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Abstract
A dynamic program, as introduced by Patnaik and Immerman (1994), maintains the result of a
fixed query for an input database which is subject to tuple insertions and deletions. It can use
an auxiliary database whose relations are updated via first-order formulas upon modifications
of the input database. This paper studies static analysis problems for dynamic programs and
investigates, more specifically, the decidability of the following three questions. Is the answer
relation of a given dynamic program always empty? Does a program actually maintain a query?
Is the content of auxiliary relations independent of the modification sequence that lead to an input
database? In general, all these problems can easily be seen to be undecidable for full first-order
programs. Therefore the paper aims at pinpointing the exact decidability borderline for programs
with restricted arity (of the input and/or auxiliary database) and restricted quantification.
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1 Introduction

In modern database scenarios data is subject to frequent changes. In order to avoid costly
re-computation of queries from scratch after each small modification of the data, one can try
to use previously computed auxiliary data. This auxiliary data then needs to be updated
dynamically whenever the database changes.

The descriptive dynamic complexity framework (short: dynamic complexity) by Patnaik
and Immerman [19] models this setting from a declarative perspective. It was mainly inspired
by updates in relational databases. Within this framework, for a relational database subject
to change, a dynamic program maintains auxiliary relations with the intention to help
answering a query Q. When a modification to the database, that is an insertion or deletion
of a tuple, occurs, every auxiliary relation is updated through a first-order update formula
(or, equivalently, through a core SQL query) that can refer to the database as well as to
the auxiliary relations. The result of Q is, at every time, represented by some distinguished
auxiliary relation. The class of all queries maintainable by dynamic programs with first-order
update formulas is called DynFO and we refer to such programs as DynFO-programs. We
note that shortly before the work of Patnaik and Immerman, the declarative approach was
independently formalized in a similar way by Dong, Su and Topor [6].
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The main question studied in Dynamic Complexity has been which queries that are not
statically expressible in first-order logic (and therefore not in Core SQL), can be maintained
by DynFO-programs. Recently, it has been shown that the Reachability query, a very
natural such query, can be maintained by DynFO programs [1]. Altogether, research in
Dynamic Complexity succeeded in proving that many non-FO queries are maintainable in
DynFO. These results and their underlying techniques yield many interesting insights into
the the nature of Dynamic Complexity.

However, to complete the understanding of Dynamic Complexity, it would be desirable to
complement these techniques by methods for proving that certain queries are not maintainable
by DynFO programs. But the state of the art with respect to inexpressibility results is much
less favorable: at this point, no general techniques for showing that a query is not expressible
in DynFO are available. In order to get a better overall picture of Dynamic Complexity in
general and to develop methods for inexpressibility proofs in particular, various restrictions
of DynFO have been studied, based on, e.g., arity restrictions for the auxiliary relations
[2, 5, 3], fragments of first-order logic [12, 10, 25, 23], or by other means [4, 11].

At the heart of our difficulties to prove inexpressibility results in Dynamic Complexity is
our limited understanding of what dynamic programs with or without restrictions “can do” in
general, and our limited ability to analyze what a particular dynamic program at hand “does”.
In this paper, we initiate a systematic study of the “analyzability” of dynamic programs.
Static analysis of queries has a long tradition in Database Theory and we follow this tradition
by first studying the emptiness problem for dynamic programs, that is the question, whether
there exists an initial database and a modification sequence that is accepted by a given
dynamic program.1 Given the well-known undecidability of the finite satisfiability problem for
first-order logic [21], it is not surprising that emptiness of DynFO programs is undecidable
in general. However, we try to pinpoint the borderline of undecidability for fragments of
DynFO based on restrictions of the arity of input relations, the arity of auxiliary relations
and for the class DynProp of programs with quantifier-free update formulas.

In the fragments where undecidability of emptiness does not directly follow from undecid-
ability of satisfiability in the corresponding fragment of first-order logic, our undecidability
proofs make use of dynamic programs whose query answer might not only depend on the
database yielded by a certain modification sequence, but also on the sequence itself, that
is, on the order in which tuples are inserted or (even) deleted. From a useful dynamic
program one would, of course, expect that it is consistent in the sense that its query answer
always only depends on the current database, but not on the specific modification sequence
by which it has been obtained. It turns out that the emptiness problem for consistent
programs is easier than the general emptiness problem for dynamic programs. More precisely,
there are fragments of DynFO, for which an algorithm can decide emptiness for dynamic
programs that come with a “consistency guarantee”, but for which the emptiness problem is
undecidable, in general. However, it turns out that the combination of a consistency test
with an emptiness test for consistent programs does not gain any advantage over “direct”
emptiness tests, since the consistency problem turns out to be as difficult as the general
emptiness problem.

Finally, we study a property that many dynamic programs in the literature share: they
are history independent in the sense that all auxiliary relations always only depend on the

1 The exact framework will be defined in Section 3, but we already mention that we will consider the
setting in which databases are initially empty and the auxiliary relations are defined by first-order
formulas.
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Table 1 Summary of the results of this paper. DynFO(`-in,m-aux) stands for DynFO-programs
with (at most) `-ary input relations andm-ary auxiliary relations. DynFO(m-aux) and DynFO(`-in)
represent programs with m-ary auxiliary relations (and arbitrary input relations) and programs
with `-ary input relations, respectively. Likewise for DynProp.

