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Abstract
In homotopy type theory, the truncation operator ‖−‖n (for a number n ≥ −1) is often useful if
one does not care about the higher structure of a type and wants to avoid coherence problems.
However, its elimination principle only allows to eliminate into n-types, which makes it hard to
construct functions ‖A‖n → B if B is not an n-type. This makes it desirable to derive more
powerful elimination theorems. We show a first general result: If B is an (n + 1)-type, then
functions ‖A‖n → B correspond exactly to functions A→ B which are constant on all (n+ 1)-st
loop spaces. We give one “elementary” proof and one proof that uses a higher inductive type,
both of which require some effort. As a sample application of our result, we show that we can
construct “set-based” representations of 1-types, as long as they have “braided” loop spaces. The
main result with one of its proofs and the application have been formalised in Agda.
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1 Introduction

As it is very well-known, the type constructor Σ of Martin-Löf type theory expresses a very
strong form of existence. Although a type of the form Σ (a : A) . P (a) is read as “there exists
an element in A for which the predicate P holds” under the propositions as types view, an
element of such a type is more than a proof of mere existence: it includes a very concrete
example of an element a : A. This is not always satisfying as, for example, the set-theoretic
axiom of choice becomes a tautology when translated naively to type theory. The idea
of adding a construction which allows to formulate existence in a weaker sense has been
studied intensively in various different settings. As far as we know, the first documented
appearance are squash types in the extensional theory of NuPRL [7]. Later, Awodey and
Bauer introduced a similar concept in extensional Martin-Löf type theory, called bracket
types [4]. Homotopy type theory has introduced the propositional truncation operation,
written ‖−‖−1 or simply ‖−‖ [14]. It forces all elements to be equal, in the sense that the
identity type x = y is inhabited for any x, y : ‖A‖−1, and it is well-known that x = y will
in fact be uniquely inhabited (i.e. equivalent, or isomorphic, to the unit type). Classically,
‖A‖−1 is always equivalent to either the unit type or the empty type, but this is of course
not the case in a constructive setting.
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The homotopical view has suggested that propositional truncation is only one out of
infinitely many operations that reduce the complexity of a type. As “types are weak ω-
groupoids” ([12] and [15]), it is easy to imagine that there is, for every number n ≥ −1, an
operation which trivialises all the structure above level (n + 1). In other words, this is a
reflector for the category of weak n-groupoids, viewed as a subcategory of weak ω-groupoids,
roughly speaking. In homotopy type theory, we write this operation as ‖−‖n (“n-truncation”),
and it can be seen and implemented as a higher inductive type [14]. The truncation operator
‖−‖n is a monad in some appropriate sense (and even a modality in the sense of [14]), and if
we want to, we can choose to work completely in that monad. Types that are canonically
equivalent to their n-truncation are called n-types, or n-truncated types.

Considering n-types (for some given n) instead of all types is useful if we do not care
about or want to avoid potential higher equality proofs. For example, if we formalise algebraic
structures such as groups, we may require that the type of group elements is of truncation
level 0 in order to match the set-theoretic definition: equality of group elements should be a
mere proposition and not carry additional information, that is, there is at most one proof
that given group elements are equal. As a consequence, for any type A with an element a : A,
the type a = a is not necessarily a group. It does have a neutral element an elements can be
inverted and composed, corresponding to the fact that equality is reflexive, symmetric, and
transitive. However, a = a is not a 0-truncated type. We can use 0-truncation to make up
for this, and ‖a = a‖0 is indeed a group, called the fundamental group of A at basepoint a,
while a = a (as pointed type also written Ω(A, a)) is the loop space at point a.

A drawback of truncations is that it can be hard to get out of them, that is, “to leave the
monad”. A priori we have, for any type A and number n ≥ −1, a map |−| : A→ ‖A‖n, but
there is in general no function in the other direction. The universal property of ‖−‖n says
that, via composition with |−|, the type of functions ‖A‖n → B is equivalent to the type
A→ B, but only if B is n-truncated. To continue with the previous example, an element of
the fundamental group of A at basepoint a is really an equivalence class of equality proofs (or
paths) between a and itself, but it is in general impossible to get a specific representative from
such a class; that is, we cannot construct a section of the map |−| : (a = a)→ ‖a = a‖0. Of
course, we would not have expected anything else: it is unreasonable to assume that we can
make this sort of choice without any further assumptions. Although the truncation operator
‖−‖n is often described as “cutting of” higher structure of a type, it is more accurate to
think of it as “filling non-trivial loops”, which makes it plausible that it is harder instead of
easier to define a function out of ‖A‖n than out of A.

Unlike in the example above, it is in some cases reasonable to expect that we can get a
function ‖A‖n → B even if B is not an n-type. If ‖A‖−1 tells us that A has some element
without revealing a concrete one to us, then a function ‖A‖−1 → B should be the same as a
function f : A→ B which cannot look at the “input”.1 What exactly this means is difficult
to state in general (see [8]), so let us restrict ourselves to the case that B is 0-truncated (also
called a set). In this case, the statement that “f does not look at its input” can be expressed
by saying that f maps any pair of inputs to equal values, Πx,y:A(f(x) = f(y)). Indeed, it
has been shown that a function f with this behaviour gives rise to a map ‖A‖−1 → B [10].

