting to see their version for depth bounded calculus of Dyckhoff-Hudelmeier [5, 10].

In addition to the presented closure properties for sum and intersection of languages one
traditionally considers other operations such as substitution of languages, or cilindrification.
The question concerning the closure for the operations remains open. Another interesting
direction of study would be to give automata that deal with full propositional intuitionistic
logic (i.e. one that includes logical alternative, conjunction, and negation). Automata for
infinite tree languages with Büchi acceptance conditions can give a similar account to the
one obtained in our Theorem 10 for Böhm trees.

We believe that Theorem 14 concerning the invariance of α-conversion can be generalised
to a wider class of binding operators and to α-conversion that is expressed as a permutation
of variables. In this way we would effectively obtain automata adequate for the Gabbay and
Pitts [7] approach to binder syntax.

One more interesting direction would be to augment our automata with additional
primitives that make it possible to recognise expressions in the relation of β-reduction. We
believe that the automata with global equality constraints [2] can give here promising results.

References
1 Hendrik Pieter Barendregt, Wil Dekkers, and Richard Statman. Lambda Calculus with

Types. Perspectives in logic. Cambridge University Press, 2013.
2 Luis Barguñó, Carles Creus, Guillem Godoy, Florent Jacquemard, and Camille Vacher. The

emptiness problem for tree automata with global constraints. In Jean-Pierre Jouannaud,
editor, Proceedings of the LICS 2010, pages 263–272. IEEE Computer Society, 2010.

3 Choukri-Bey Ben-Yelles. Type-assignment in the lambda-calculus; syntax and semantics.
PhD thesis, Mathematics Department, University of Wales, Swansea, UK, 1979.

4 Sabine Broda and Luís Damas. On long normal inhabitants of a type. Journal of Logic
and Computation, 15(3):353–390, 2005.

5 Roy Dyckhoff. Contraction-free sequent calculi for intuitionistic logic. Journal of Symbolic
Logic, 57:795–807, 9 1992.

6 Boris Düdder, Moritz Martens, and Jakob Rehof. Staged composition synthesis. In Zhong
Shao, editor, Proceedings of ESOP 2014, volume 8410 of LNCS, pages 67–86. Springer,
2014.

7 Murdoch J. Gabbay and Andrew M. Pitts. A new approach to abstract syntax with variable
binding. Formal Aspects of Computing, 13(3-5):341–363, 2002.

8 Silvia Ghilezan. Inhabitation in intersection and union type assignment systems. Journal
of Logic and Computation, 3(6):671–685, 1993.

A. Schubert, W. Dekkers, and H. P. Barendregt 143

9 J. Roger Hindley. Basic simple type theory. Cambridge Tracts in Theoretical Computer
Science. Cambridge University Press, New York, 1996.

10 Jörg Hudelmaier. An o(n log n)-space decision procedure for intuitionistic propositional
logic. Journal of Logic and Computation, 3(1):63–75, 1993.

11 Michael Kaminski and Nissim Francez. Finite-memory automata. Theoretical Computer
Science, 134(2):329–363, 1994.

12 Michael Kaminski and Tony Tan. Tree automata over infinite alphabets. In A. Avron,
N. Dershowitz, and A. Rabinovich, editors, Pillars of Computer Science, Essays Dedicated
to Boris (Boaz) Trakhtenbrot on the Occasion of His 85th Birthday, volume 4800 of LNCS,
pages 386–423. Springer, 2008.

13 C.-H. Luke Ong and Nikos Tzevelekos. Functional reachability. In Proceedings of the 24th
Annual IEEE Symposium on Logic in Computer Science, LICS 2009, 11-14 August 2009,
Los Angeles, CA, USA. IEEE Computer Society, 2009.

14 Dag Prawitz. Natural Deduction. Almqvist and Wiksell, Sweden, 1965.
15 Sylvain Salvati and Igor Walukiewicz. Krivine machines and higher-order schemes. Inform-

ation and Computation, 239:340–355, 2014.
16 Richard Statman. Intuitionistic propositional logic is PSPACE-complete. Theoretical Com-

puter Science, 9(1):67–72, 1979.
17 Colin Stirling. Dependency tree automata. In Luca de Alfaro, editor, Proceedings of

FOSSACS 2009, volume 5504 of LNCS, pages 92–106. Springer, 2009.
18 Masako Takahashi, Yohji Akama, and Sachio Hirokawa. Normal proofs and their grammar.

Information and Computation, 125(2):144–153, 1996.
19 Anne Troelstra and Helmut Schwichtenberg. Basic Proof Theory. Cambridge University

Press, 1996, 2000.
20 Paweł Urzyczyn. Inhabitation of low-rank intersection types. In Pierre-Louis Curien, editor,

Proceedings of TLCA 2009, volume 5608 of LNCS, pages 356–370. Springer, 2009.
21 Mordchaj Wajsberg. Untersuchungen über den Aussagenkalkül von A. Heyting. Wiado-

mości Matematyczne, 46, 1938. English translation: On A. Heyting’s propositional calculus,
in Mordchaj Wajsberg, Logical Works (S. J. Surma, editor), Ossolineum, Wrocław, 1977,
pages 132–171.

CSL 2015

	Introduction
	Preliminaries
	Automata account of the inhabitation problem
	Terms as trees
	Inhabitation machines
	Invariance of -conversion
	Closure properties

	The emptiness problem
	Conclusions and further work