Emptiness
Consistency

Emptiness for
consistent programs

History
Independence

Undecidable
DynFO(1-in, 0-aux)

DynProp(2-in, 0-aux)
DynProp(1-in, 2-aux)

DynFO(1-in, 2-aux)
DynFO(2-in, 0-aux) DynFO(2-in, 0-aux)

Decidable DynProp(1-in, 1-aux)
DynFO(1-in, 1-aux)

DynProp(1-in)
DynProp(1-aux)

DynFO(1-in)
DynProp(1-aux)

Open DynProp(2-in, 2-aux)
and beyond

DynProp(2-in, 2-aux)
and beyond

current (input) database. History independence can be seen as a strong form of consistency
in that it not only requires the query relation, but all auxiliary relations to be determined by
the input database. History independent dynamic programs (also called memoryless [19] or
deterministic [4]) are still expressive enough to maintain interesting queries like undirected
reachability [11]. But also some inexpressibility proofs have been found for such programs
[4, 11, 25]. We study the history independence problem, that is, whether a given dynamic
program is history independent. In a nutshell, the history independence problem is the
“easiest” of the static analysis problems considered in this paper.

Our results, summarized in Table 1, shed light on the borderline between decidable and
undecidable fragments of DynFO with respect to emptiness (and consistency), emptiness for
consistent programs and history independence. While the picture is quite complete for the
emptiness problem for general dynamic programs, for some fragments of DynProp there
remain open questions regarding the emptiness problem for consistent dynamic programs
and the history-independence problem. Some of the results shown in this paper have been
already presented in the master’s thesis of Nils Vortmeier [22].

Outline. We recall some basic definitions in Section 2 and introduce the formal setting
in Section 3. The emptiness problem is defined and studied in Section 4, where we first
consider general dynamic programs (Subsection 4.1) and then consistent dynamic programs
(Subsection 4.2). In Subsection 4.3 we briefly discuss the impact of built-in orders to the
results. The Consistency and History Independence problems are studied in Sections 5 and
6, respectively. We conclude in Section 7. Due to the space limit we only give proof sketches
or even proof ideas in the body of this paper. Complete proofs can be found in the full
version [20].

2 Preliminaries

We presume that the reader is familiar with basic notions from Finite Model Theory and
refer to [8, 16] for a detailed introduction into this field. We review some basic definitions in
order to fix notations.

In this paper, a domain is a non-empty finite set. For tuples ~a = (a1, . . . , ak) and
~b = (b1, . . . , b`) over some domain D, the (k + `)-tuple obtained by concatenating ~a and ~b is
denoted by (~a,~b).
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A (relational) schema is a collection τ of relation symbols2 together with an arity function
Ar : τ → N. A database D with schema τ and domain D is a mapping that assigns to every
relation symbol R ∈ τ a relation of arity Ar(R) over D. The size of a database, usually
denoted by n, is the size of its domain. We call a database empty, if all its relations are
empty. We emphasize that empty databases have non-empty domains. A τ -structure S is a
pair (D,D) where D is a database with schema τ and domain D. Often we omit the schema
when it is clear from the context.

We write S |= ϕ(~a) if the first-order formula ϕ(~x) holds in S under the variable assignment
that maps ~x to ~a. The quantifier depth of a first-order formula is the maximal nesting depth
of quantifiers. The rank-q type of a tuple (a1, . . . , am) with respect to a τ -structure S is the
set of all first-order formulas ϕ(x1, . . . , xm) (with equality) of quantifier depth at most q, for
which S |= ϕ(~a) holds. By S ≡q S ′ we denote that two structures S and S ′ have the same
rank-q type (of length 0 tuples).

For a subschema τ ′ ⊆ τ , the rank-q τ ′-type of a tuple ~a in a τ -structure S is its rank-q
type in the τ ′-reduct of S.

We refer to the rank-0 type of a tuple also as its atomic type and, since we mostly deal
with rank-0 types, simply as its type. The equality type of a tuple is the atomic type with
respect to the empty schema.

The k-ary type of a tuple ~a in a structure S is its τ≤k-type, where τ≤k consists of all
relation symbols of τ with arity at most k. The τ ′-color of an element a in S, for a subschema
τ ′ of the schema of S, is its τ ′1-type, where τ ′1 consists of all unary relation symbols of τ ′.
We often enumerate the possible τ ′-colors as c0, . . . , cL, for some L with c0 being the color
of elements that are in neither of the unary relations. We call these elements τ ′-uncolored. If
τ ′ is clear from the context we simply speak of colors and uncolored elements.

3 The dynamic complexity setting

For a database D over schema τ , a modification δ = (o,~a) consists of an operation o ∈
{insS ,delS | S ∈ τ} and a tuple ~a of elements from the domain of D. By δ(D) we denote
the result of applying δ to D with the obvious semantics of inserting or deleting the tuple ~a
to or from relation SD. For a sequence α = δ1 · · · δN of modifications to a database D we let
α(D) def= δN (· · · (δ1(D)) · · · ).

A dynamic instance3 of a query Q is a pair (D, α), where D is a database over a domain
D and α is a sequence of modifications to D. The dynamic query Dyn(Q) yields the result
of evaluating the query Q on α(D).

Dynamic programs, to be defined next, consist of an initialization mechanism and an
update program. The former yields, for every (initial) database D, an initial state with initial
auxiliary data. The latter defines the new state of the dynamic program for each possible
modification δ.

A dynamic schema is a pair (τin, τaux), where τin and τaux are the schemas of the input
database and the auxiliary database, respectively. We call relations over τin input relations
and relations over τaux auxiliary relations. If the relations are 0-ary, we also speak of input
or auxiliary bits. We always let τ def= τin ∪ τaux.

2 For simplicity we do not allow constants in this work but note that our results hold for relational
schemas with constants as well.

3 The following introduction to dynamic descriptive complexity is similar to previous work [25, 24].
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I Definition 1 (Update program). An update program P over a dynamic schema (τin, τaux)
is a set of first-order formulas (called update formulas in the following) that contains, for
every R ∈ τaux and every o ∈ {insS ,delS | S ∈ τin}, an update formula φRo (~x; ~y) over the
schema τ where ~x and ~y have the same arity as S and R, respectively.