Even if we have a function A→ B, it can be very hard to tell whether it is possible to
construct a function ‖A‖n → B unless B is an n-type, and if it is possible, there is no direct

1 This only makes sense if stated internally. Of course, a concrete implementation of f can compute
differently if applied to different terms of type A. As long as we stay inside the theory, we cannot talk
about judgmental equality.
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way to do so as the universal property (or the elimination principle) cannot be applied directly.
The usual workaround is looking for an n-type C “in the middle”, that is such that one has
functions A→ C and C → B. One can then apply the elimination principle to construct a
function ‖A‖n → C which, by composition, yields a function ‖A‖n → B as desired. The type
C is constructed ad-hoc, and it is natural to ask for a more powerful elimination principle
(or universal property) of ‖−‖n which allows the construction of functions ‖A‖n → B in a
more principled and streamlined way.

This has been done for the (−1)-truncation in previous work [8], where it is shown that
functions ‖A‖−1 → B correspond exactly to functions A → B with an infinite tower of
coherence conditions. This can be understood as a generalised version of the usual universal
property of ‖−‖−1. If B is known to be n-truncated for some fixed finite n, the infinite
tower becomes finite and can be expressed directly in type theory, whereas the existence of
Reedy limits [13] is necessary for the general case. If B is a 0-type, the “tower” of coherence
condition is exactly the single condition Πx,y:A(f(x) = f(y)) discussed above. If B is even
a (−1)-type itself, the tower vanishes completely and the usual universal property remains.
Unfortunately, it seems that there is no immediate generalisation of the proof of [8] to
n-truncations.

In this paper, we do consider n-truncations for general n, but we assume that B is
(n + 1)-truncated, and already this case seems to be involved. We show that functions
‖A‖n → B correspond exactly to those functions A→ B that are constant on all (n+ 1)-st
loop spaces. We offer two proofs for this fact, one which works in “plain” homotopy type
theory with general truncations, and the other involving a higher inductive type. The first
proof, which we call the “elementary proof”, is close to not even requiring the univalence
axiom (the central concept of homotopy type theory expressing that equality in the universe
is given by type equivalence). The only reason why univalence is necessary is that we need
to be able to translate between truncations (‖a =A b‖n is equivalent to |a| =‖A‖n+1

|b|). The
second proof (Section 4) uses an argument that makes crucial use of both a higher inductive
type and the univalence axiom, and we therefore call it the “HIT proof”. In the HIT proof,
we will construct a higher inductive type in such a way that it is the “initial” type through
which functions f : A→ B with the property (10) factor, and we will show that this type is
really ‖A‖n. Although we show an equivalence of types, we believe that the main application
is the construction of functions ‖A‖n → B, that is, one may often want to use only one
direction of the equivalence. Therefore, the result can be used as an elimination principle
that is more powerful than the usual recursion principle of the truncation. We also present a
sample application (a translation of types into “set-based representation”), and conclude with
a discussion on how the generalised statement should look like, and under which assumptions
it should be provable.

The main contents of this paper have, in slightly different form, appeared in the second-
named author’s Ph.D. thesis [9].

Outline. We start by stating the result of the paper in Section 2, and discuss two special
cases (n ≡ −1 and n ≡ 0). In Section 3, we give the “elementary” proof of this result, and in
Section 4, the (technically harder, but conceptually clear) proof that uses a higher inductive
type. We discuss a sample application of the case n ≡ 0 in Section 5, namely a construction
of a set-based representation of any given type, provided that it fulfils a property that e.g.
loop spaces do. Finally, in Section 6, we compare the two proofs with each other. We also
compare our result with the general universal property of the propositional truncation as
proved before [8], and discuss why the potential generalisations seem so much more involved
than what we have done here.

CSL 2015
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Setting. We consider the theory of the standard reference on homotopy type theory, that
is, the textbook [14]. To summarise, we need a version of intensional Martin-Löf type theory
with Σ, Π, and identity types. In addition, we assume that the theory has a univalent
universe, and that there are truncation operators ‖−‖n for all n ≥ −1, with the canonical
projections |−| : A → ‖A‖n. This concept is explained in detail in [14, Chap. 7.3]). The
statement and the first proof that we give do not need higher inductive types [14, Chap. 6]
other than the truncations, while the second proof that we give makes heavy use of such a
higher inductive type.

Agda Formalisation. We have formalised the main result, together with the “elementary”
proof (Section 3) and the sample application (Section 5), in Agda [6]. The source code
can be found on GitHub, at github.com/pcapriotti/agda-base/tree/trunc. The results
of this paper are contained in the module hott.truncation.elim. A browsable HTML
version of the formalisation can be accessed at paolocapriotti.com/agda-base/trunc/
hott/truncation/elim.html. We encourage a reader who is not familiar with Agda to
have a look at the latter, which does not need any software apart from a web browser. For
all the technical details, we refer to the readme file in the repository.

On a minor note, we have chosen not to make use of the common (but, as far as we know,
not justified by a formal argument) hack that makes truncations satisfy the judgmental
computation rule. As we wanted our formalisation to be readable, this has required us to
think of some implementation strategies that make the code in this setting more elegant
than the “straightforward” formalisation approaches.

2 The Statement of the Theorem

Let us begin by clarifying some notation. In general, we stick closely to the terminology of
the standard reference on the topic, the textbook [14]. We write Πa:AB(a) for Π-types as it
is done there, but Σ (a : A) . B(a) for Σ-types.2 For better readability, we uncurry implicitly
and write f(a, b) : C, even if f is a function of type A → B → C. Instead of λh.h ◦ g, we
write _ ◦ g. By the distributivity law of Σ and Π, we mean the well-known equivalence

Πa:AΣ (b : B(a)) . C(a, b) ' Σ (g : Πa:AB(a)) .Πa:AC(a, g(a)), (1)

sometimes called the type-theoretic axiom of choice. As it is standard [14], we write
is-n-type(A) for the propositional type expressing that A is n-truncated if n ≥ −2 is an
integer, defined by

is-(−2)-type(A) :≡ Σ (a0 : A) .Πa:Aa = a0 (2)
is-(n+ 1)-type(A) :≡ Πa1,a2:Ais-n-type(a1 = a2), (3)

and the special case when n is −2 (“A is contractible”) is also written as isContr(A). We
assume that there is a universe U , and we write Un for the type (or “universe”) of n-types in
U (cf. [14, Chap. 7.1]),

Un :≡ Σ (X : U) . is-n-type(X). (4)

2 This seemingly inconsistent notation is intentional: we sometimes have nested Σ-types, e.g.
Σ (a : A) . Σ (b : B(a)) . C(a, b), and we view the components as “equally valued”; thus, writing ex-
actly one component bigger than the others would not look correct.

https://github.com/pcapriotti/agda-base/tree/trunc
https://github.com/pcapriotti/agda-base/tree/trunc/hott/truncation
http://www.paolocapriotti.com/agda-base/trunc/hott.truncation.elim.html
http://www.paolocapriotti.com/agda-base/trunc/hott.truncation.elim.html
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Further, we write U• for the type (or “universe”) of pointed types in U (cf. [14, Def. 2.1.7]),

U• :≡ Σ (X : U) . X. (5)

If we have a type A and a pointed type (B, b), together with a function f : A→ B, we say
that “f is null” if it is constantly b, that is,

isNull(f) :≡ Πx:Ab = f(x). (6)

Recall that there is an endofunction on U•, the loop space function Ω,

Ω(A, a) :≡ (a = a, refla) . (7)

For any natural number n, we can iterate this endofunction n times, for which we write
Ωn. Instead of π1 (Ωn(A, a)) and π1((Ω(A, a))), we simply write Ωnt (A, a) and Ωt(A, a) if we
want to talk about the underlying type (i.e. ignore the point). Further, given two types A
and B together with any function f : A→ B and a point a : A, we have a function

apf,a : Ωt(A, a)→ Ωt(B, f(a)). (8)

In the same way, we have (given A, B, f as before) apnf,a : Ωnt (A, a)→ Ωnt (B, f(a)), and Ω
is really an endofunctor in some appropriate sense.3

Our result can now be stated as follows:

I Theorem 1. Let n ≥ −1 be a number, A a type, and B an (n + 1)-type. Assume that
f : A→ B is a function. Then, f can be factored through the n-truncation, that is

Σ (f ′ : ‖A‖n → B) . f ′ ◦ |−| = f, (9)

if and only if apn+1
f,a is null for every a,

Πa:AisNull(apn+1
f,a ), (10)

and both of the types (9) and (10) are propositional.

An immediate corollary tells us how we can eliminate out of truncations:

I Corollary 2. Assume we have n, A and B as in Theorem 1. If we want to construct a
function ‖A‖n → B, it suffices to find a function f : A→ B which satisfies Πa:AisNull(apn+1

f,a ).

Before approaching a proof of Theorem 1, let us have a look at two special cases, namely the
cases n ≡ −1 and n ≡ 0. The first case is known [10] and will serve as the base case for the
two general proofs presented later. The second case is not strictly necessary, but serves to
exemplify the techniques used in the “HIT proof” (Section 4).

The case n ≡ −1. The simplified statement of Theorem 1 reads in this case as follows:
Assume we are given a type A and a 0-type B (often called a set). A function f : A→ B

factors through the propositional truncation if and only if

Πx,y:Af(x) = f(y). (11)

This follows easily from previous work, e.g. [8, Prop. 2.2]. It is a pleasant surprise that
“ap0

f,a is null for all a”, simply by unfolding our definitions, simplifies to (11), which is “f is
constant” in the sense of [10].4

3 Of course, apf,a is its action on the morphism f and could thus rightfully be called Ω(f, a).
4 In the simplified formulation, we have omitted the part that the two logically equivalent types are

propositional. This is easy to see here, and will in the general case be part of the proof.

CSL 2015
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‖A‖n → B Σ (f : A→ B) .Πa:AisNull(apn+1
f,a )

A→ B

cn

_ ◦ |−| π1

Figure 1 The canonical map cn as map between fibres.