A program state S over dynamic schema (τin, τaux) is a structure (D, I,A) where4 D
is a finite domain, I is a database over the input schema (the input database) and A is
a database over the auxiliary schema (the auxiliary database). The semantics of update
programs is as follows. For a modification δ = (o,~a), where ~a is a tuple over D, and program
state S = (D, I,A) we denote by Pδ(S) the state (D, δ(I),A′), where A′ consists of relations
RA

′ def= {~b | S |= φRo (~a;~b)}. The effect Pα(S) of a modification sequence α = δ1 . . . δN to a
state S is the state PδN

(. . . (Pδ1(S)) . . .).

I Definition 2 (Dynamic program). A dynamic program is a triple (P, Init, RQ), where
P is an update program over some dynamic schema (τin, τaux),
Init is a mapping that maps τin-databases to τaux-databases, and
RQ ∈ τaux is a designated query symbol.

A dynamic program P = (P, Init, RQ) maintains a dynamic query Dyn(Q) if, for every
dynamic instance (D, α), the query result Q(α(D)) coincides with the query relation RSQ in
the state S = Pα(SInit(D)), where SInit(D) def= (D,D, Init(D)) is the initial state for D. If
the query relation RQ is 0-ary, we often denote this relation as query bit Acc and say that
P accepts α over D if Acc is true in Pα(SInit(D)).

In the following, we write Pα(D) instead of Pα(SInit(D)) and Pα(S) instead5 of Pα(S) for
a given dynamic program P = (P, Init, RQ), a modification sequence α, an initial database
D and a state S.

I Definition 3 (DynFO and DynProp). DynFO is the class of all dynamic queries that can
be maintained by dynamic programs with first-order update formulas and first-order definable
initialization mapping when starting from an initially empty input database. DynProp is
the subclass of DynFO, where update formulas are quantifier-free6.

A DynFO-program is a dynamic program with first-order update formulas, likewise
a DynProp-program is a dynamic program with quantifier-free update formulas. A
DynFO(`-in,m-aux)-program is a DynFO-program over (at most) `-ary input databases that
uses auxiliary relations of arity at most m; likewise for DynProp(`-in,m-aux)-programs.7

Due to the undecidability of finite satisfiability of first-order logic, the emptiness problem
– the problem we study first – is undecidable even for DynFO-programs with only a single
auxiliary relation (more precisely, with query bit only). Therefore, we restrict our investiga-
tions to fragments of DynFO. Also allowing arbitrary initialization mappings immediately
yields an undecidable emptiness problem. This is already the case for first-order definable
initialization mappings for arbitrary initial databases. In the literature classes with various
restricted and unrestricted initialization mappings have been studied, see [24] for a discussion.
In this work, in line with [19], we allow initialization mappings defined by arbitrary first-order
formulas, but require that the initial database is empty. Of course, we could have studied

4 We prefer the notation (D, I,A) over (D, I ∪ A) to emphasize the two components of the overall
database.

5 The notational difference is tiny here: we refer to the dynamic program instead of the update program.
6 We still allow the use of quantifiers for the initialization.
7 We do not consider the case ` = 0 where databases are pure sets with a fixed number of bits.
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further restrictions on the power of the initialization formulas, but this would have yielded a
setting with an additional parameter.

The following example illustrates a technique to maintain lists with quantifier-free dynamic
programs, introduced in [10, Proposition 4.5], which is used in some of our proofs. The
example itself is from [25].

I Example 4. We provide a DynProp-program P for the dynamic variant of the Boolean
query NonEmptySet, where, for a unary relation U subject to insertions and deletions
of elements, one asks whether U is empty. Of course, this query is trivially expressible in
first-order logic, but not without quantifiers.

The program P is over auxiliary schema τaux = {RQ,First,Last,List}, where RQ is
the query bit (i.e. a 0-ary relation symbol), First and Last are unary relation symbols, and
List is a binary relation symbol. The idea of P is to maintain a list of all elements currently
in U . The list structure is stored in the binary relation ListS . The first and last element of
the list are stored in FirstS and LastS , respectively. We note that the order in which the
elements of U are stored in the list depends on the order in which they are inserted into U .

For a given instance of NonEmptySet the initialization mapping initializes the auxiliary
relations accordingly.We only describe the (more complicated) case of deletions from U .

Deletion of a from U . How a deleted element a is removed from the list, depends on
whether a is the first element of the list, the last element of the list or some other element of
the list. The query bit remains ’true’, if a was not the first and last element of the list.8

φFirst
delU

(a;x) def= (First(x) ∧ x 6= a) ∨ (First(a) ∧ List(a, x))
φLast

delU
(a;x) def= (Last(x) ∧ x 6= a) ∨ (Last(a) ∧ List(x, a))

φList
delU

(a;x, y) def= x 6= a ∧ y 6= a ∧
(
List(x, y) ∨ (List(x, a) ∧ List(a, y))

)
φRQ

delU
(a) def= ¬(First(a) ∧ Last(a))

J

In some parts of the paper we will use specific forms of modification sequences. An
insertion sequence is a modification sequence α = δ1 · · · δm whose modifications are pairwise
distinct insertions. An insertion sequence α over a unary input schema τin is in normal form
if it fulfills the following two conditions.

(N1) For each element a, the insertions affecting a form a contiguous subsequence αa of α.
We say that αa colors a.

(N2) For all elements a, b that get assigned the same τin-color by α, the projections of the
subsequences αa and αb to their operations (i.e., their first parameters) are identical.

4 The Emptiness Problem

In this section we define and study the decidability of the emptiness problem for dynamic
programs in general and for restricted classes of dynamic programs. The emptiness problem
asks, whether the query relation RQ of a given dynamic program P is always empty, more
precisely, whether RSQ = ∅ for every (empty) initial database D and every modification
sequence α with S = Pα(D).