The case n ≡ 0. Here, our result (Theorem 1) implies that, for any type A and 1-type B,
a function f : A → B factors through ‖A‖0 if and only if, for all a : A and p : a = a, we
have that apf,a(p) equals reflf(a). As Shulman has remarked in an online discussion (in the
comment section of a blog post [5]), this follows from the Rezk completion [1]: Let Ã be
the precategory with the type A of objects and hom(a1, a2) :≡ ‖a1 =A a2‖−1, and let B̃ be
the category with B as objects and hom(b1, b2) :≡ (b1 =B b2). Then, f with the condition
Πa:AisNull(apf,a) gives (already using the case n ≡ −1) rise to a functor Ã → B̃. Such a
functor generates a functor between the Rezk completion of Ã and the category B̃, and the
former happens to be ‖A‖0.

In the remainder of the current section, we give a simple technical construction which
essentially serves as a reformulation of Theorem 1 and which is necessary for both the
elementary and the HIT proof. For types A and B, assume we are given a function
g : ‖A‖n → B. We can consider the composition A |−|−−→ ‖A‖n

g−→ B. For any a : A we have,
by functoriality of Ωn+1, that the composition

Ωn+1
t (A, a)

apn+1
|−|,a−−−−→ Ωn+1

t (‖A‖n, |a|)
apn+1

g,|a|−−−−→ Ωn+1
t (B, g(|a|)) (12)

is equal to apn+1
g◦|−|,a. But Ωn+1

t (‖A‖n, |a|) is contractible ([14, Thm. 7.2.9]), and apn+1
g,|a| clearly

maps its unique element to the basepoint of Ωn+1(B, g(|a|)). Therefore, apn+1
g◦|−|,a is null.

From this construction, we get a canonical function

cn : (‖A‖n → B)→ Σ (f : A→ B) .
(

Πa:AisNull(apn+1
f,a )

)
. (13)

We then claim the following:

I Lemma 3 (“Total space” formulation of Theorem 1). For any n ≥ −1, any type A and any
(n + 1)-type B, the types ‖A‖n → B and Σ (f : A→ B) .Πa:AisNull(apn+1

f,a ) are equivalent,
and the equivalence is given by the canonical function cn.

It is easy to see that Lemma 3 does indeed imply, and is nearly immediately equivalent
to, Theorem 1. Consider the triangle shown in Figure 1, where the top horizontal map is
the canonical map cn, the left one is composition with |−|, and the right one is simply the
projection. The triangle clearly commutes (judgmentally) by construction. Let us fix some
function f : A→ B. The fibre (or “inverse image”) over f is, in the case of _ ◦ |−|, exactly
(9), i.e. the statement that f can be lifted. In the second case, the fibre is (10). Therefore,
cn induces an equivalence of the two fibres, which implies that cn itself is an equivalence
(see [14, Thm. 4.7.7]).

3 The “Elementary” Proof

In this section, we give our first proof of Lemma 3 (and thereby of Theorem 1). This does
not need higher inductive types apart from truncations that already appear in the statement.
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The idea is to not prove the result for any type A first, but only for an n-connected one.5
Afterwards, we generalise this to arbitrary types, by splitting the type into its “connected
components” and gluing together the constructions for the components.

I Lemma 4. If n ≥ −1 be a number, A an n-connected type, and B be an (n+ 1)-type, the
canonical map cn is an equivalence.

Proof. We do induction on n. As already discussed above, the case that n is −1 is known
(e.g. [8, Prop. 2.2]).

Let now n ≥ 0 be any given number. Note that, due to the assumption that ‖A‖n is
contractible, we have a unique element x0 : ‖A‖n, the type ‖A‖n → B is actually equivalent
to B, and any function g : ‖A‖n → B is uniquely specified by its value g(x0).

The claim of the lemma is propositional. Applying the eliminator of ‖A‖n, we may not
only assume that we are given x0 : ‖A‖n, but we can also assume a point a : A. A potential
inverse of cn is then given by6

dn :
(

Σ (f : A→ B) .Πa:AisNull(apn+1
f,a )

)
→ (‖A‖n → B) (14)

dn(f, p) :≡ λ_.f(a). (15)

To show that cn and dn are inverses, we check that both compositions are the identities. One
direction is easy: for any g : ‖A‖n → B, we have

dn(cn(g))(x0) ≡ g(|a|), (16)

and the latter is equal to g(x0).
For the other direction, assume we have f : A → B together with a proof q. We need

to show (f, q) = cn(dn(f, q)). Fortunately, the equality of the two second components is
automatic thanks to the fact that isNull(apn+1

f,a ) is propositional, and we only need to prove
the equality of f and π1(cn(dn(f, q))). We observe that the latter expression computes to
λ_.f(a). Thus, our goal is to show that, for any a′ : A, we have f(a) = f(a′).

We use the induction hypothesis with (a = a′) for A, and f(a) = f(a′) for B. By
the connectedness assumption on A, the type |a| = |a′| is contractible. Consequently, the
type ‖a = a′‖n−1 is contractible ([14, Thm. 7.3.12], note that this theorem depends on the
univalence axiom). Put differently, (a = a′) is (n− 1)-connected. As B is an (n+ 1)-type,
we know that f(a) = f(a′) is n-truncated. By the induction hypothesis, it is hence enough
to construct an element of

Σ (k : a = a′ → f(a) = f(a′)) .Πp:a=a′ isNull(apnk,p). (17)

For k, we choose apf . By path induction, we may assume that p is refla. Thus, we need to
show that apnapf,a,refla

is null. This term is equal to apn+1
f,a .7 The condition that this function

null is exactly what is given by q(a′). J

To move from n-connected to arbitrary types A, we simply split a type into n-connected
components. This is very intuitive for n ≡ 0, in which case we use that any type (or “space”)
can be viewed as the “disjoint sum” of its connected components. To be precise, an element

5 Recall that a type A is n-connected if ‖A‖n is contractible [14, Def. 7.5.1].
6 We use _ if we do not need to give the bound variable a name.
7 Depending on the the exact definition of apn, this can hold judgmentally, but can also be rather involved.
We refer to our formalisation for technical details.

CSL 2015



366 Functions out of Higher Truncations

of a component is a point of A together with a proof that it is in the component. For n ≡ 0,
this proof is propositional. For higher n, it is not. This makes the general case less intuitive
and hard to picture. In fact, the proof determines in which component the element is, which
makes it seem circular. Fortunately, it is easier to write down the type-theoretic argument
than picturing the topological intuition, as we will see in the following lemma.

I Lemma 5. For any type A and number n, we define the family of n-connected components,

connn : ‖A‖n → U (18)
connn(x) :≡ Σ (a : A) . x =‖A‖n

|a|. (19)

Then, for any x : ‖A‖n, the type connn(x) is n-connected. Further, “choosing an n-connected
component and then a point in this component” corresponds to “choosing a point”, that is,

Σ (x : ‖A‖n) . connn(x) ' A. (20)

Proof. This is easy and standard. For the first part, we claim that the equivalence∥∥Σ (a : A) . x =‖A‖n
|a|

∥∥
n
' Σ (y : ‖A‖n) . x =‖A‖n

y (21)

holds, where the left-hand type is ‖connn(x)‖n by definition, and the right-hand type has
the form of a singleton.8 For both directions of (21), we apply the dependent eliminator of
‖−‖n. From left to right, we map |(a, p)| to (|a|, p). From right to left, we map (|a|, p) to
(|a, p|). For an alternative proof, see [14, Cor. 7.5.8].

To see that the equivalence (20) holds, it is enough to unfold the definition of connn, and
use that in Σ (x : ‖A‖n) .Σ (a : A) . x =‖A‖n

|a|, the first and the third component form a
singleton. J

Finally, we can complete the first proof of our main result:

“Elementary” proof of Lemma 3. Assume we have n, A, and B as in the statement. The
preceding two lemmata tell us that, for any x : ‖A‖n, the canonical map

cxn : B →
(

Σ (fx : connn(x)→ B) .Πy:connn(x)isNull(apn+1
fx,y

)
)

(22)

is an equivalence (note that we have omitted the contractible type ‖connn(x)‖n in the domain
of cxn). A family of equivalences gives rise to an equivalence of families, so that we get that
the map

c̃n : (‖A‖n → B) →
(
Πx:‖A‖n

Σ (gx : connn(x)→ B) .Πy:connn(x)isNull(apn+1
g,y )

)
(23)

c̃n(k) :≡ λx.cxn(k(x)) (24)

is also an equivalence.
All we need at this point is an equivalence from the codomain of the function (24) to

the type stated in the theorem, i.e. Σ (f : A→ B) .Πa:AisNull(apn+1
f,a ), and the composition

of (24) and this equivalence has to be the canonical map cn. We calculate:

Πx:‖A‖n
Σ (gx : connn(x)→ B) .Πy:connn(x)isNull(apn+1

gx,y) (25)

8 If z0 : Z is some point of some type, we call any type of the form Σ (z : Z) . z = z0 a singleton. It is
well-known that singletons are contractible and therefore “neutral” components of Σ-types, which we
use here and later.
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(by the distributivity law)

' Σ
(
g : Πx:‖A‖n

(connn(x)→ B)
)
.Πx:‖A‖n

Πy:connn(x)isNull(apn+1
g(x),y) (26)

(by currying and using the canonical equivalence (20))

' Σ (h : A→ B) .Πa:AisNull(apn+1
λy:connn(|a|).h(π1y),(a,refl|a|)) (27)

Fortunately, the (pointed) types Ωn+1(connn(|a|), (a, refl|a|)) and Ωn+1(A, a) are equivalent,
with the equivalence being apn+1

π1
; this is an easy technical statement that follows from [11,

Lem. 5.1]. If we compose apn+1
λy:connn(|a|).h(π1y),(a,refl|a|) with the inverse of this equivalence,

functoriality of apn+1 allows us to simplify the expression.