8 We omit the (obvious) parts of formulas that deal with spurious deletions.
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Quantification
in update
formulas

allowed not allowed

undecidable
(Thm. 6 (a))

Arity of input
relations

unary binary or more

Arity of
auxiliary
relations

at most unary binary or more

decidable
(Thm. 7)

undecidable
(Thm. 6 (b))

undecidable
(Thm. 6 (c))

Figure 1 Decidability of Emptiness for various classes of dynamic programs.

To enable a fine-grained analysis, we parameterize the emptiness problem by a class C of
dynamic programs.

Problem: Emptiness(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is RS
Q = ∅, for every initially empty database D and every

modification sequence α, where S def= Pα(D)?

As mentioned before, undecidability of the emptiness problem for unrestricted dynamic
programs follows immediately from the undecidability of finite satisfiability of first-order
logic.

I Theorem 5. Emptiness is undecidable for DynFO(2-in, 0-aux)-programs.

In the remainder of this section, we will shed some light on the border line between
decidable and undecidable fragments of DynFO. In Subsection 4.1 we study fragments of
DynFO obtained by disallowing quantification and/or restricting the arity of input and
auxiliary relations. In Subsection 4.2, we consider dynamic programs that come with a
certain consistency guarantee.

4.1 Emptiness of general dynamic programs
In this subsection we study the emptiness problem for various restricted classes of dynamic
programs. We will see that the problem is basically only decidable if all relations are at most
unary and no quantification in update formulas is allowed. Figure 1 summarizes the results.

At first we strengthen the general result from Theorem 5. We show that undecidability of
the emptiness problem for DynFO-programs holds even for unary input relations and auxiliary
bits. Furthermore, quantification is not needed to yield undecidability: for DynProp-
programs, emptiness is undecidable for binary input or auxiliary relations.

I Theorem 6. The emptiness problem is undecidable for
(a) DynFO(1-in, 0-aux)-programs,
(b) DynProp(1-in, 2-aux)-programs,
(c) DynProp(2-in, 0-aux)-programs,

Proof sketch. In all three cases, the proof is by a reduction from the emptiness problem for
semi-deterministic 2-counter automata.

In a nutshell, a counter automaton (short: CA) is a finite automaton that is equipped with
counters that range over the non-negative integer numbers. A counter c can be incremented
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(inc(c)), decremented (dec(c)) and tested for zero (ifzero(c)). A CA does not read any input
(i.e., its transitions can be considered to be ε-transitions) and in each step it can manipulate
or test one counter and transit from one state to another state. More formally, a CA is tuple
(Q,C,∆, qi, F ), where Q is a set of states, qi ∈ Q is the initial state, F ⊆ Q is the set of
accepting states, and C is a finite set (the counters). The transition relation ∆ is a subset of
Q× {inc(c), dec(c), ifzero(c) | c ∈ C} ×Q. A configuration of a CA is a pair (p, ~n) where p is
a state and ~n ∈ NC gives a value nc for each counter c in C. A transition (p, inc(c), q) can
be applied in state p, transits to state q and increments nc by one. A transition (p,dec(c), q)
can be applied in state p if nc > 0, transits to state q and decrements nc by one. A transition
(p, ifzero(c), q) can be applied in state p, if nc = 0 and transits to state q.

A CA is semi-deterministic if from every state there is either at most one transition or
there are two transitions, one decrementing and one testing the same counter for zero. The
emptiness problem for (semi-deterministic) 2-counter automata (2CA) asks whether a given
counter automaton with two counters has an accepting run and is undecidable [18, Theorem
14.1-1].

In all three reductions, the dynamic program P is constructed such that for every run ρ of
a semi-deterministic 2CAM there is a modification sequence α = α(ρ) that lets P simulate ρ,
and an empty database D, such that P accepts α over D if and only if ρ is accepting. More
precisely, the states of P encode the states ofM by auxiliary bits and the counters ofM
in some way that differs in the three cases. However, in all cases it holds that not every
modification sequence for P corresponds to a run ofM. However, P can detect if α does
not correspond to a run and assume a rejecting sink state as soon as this happens.

For (a), the two counters are simply represented by two unary relations, such that the
number of elements in a relation is the current value of the counter. The test whether
a counter has value zero thus boils down to testing emptiness of a set and can easily be
expressed by a formula with quantifiers.

The lack of quantifiers makes the reductions for (b) and (c) a bit more complicated. In
both cases, the counters are represented by linked lists, similar to Example 4, and the number
of elements in the list corresponds to the counter value (in (c): plus 1). With such a list a
counter value zero can be detected without quantification. Due to the allowed relation types,
the lists are built with auxiliary relations in (b) and with input relations in (c). J

The next result shows that emptiness of DynProp(1-in, 1-aux)-programs is decidable,
yielding a clean boundary between decidable and undecidable fragments.

I Theorem 7. Emptiness is decidable for DynProp(1-in, 1-aux)-programs.

Proof. The proof uses the following two simple observations about DynProp(1-in, 1-aux)-
programs P.

The initialization formulas of P assign the same τaux-color to all elements. This color
and the initial auxiliary bits only depend on the size of the domain. Furthermore there
is a number n(P), depending solely on the initialization formulas, such that the initial
auxiliary bits and τaux-colors are the same for all empty databases with at least n(P)
elements. This observation actually also holds for DynFO(1-in, 1-aux)-programs.
When P reacts to a modification δ = (o, a), the new (τ -)color of an element b 6= a only
depends on o, the old color of b, the old color of a, and the 0-ary relations. In particular,
if two elements b1, b2 (different from a) have the same color before the update, they both
have the same new color after the update. Thus, the overall update basically consists
of assigning new colors to each color (for all elements except a), and the appropriate
handling of the element a and the 0-ary relations.
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We will show below that the behavior of DynProp(1-in, 1-aux)-programs can be simulated
by an automaton model with a decidable emptiness problem, which we introduce next.

A multicounter automaton (short: MCA) is a counter automaton which is not allowed to
test whether a counter is zero, i.e. the transition relation ∆ is a subset of Q×{inc(c), dec(c) |
c ∈ C} ×Q. A transfer multicounter automaton (short: TMCA) is a multicounter counter
automaton which has, in addition to the increment and the decrement operation, an operation
that simultaneously transfers the content of each counter to another counter. More precisely
the transition relation ∆ is a subset of Q× ({inc(c), dec(c) | c ∈ C} ∪ {t | t : C → C})×Q.
Applying a transition (p, t, q) to a configuration (p, ~n) yields a configuration (q, ~n′) with
n′c

def=
∑
t(d)=c nd for every c ∈ C. A configuration (q, ~n) of a TCMA is accepting, if q ∈ F .

The emptiness problem for TCMAs9 is decidable by reduction to the coverability problem
for transfer petri nets10 which is known to be decidable [7].

Let P be a DynProp-program over unary schema τ = τin ∪ τaux with query symbol RQ
which may be 0-ary or unary. Let Γ0 be the set of all 0-ary (atomic) types over τ and let Γ1
be the set of τ -colors. We construct a transfer multicounter automatonM with counter set
Z1 = {zγ | γ ∈ Γ1}. The state set Q ofM contains Γ0, the only accepting state f and some
further “intermediate” states to be specified below.

The intuition is that whenever P can reach a state S thenM can reach a configuration
c = (p, ~n) such that p reflects the 0-ary relations in S and, for every γ ∈ Γ1, nγ is the number
of elements of color γ in S.

The automatonM works in two phases. First,M guesses the size n of the domain of
the initial database. To this end, it increments the counter zγ to n, where γ is the color
assigned to all elements by the initialization formula for domains of size n, and it assumes
the state corresponding to the initial 0-ary relations for a database of size n. Here the first
of the above observations is used. ThenM simulates an actual computation of P from the
initial database of size n as follows. Every modification insS(a) (or delS(a), respectively) in
P is simulated by a sequence of three transitions inM:

First, the counter zγ , where γ is the color of a before the modification, is decremented.
Second, the counters for all colors are adapted according to the update formulas of P.
Third, the counter zγ′ , where γ′ is the color of a after the modification, is incremented.

If a modification changes an input bit, the first and third step are omitted. The state of
M is changed to reflect the changes of the 0-ary relations of P. For this second phase the
second of the above observations is used.

To detect when the simulation of P reaches a state with non-empty query relation RQ,
states p ∈ Γ0 may have a transition to the accepting state f . J

4.2 Emptiness of consistent dynamic programs
Some readers of the proof of Theorem 6 might have got the impression that we were cheating
a bit, since the dynamic programs it constructs do not behave as one would expect: in all
three cases each modification sequence α that yields a non-empty query relation RQ can be
changed, e.g., by switching two operations, into a sequence that does not correspond to a run
of the CA and therefore does not yield a non-empty query relation. That is, the program P
is inconsistent because it might yield different results when the same database is reached
through two different modification sequences.

9 We note that (the complement of) this emptiness problem is often called control-state reachability
problem.

10The simulation of states by counters can be done as in [13, Lemma 2.1]
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It seems, that this inconsistency made the proof of Theorem 6 much easier. Therefore,
the question arises, whether the emptiness problem becomes easier if it can be taken for
granted that the given dynamic program is actually consistent. We study this question in
this subsection and will investigate the related decision problem whether a given dynamic
program is consistent in the next section.

As Table 1 shows, the emptiness problem for consistent dynamic programs is indeed easier
in the sense that it is decidable for a considerably larger class of dynamic programs. While
emptiness for general DynFO programs is already undecidable for the tiny fragment with
unary input relations and 0-ary auxiliary relations, it is decidable for consistent DynFO
programs with unary input and unary auxiliary relations. Likewise, for DynProp there is a
significant gap: for consistent programs it is decidable for arbitrary input arities (with unary
auxiliary relations) or arbitrary auxiliary arities (with unary input relations), but for general
programs emptiness becomes undecidable as soon as binary relations are available (in the
input or in the auxiliary database).

We call a dynamic program P consistent, if it maintains a query with respect to an empty
initial database, that is, if, for all modification sequences α to an empty initial database D∅,
the query relation in Pα(D∅) depends only on the database α(D∅). In the remainder of this
subsection we show the undecidability and decidability results stated in Table 1.

I Theorem 8. The emptiness problem is undecidable for
(a) consistent DynFO(2-in, 0-aux)-programs, and
(b) consistent DynFO(1-in, 2-aux)-programs.

Proof idea. Statement (a) is a corollary of the proof of Theorem 5, as the reduction in that
proof always yields a consistent program.

For (b), we present another reduction from the emptiness problem for semi-deterministic
2CAs (see also the proof of Theorem 6). From a semi-deterministic 2CAM we will construct
a consistent Boolean dynamic program P with a single unary input relation U . The query
maintained by P is “M halts after at most |U | steps”. Clearly, such a program has a
non-empty query result for some database and some modification sequence if and only ifM
has an accepting run.

The general idea is that P simulates one step of the run ofM whenever a new element is
inserted to U . A slight complication arises from deletions from U , since it is not clear how
one could simulateM one step “backwards”. Therefore, when an element is deleted from U ,
P freezes the simulation and stores the size m of |U | before the deletion. It continues the
simulation as soon as the current size ` of U grows larger than m, for the first time. J

Contrary to the case of not necessarily consistent programs, the emptiness problem is
decidable for consistent DynFO(1-in, 1-aux)-programs.