' Σ (h : A→ B) .Πa:AisNull(apn+1
h,a ) (28)

We need to check that the composition of c̃n with this equivalence is indeed the canonical
function cn. This is immediate as we only need to check that the first component (the map
A→ B) turns out to be the correct function, as the second component is propositional. J

4 The “HIT Proof”

Our second proof is fairly technical. We construct a higher inductive type with a suitable
elimination property and show that it is equivalent to ‖A‖n. As a preparation, we show a
small lemma. It is a part of a theorem that has been introduced in [9], where it is described
as local generalised Hedberg argument.

I Lemma 6 (main part of [9, Thm. 3.2.1]). Let (A, a0) be a pointed type. Assume further
that P is a pointed family of (n− 1)-types over (A, a0), that is, a family P : A→ Un−1 with
a point p0 : P (a0). If P (a) implies that a0 is equal to a, i.e. m : Πa:AP (a)→ a0 = a, then A
is “locally an n-type” in the sense that Ωn+1(A, a0) is contractible.9

Proof sketch. Consider the following composition of three maps, for any a : A:

a0 = a P (a) a0 = a a0 = a
q 7→ transportP (q, p0) ma q 7→ ma0(p0) � q

By path induction, we easily see that these maps make a0 = a a retract of P (a). Hence, the
former is (n− 1)-truncated [14, Thm. 7.1.4], which shows the claim [14, Thm. 7.2.9]. J

We are ready to define the higher inductive type that plays the central role in the second
proof of Lemma 3. For the following definition and for the rest of the section, we fix a type
A and a number n ≥ −1.

I Definition 7. Define the higher inductive type H, which depends on A and n, as given by
the constructors

η : A→ H (29)
ε : Πa,b:A

(
‖a = b‖n−1 → η(a) = η(b)

)
(30)

δ : Πa:A
(
reflη(a) =η(a)=η(a) ε(a, a, |refla|)

)
(31)

t : is-(n+ 1)-type(H). (32)

9 This “local” form directly implies the “global” form: We can consider a relation R : A × A → Un−1

which implies identity and which has points ra : R(a, a) for all a : A; then, the lemma shows that A is
an n-type.
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The complicated looking constructors ε and δ are more intuitive than they looks at first
sight. If we have (a = b), we of course always get a proof of η(a) = η(b) using apη. The
constructor ε says that ‖a = b‖n−1 is sufficient, while δ ensures that ε is really a lifting of
apη through ‖a = b‖n−1. This is because we could have used the expanded form

δ′ : Πa,b:AΠp:a=b
(
apη(p) =η(a)=η(b) ε(a, b, |p|)

)
, (33)

instead of the constructor δ. By path induction on p, the type (33) is easily seen to be
equivalent to the original type (31). While (33) might look more regular next to (30), we
choose (31) just for simplicity.

The recursion principle for H is straightforward to write down. Given some (n+1)-type B,
we need a function f : A→ B, together with a function k : Πa,b:A(‖a = b‖n−1)→ f(a) = f(b)
and a proof h : Πa:Areflf(a) =f(a)=f(a) k(a, a,

∣∣reflf(a)
∣∣), we get a function H → B with the

expected properties. It is more involved, nevertheless not inherently difficult, to state the
induction principle following the standard (“intuitive”) approach as used in [14, Chap. 6].
Given an (n+ 1)-truncated family P : H → Un+1, in order to prove Πx:HP (x), we need

η : Πa:AP (η(a)) (34)
ε : Πa,b:AΠq:‖a=b‖n−1

transportP (ε(a, b, q), η(a)) =P (η(b)) η(b) (35)

δ : Πa:A

(
transportλr.transportP (r,η(a))=η(a) (

δ(a), reflη(a)
)

= ε(a, a, |refla|)
)
. (36)

The above type expressions look rather involved. Fortunately, we do not need to deal too much
with them at all because we are only interested in the case that P is n-truncated (instead of,
more generally, (n+ 1)-truncated), which enables us to use the following observation:

I Lemma 8 (Restricted dep. universal property of H). Given A and n ≥ −1 as above and a
family of n-types, P : H → Un, the canonical map

Πx:HP (x) _◦η−−→ Πa:AP (η(a)) (37)

is an equivalence.

Proof. As P is a family of n-types, the type transportP (ε(a, b, q), η(a)) =P (η(b)) η(b), ap-
pearing in (35) as the target of ε, is (n− 1)-truncated. By the standard universal property of
the (n− 1)-truncation, we may thus assume that the q in the type (35) is of the form |p| with
p : a = b, and then do path induction on p. This shows that the type of ε is equivalent to

ε′′ : Πa:AtransportP (ε(a, a, |refla|), η(a)) =P (η(a)) η(a). (38)

Under this equivalence, the type of δ becomes

δ
′′ : Πa:A

(
transportλr.transportP (r,η(a))=η(a) (

δ(a), reflη(a)
)

= ε′′(a)
)
. (39)

We see that the dependent pair of (38) and (39) forms a family of singletons. Therefore, there
is always a canonical and unique choice for ε and δ. The induction principle can therefore
be simplified to only (34). Let us write rind : Πa:AP (η(a)) → Πx:HP (x) for this restricted
induction principle. It is easy to check that rind is indeed an inverse of the map _ ◦ η:

For any f : Πa:AP (η(a)) and a : A, the expression (rind(f) ◦ η)(a) can be reduced to f(a).
For any g : Πx:HP (x), assume x : H. We need to show (rind(g ◦ η))(x) = g(x). Using the
restricted induction principle, we may assume x ≡ η(a), and the left side can be reduced
to the right side of the equation. J
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This allows us to conclude the following crucial property of H:

I Lemma 9. The type H is n-truncated.