I Theorem 9. Emptiness is decidable for consistent DynFO(1-in, 1-aux)-programs.

Proof idea. The proof uses the fact that the truth of first-order formulas with quantifier
depth k in a state of a DynFO(1-in, 1-aux)-program only depends on the number of elements
of every color up to k. The states of a consistent DynFO(1-in, 1-aux)-program can therefore
be abstracted by a bounded amount of information, namely the number of elements of every
color up to k + 1. This can be used to construct, from a consistent DynFO(1-in, 1-aux)-
program P , a nondeterministic finite automaton A that reads encoded modification sequences
for P in normal form and represents the abstracted state of P in its own state. In this way
the emptiness problem for consistent DynFO(1-in, 1-aux)-programs reduces to the emptiness
problem for nondeterministic finite automata. J
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The picture of decidability of emptiness for consistent programs for all classes of the form
DynFO(`-in,m-aux) is pretty clear and simple: it is decidable if and only if ` = 1 and m ≤ 1.
Now we turn our focus to the corresponding classes of consistent DynProp-programs. Here
we do not have a full picture. We show in the following that it is decidable if ` = 1 or m ≤ 1.

I Theorem 10. The emptiness problem is decidable for
(a) consistent DynProp(1-in)-programs.
(b) consistent DynProp(1-aux)-programs.

Proof idea (of Theorem 10 (a)). The statement follows almost immediately from the fact
that every consistent DynProp(1-in)-program with 0-ary query relations maintains a regular
language [10, Theorem 3.2]. J

To highlight the role of the Sunflower Lemma for the proof of Theorem 10 (b), we give
a full exposition of this proof in the following. At first, we sketch the basic proof idea for
consistent DynProp(1-aux)-programs over graphs, i.e., the input schema contains a single
binary relation symbol E. For simplicity we also assume a 0-ary query relation. The general
statement requires more machinery and is proved below.

Our goal is to show that if such a program P accepts some graph then it also accepts
one with “few” edges, where “few” only depends on the schema of the program. To this end
we show that if a graph G accepted by P contains many edges then one can find a large
“well-behaved” edge set in G from which edges can be removed without changing the result
of P . Emptiness can then be tested in a brute-force manner by trying out insertion sequences
for all graphs with few edges (over a canonical domain {1, . . . , n}).

More concretely, we consider an edge set “well-behaved”, if it consists only of self-loops, it
is a set of disjoint non-self-loop-edges, or is is a star, that is, the edges share the same source
node or the same target node. From the Sunflower Lemma [9] it follows that for every p ∈ N
there is an Np ∈ N such that every (directed) graph with Np edges contains p self-loops, or p
disjoint edges, or a star with p edges.

Let us now assume, towards a contradiction, that the minimal graph accepted by P has
N edges with N > NM2+1, where M is the number of binary (atomic) types over the schema
τ = τin ∪ τaux of P . Then G either contains M2 + 1 self-loops, or M2 + 1 disjoint edges, or a
(M2 + 1)-star.

Let us assume first that G has a set D ⊆ E of M2 + 1 disjoint edges. We consider the
state S reached by P after inserting all edges from E \ D into the initially empty graph.
Since D contains M2 + 1 edges, there is a subset D′ ⊆ D of size M + 1 such that all edges in
D′ have the same atomic type in state S. Let S0 be the state reached by P after inserting all
edges in D \D′ in S. All edges in D′ still have the same type in S0 since P is a quantifier-free
program (though this type can differ from the type in S). Let e1, . . . , eM+1 be the edges
in D′ and denote by Si the state reached by P after inserting e1, . . . , ei in S0. For each i,
all edges ei+1, . . . , eM+1 have the same type γi in state Si, again. As the number of binary
atomic types is M , there are i < j such that γi = γj , thus eM+1 has the same type in Si
and Sj . Therefore, inserting the edges ej+1, . . . , eM+1 in Si yields a state with the same
query bit as inserting those edges in Sj . As the query bit in the latter case is accepting, it
is also accepting in the former case, yet in that case the underlying graph has fewer edges
than G, the desired contradiction. The case where G contains M2 + 1 self-loops is completely
analogous.

Now assume that G contains a star with M2 + 1 edges. The argument is very similar to
the argument for disjoint edges. First insert all edges not involved in the star into an initially
empty graph. Then there is a set D of many star edges of the same type, and they still have
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the same type after inserting the other edges of the star. A graph with fewer edges that is
accepted by P can then be obtained as above.

The idea generalizes to input schemata with larger arity by applying the Sunflower Lemma
in order to obtain a “well-behaved” sub-relation within an input relation that contains many
tuples. In order to prove this generalization we first recall the Sunflower Lemma, and observe
that it has an analogon for tuples.

The Sunflower Lemma was introduced in [9], here we follow the presentation in [14]. A
sunflower with p petals and a core Y is a collection of p sets S1, . . . , Sp such that Si ∩Sj = Y

for all i 6= j.

I Lemma 11 (Sunflower Lemma, [9]). Let p ∈ N and let F be a family of sets each of
cardinality `. If F consists of more than N`,p

def= `!(p− 1)` sets then F contains a sunflower
with p petals.

We call a set H of tuples of some arity ` a sunflower (of tuples) if it has the following
three properties.
(i) All tuples in H have the same equality type.
(ii) There is a set J ⊂ {1, . . . , `} such that tj = t′j for every j ∈ J and all tuples t, t′ ∈ H.
(iii) For all tuples t 6= t′ in H the sets {ti | i 6∈ J} and {t′i | i 6∈ J} are disjoint.
We say that H has |H| petals.

The following Sunflower Lemma for tuples has been stated in various variants in the
literature, e.g., in [17, 15].

I Lemma 12 (Sunflower Lemma for tuples). Let `, p ∈ N and let R be a set of `-tuples. If R
contains more than N̄`,p

def= ``p`(`!)2 tuples then it contains a sunflower with p petals.

Proof. Let R be an `-ary relation that contains N̄`,p tuples. As there are less than `` equality
types of `-tuples there is a set R′ ⊆ R of size at least p`(`!)2, in which all tuples have the
same equality type. Application of Lemma 2 in [15] yields11 a sunflower with p petals. J

It is instructive to see how Lemma 12 shows that a graph with sufficiently many edges has
many selfloops, disjoint edges or a large star: Selfloops correspond to the equality type of
tuples (t1, t2) with t1 = t2, many disjoint edges to the case J = ∅ and the two possible kinds
of stars to J = {1} and J = {2}, respectively.

Proof (of Theorem 10 (b)). Now the proof for binary input schemas easily translates to
general input schemas. For the sake of completeness we give a full proof.

Suppose that a consistent DynProp(1-aux)-program P over schema τ with 0-ary12 query
relation accepts an input database D that contains at least one relation R with many tuples.

Suppose that R is of arity ` and contains N̄`,M2+1 diverse tuples where M is the number
of `-ary (atomic) types over the schema of P. We show that P already accepts a database
with less tuples than D.

By Lemma 12, R contains a sunflower R′ of size M2 + 1. Consider the state S reached by
P after inserting all tuples from R \R′ into the initially empty database. Since R′ contains
M2 + 1 tuples, there is a subset R′′ ⊆ R′ of size M + 1 such that all tuples in R′′ have the
same atomic type in state S. Let S0 be the state reached by P after inserting all tuples in

11 In [15], elements from the “outer part” of a petal can also occur in the “core”. As in R′ all tuples have
the same equality type, this can not happen in our setting.

12At the end of the proof we discuss how to deal with unary query relations.
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R′ \ R′′ in S. All tuples in R′′ still have the same type in S0 since P is a quantifier-free
program (though this type can differ from the type in S).

Let ~a1, . . . ,~aM+1 be the tuples in R′′ and denote by Si the state reached by P after
inserting a1, . . . , ai in S0. In state Si all tuples ai+1, . . . , aM+1 have the same type, again.
As the number of `-ary atomic types is k, there are i < j such that aM+1 has the same
type in Si and Sj . Therefore, inserting the edges ej+1, . . . , eM+1 in Si yields a state with
the same query bit as inserting this sequence in Sj . As the query bit in the latter case is
accepting, it is also accepting in the former case, yet in that case the underlying database
has fewer tuples than D, the desired contradiction.

If P has a unary query relation, then the proof has to be adapted as follows. For an
accepted database D, the unary query relation contains some element a. Now M is chosen
as the number of (`+ 1)-ary atomic types (instead of the number of `-ary atomic types), and
R′′ is chosen as sub-sunflower where all tuples (~a1, a), . . . , (~aM+1, a) have the same atomic
type. The rest of the proof is analogous. J

The final result of this subsection gives a characterization of the class of queries maintain-
able by consistent DynProp(0-aux)-programs. This characterization is not needed to obtain
decidability of the emptiness problem for such queries, since this is included in Theorem 10.
However, we consider it interesting in its own right.

I Theorem 13. A Boolean query Q can be maintained by a consistent DynProp(0-aux)
program if and only if it is a modulo query.

Intuitively13, a modulo query is a Boolean combination of constraints of the form: the
number of tuples that have some atomic type γ is q modulo p, for some natural numbers
p ≥ 2 and q < p.

4.3 The impact of built-in orders
A closer inspection of the proof that the emptiness problem is undecidable for consistent
DynFO(1-in, 2-aux)-programs (Theorem 8) reveals that the construction only requires one
binary auxiliary relation: a linear order on the “active” elements. The proof would also
work if a global linear order on all elements of the domain would be given. We say that a
dynamic program has a built-in linear order, if there is one auxiliary relation R< that is
always initialized by a linear order on the domain and never changed. Likewise, for a built-in
successor relation.

That is, the border of undecidability for consistent DynFO-programs actually lies between
consistent DynFO(1-in, 1-aux)-programs and consistent DynFO(1-in, 1-aux)-programs with
a built-in linear order. Similarly, the border of undecidability for (not necessarily con-
sistent) DynProp-programs actually lies between DynProp(1-in, 1-aux)-programs and
DynProp(1-in, 1-aux)-programs with a built-in linear order.

I Proposition 14. The emptiness problem is undecidable for
(a) consistent DynFO(1-in, 1-aux)-programs with a built-in linear order or a built-in suc-

cessor relation,
(b) DynProp(1-in, 1-aux)-programs with a built-in successor relation.

However, for dynamic programs that only have auxiliary bits, linear orders or successor
relations do not affect decidability.

13The actual formalization uses sets of elements rather than tuples.
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I Proposition 15. The emptiness problem is decidable for
(a) consistent DynFO(1-in, 0-aux)-programs with a built-in linear order or a built-in suc-

cessor relation,
(b) DynProp(1-in, 0-aux)-programs with a built-in linear order or a built-in successor

relation.

5 The Consistency Problem

In Section 4.2 we studied Emptiness for classes of consistent dynamic programs. It turned
out that with this restriction the emptiness problem is easier than for general dynamic
programs. One might thus consider the following approach for testing whether a given
general dynamic program is empty: Test whether the program is consistent and if it is, use
an algorithm for consistent programs. To understand whether this approach can be helpful,
we study the following algorithmic problem, parameterized by a class C of dynamic programs.

Problem: Consistency(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is P a consistent program with respect to empty initial databases?