Proof. It suffices to show that Ωn+1(H,x) is contractible for all x : H [14, Lem. 7.2.9]. The
restricted induction principle ofH tells us that, in order to show P (x) :≡ isContr

(
Ωn+1(H,x)

)
for all x, we only need to prove P (η(a0)) for any a0 : A. Let us define a type family
Q : H → Un−1 using the restricted induction principle, Q(η(a)) :≡ ‖a0 = a‖n−1. This family
is trivially inhabited at a0. We want to show that Q implies local equality in the sense of
Πx:H (Q(x)→ η(a0) = x), and as this type family is n-truncated, we apply the restricted
induction principle again and the goal becomes

Πa:A (Q(η(a))→ η(a0) = η(a)) . (40)

By definition of Q, this is exactly given by the constructor ε, applied on a0 and a.
This allows us to conclude, by Lemma 6, that H is n-truncated, as claimed. J

It is straightforward and standard that an n-truncated type which satisfies the dependent
eliminating principle of ‖A‖n is necessarily equivalent to ‖A‖n, and we record:

I Corollary 10. The types H and ‖A‖n are equivalent.

At the same time, we have the following:

I Lemma 11 (Universal property of H). For any (n+1)-type B, the type of functions H → B

is equivalent to

Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
. (d : Πa:Areflf(a) = e(a, a, |refla|)).

(41)

Proof sketch. The proof of deriving this form of universal property from the induction
principle is standard. The map from H → B into the stated type is more or less composition
with the constructors; for any k : H → B, we get

(f, e, d) :≡
(
k ◦ η , apk ◦ ε , λa.apapk

(δ(a))
)
. (42)

The map in the other direction is exactly the recursion principle of H. That they are mutually
inverse corresponds to the computation (β) rule respectively the uniqueness (η) rule of H. J

Finally, we can complete the second proof of our main result:

“HIT proof” of Lemma 3. We do induction on n. The base case (n ≡ −1) is, as before,
just what we have discussed in Section 2. For higher n, we have the following chain of
equivalences:

‖A‖n → B (43)

(by Corollary 10)

' H → B (44)

(by Lemma 11)

' Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
.(

Πa:Areflf(a) = e(a, a, |refla|)
)

(45)
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(by “inverse path induction”)

' Σ (f : A→ B) .Σ
(
e : Πa,b:A‖a = b‖n−1 → f(a) = f(b)

)
.(

Πa,b:AΠp:a=bapfp = e(a, b, |p|)
)

(46)

(by the distributivity law)

' Σ (f : A→ B) .Πa,b:A
(
Σ

(
e′ : ‖a = b‖n−1 → f(a) = f(b)

)
.

Πp:a=bapfp = e′(|p|)
)

(47)

Now we exchange e′ by (e1, e2) :≡ cn−1(e′) using the induction hypothesis, and thus we need
to apply c−1

n−1 to that term in the last component. Fortunately, it follows from the definition
of cn−1 that _ ◦ cn−1 ≡ π1 ◦ |−|, hence we can replace e′(|p|) with simply e1(p):

' Σ (f : A→ B) .Πa,b:A
(
Σ (e1 : a = b→ f(a) = f(b)) .Σ

(
e2 : Πp:a=bisNull(apne1,p)

)
.(

Πp:a=bapfp = e1(p)
) )

(48)

The term e1 and the very last (unnamed) component form a singleton and can be removed:

' Σ (f : A→ B) .
(

Πa,b:AΠp:a=bisNull(apnapf ,p
)
)

(49)

(by “path induction”)

' Σ (f : A→ B) .
(

Πa:AisNull(apnapf ,reflf(a)
)
)

(50)

(as apnapf ,refla
is the same as apn+1

f,a – the footnote on page 365 applies)

' Σ (f : A→ B) .
(

Πa:AisNull(apn+1
f,refla

)
)
. (51)

Finally, we need to check that the constructed equivalence is indeed the canonical function cn.
Fortunately, the second (and more involved) part Πa:AisNull(apn+1

f,refla
) is propositional. It is

therefore enough to check that any map g : ‖A‖n → B gets, by the constructed equivalence,
mapped to a pair in (51) of which the first component is g ◦ |−|. But the first component is
constructed in the very first step, where Lemma 11 is applied, and, looking at the proof of
Lemma 11, it is indeed simply composition with |−|. J

5 A Sample Application: Set-Based Groupoids

A set-theoretic ω-groupoid has, in the “globular” formulation, ω-many levels: At level 0, it
has a collection of objects (or 0-cells); for any two objects, it has a collection of 1-morphisms
(1-cells); for any two 1-morphisms, there is a collection of 2-morphisms (2-cells), and so on.
As recalled in the introduction, types indeed are such ω-groupoids meta-theoretically. It is
intuitive to ask how much of this can be internalised. Defining a weak ω-groupoid in type
theory is already very hard [2, 3]: one would want a 0-type (i.e. a set) A0 of 0-cells, a set A1
of 1-cells which is indexed twice over A0, and so on. Even if one has such a definition at
hand, it is implausible to expect that one can define the “fundamental ω-groupoid” of a type.
As Altenkirch, Li and Rypacek [2] mention, they are unable to construct such an ω-groupoid,
which in their terminology is called Idω. The Ph.D. thesis of the second-named author of
the current paper includes a precise negative statement [9, Sec. 9.4.1] which shows that a
construction in the sense of [2] is impossible in all non-trivial cases. The argument given
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there indicates that a fundamental reason why we cannot even define A1 is that we want A1
to be indexed twice over A0.