It is not very surprising that Consistency is not easier than Emptiness, since deciding
Emptiness boils down to finding one modification sequence resulting in a state with particular
properties and Consistency is about finding two modification sequences resulting in two
states with particular properties. This high level comparison can actually be turned into
rather easy reductions from Emptiness to Consistency.

On the other hand, Consistency can also be reduced to Emptiness. For this direction
the key idea is to simulate two modification sequences simultaneously and to integrate their
resulting states into one joint state. This is easy if quantification is available, and requires
some work for DynProp-fragments.

I Theorem 16. Let ` ≥ 1,m ≥ 0.
(a) For every C ∈ {DynFO(`-in,m-aux),DynFO(`-in),DynFO(m-aux),DynFO},

(i) Emptiness(C) ≤ Consistency(C), and
(ii) Consistency(C) ≤ Emptiness(C).

(b) For every
C ∈ {DynProp(`-in,m-aux),DynProp(`-in),DynProp(m-aux),DynProp},
(i) Emptiness(C) ≤ Consistency(C), and
(ii) Consistency(C) ≤ Emptiness(C).

6 The History Independence problem

As discussed in Section 4.2, it is natural to expect that a dynamic program is consistent, i.e.,
that the query relation only depends on the current database, but not on the modification
sequence by which it has been reached. Many dynamic programs in the literature satisfy a
stronger property: not only their query relation but all their auxiliary relations depend only
on the current database. Formally, we call a dynamic program history independent if all
auxiliary relations in Pα(D) only depend on α(D), for all modification sequences α and initial
empty databases D. History independent dynamic programs (also called memoryless [19] or
deterministic [4]) are still expressive enough to maintain interesting queries like undirected
reachability [11], but also some lower bounds are known for such programs [4, 11, 25].
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In this section, we study decidability of the question whether a given dynamic program is
history independent.

Problem: HistoryIndependence(C)
Input: A dynamic program P ∈ C with FO initialization

Question: Is P history independent with respect to empty initial databases?

Not surprisingly, HistoryIndependence is undecidable in general. This can be shown
basically in the same way as the general undecidability of Emptiness in Theorem 5.

I Theorem 17. HistoryIndependence is undecidable for DynFO(2-in, 0-aux)-programs.

However, the precise borders between decidable and undecidable fragments are different
for HistoryIndependence than for Emptiness and Emptiness for consistent programs.
More precisely, HistoryIndependence is decidable for DynFO- and DynProp-programs
with unary input databases, and for DynProp-programs with unary auxiliary databases.

For showing that HistoryIndependence is decidable for DynFO-programs with unary
input databases, we prove that if such a program is not history independent then this is
witnessed by some reachable small “bad state”. A decision algorithm can then simply test
whether such a state exists. Bad states satisfy one of two properties: they either locally
contradict history independence or they are “inhomogeneous”. We define both notions in the
following.

A state S over domain D is locally history independent14 for a dynamic program P if the
following three conditions hold.
(H1) Pδ1δ2(S) = Pδ2δ1(S) for all insertions δ1 and δ2.
(H2) S = PinsR(~a)delR(~a)(S) if ~a /∈ RS , for all R ∈ τin and ~a over D.
(H3) S = PinsR(~a)(S) if ~a ∈ RS and S = PdelR(~a)(S) if ~a /∈ RS , for all R ∈ τin and ~a over D.

Locally history independence is well-suited to algorithmic analysis. The following lemma
shows that for testing history independence it actually suffices to test locally history inde-
pendence for all states reachable by very restricted modification sequences.

I Lemma 18. Let P be a dynamic program.
(a) P is history independent if and only if every state reachable by P via insertion sequences

is locally history independent.
(b) If P is a DynFO(1-in)-program, then P is history independent if and only if every state

reachable by P via insertion sequences in normal form is locally history independent.

A state S is homogeneous if all tuples ~a and ~b with the same (atomic) τin-type also have
the same (atomic) τaux-type. The following lemma is an immediate consequence of [4, Lemma
16].

I Lemma 19. For every history independent DynFO(1-in)-program, every reachable state
is homogeneous.

We call a state of a DynFO(1-in)-program that is not homogeneous or not locally history
independent a bad state. The following lemma is the key ingredient for deciding history
independence for DynFO(1-in)-programs. It restricts the size of the smallest bad state and
therefore allows for testing history independence in a brute-force manner.

14We define this term for arbitrary input arity, since the first part of Lemma 18 holds in general.
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I Proposition 20. Let P be a DynFO(1-in,m-aux)-program. There is a number N ∈ N,
that can be computed from P, such that if P is not history independent, then there exists an
empty database D∅ of size at most N and an insertion sequence α in normal form such that
Pα(D∅) is bad.

I Theorem 21. HistoryIndependence is decidable for DynFO(1-in)-programs.

Using the same technique as in the proof of Theorem 10 (b), history independence can
be shown to be decidable for DynProp(1-aux)-programs.

I Theorem 22. HistoryIndependence is decidable for DynProp(1-aux)-programs.

7 Conclusion

In this work we studied the algorithmic properties of static analysis problems for (restrictions
of) dynamic programs. Most of the results are summarized in Table 1. In general only very
strong restrictions yield decidability.

The only cases left open are about DynProp-programs when both the arity of the input
and the arity of the auxiliary relations is at least 2. For such programs the status of history
independence and emptiness of consistent remains open. We conjecture that for history
independence the decidable fragment of DynProp is larger than exhibited here.

Our results will hopefully contribute to a better understanding of the power of dynamic
programs. On the one hand the undecidability proofs show that very restricted dynamic
programs can already simulate powerful machine models. It is natural to ask whether
this power can be used to maintain other, more common queries. On the other hand the
decidability results utilize limitations of the state space and the transition between states
for classes of restricted programs. Such limitations can be a good starting point for the
development of techniques for proving lower bounds for the respective fragments.
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