However, we know that the whole higher structure of types is in some sense determined
by the loop spaces, as opposed to the path spaces. It seems therefore reasonable to consider a
more modest variation where we index A1 only once over A0, with the intention that A1(a0)
represents the loop space over a0. This has the further advantage that we can assume that
A0 is ‖A‖0; with double-indexed A1, it would be possible that elements a, b : A0 are not
equal in A0, but “made equal” by an element of A1(a, b). As a further simplification, we only
consider the question whether a type can be represented in two levels, i.e. with A0 ≡ ‖A‖0
and A1.

I Definition 12. We call a type A set-based representable if the function

ωA : A→ U (52)
ωA(a) :≡ (a = a) (53)

factors through ‖A‖0, i.e. if there is a single-indexed family A1 : ‖A‖0 → U of types which,
for all a : A, satisfies A1(|a|) ' (a =A a).

We also define the following simple notion:

I Definition 13. We say that a type A has loop spaces with braidings if, for all a : A and
p, q : a = a, we have p � q = q � p.

Examples of types which have loop spaces with braidings are sets (for which the condition is
trivial), and, more interestingly, loop spaces themselves.

I Theorem 14. Every 1-type whose loop spaces have braidings is set-based representable.

Proof. As A is a 1-type, the function (52) takes sets as values; that is, in this case, we can
assume that ωA is of type A → U0. Using that U0 is a 1-type [14, Thm. 7.1.11], we may
apply Theorem 1 with n ≡ 0. We need to show that, for a fixed a : A, the function

apωA,a : Ωt(A, a)→ Ωt(U , a = a) (54)

is null. But apωA
(p) induces a function of type (a = a) → (a = a) (via the function that

is called idtoeqv in [14], and projection), and by univalence, it is enough to show that this
function does not depend on p. We claim that this function maps q : a = a to p−1 � q � p. An
easy way to prove this claim is considering the more general version of apωA

that works on
any path spaces (instead of loop spaces), and then doing path induction on p. Clearly, the
braiding on a = a is exactly what we need to justify that p−1 � q � p does not depend on p. J

6 The Big Picture: Solved and Unsolved Cases

The “ordinary” universal property of the n-truncation can be recovered easily from Theorem 1.
If, under the conditions of the statement, B is not only (n+ 1)-, but even n-truncated, the
type Πa:AisNull

(
apn+1
f,a

)
becomes contractible, and the theorem says precisely that functions

A→ B are the same as functions ‖A‖n → B, via composition with |−|. Theorem 1 is thus
stronger than the “ordinary” universal property. However, we weaken the condition on B
by only one single level, while [8] weakens it by arbitrary many levels, but only for the
propositional truncation.
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Figure 2 The universal property of ‖A‖? with respect to ?-types: trivial, solved, and open cases.

Of course, the general question is: What is the universal property of ‖A‖n with respect
to m-types, i.e. how can we construct a map ‖A‖n → B for some m-type B? Put differently,
given a function f : A → B, how can we (by only imposing conditions on f , not on A or
B) ensure that f factors through ‖A‖n? Figure 2 illustrates the current progress on this
question. As indicated, the question is trivial if m is not greater than n. Two other families
of cases are solved, those with m ≡ n + 1 by the current paper, and n ≡ −1 by [8]. Note
that the latter is not internalised in the way that the result of the current paper is, and it
is not to be expected that an internalisation is possible in the considered type theory; and
further, the case n ≡ −1, m ≡ ∞ (meaning that there is no condition at all on B) is solved,
but only under the assumption of Reedy ωop-limits.

The (probably) simplest case that is left open is the case n ≡ 0, m ≡ 2. So, let us consider
a function f : A→ B, where B is 2-truncated. Which conditions do we have to impose on
f to conclude that it factors through ‖A‖0? As is easy to show, if f factors through the
0-truncation, then apf factors through the (−1)-truncation. The necessary conditions for
the latter have been worked out in [8], and we could thus try to impose them on apf (at all
points). However, this does not work. In one aspect, the propositional truncation is a special
case that is actually harder than the higher truncations, intuitively because loop spaces are
always pointed10 which we have already made use of in the definition of isNull. It turns out
that in this “pointed” case one can get all these coherences (which make the result of [8]
hard) for free. Instead, the higher groupoid structure of loop spaces induces a different sort

10This seems to correspond to the fact that the zeroth homotopy “group” is not a group, and does
therefore not have a canonical element, which seems to occasionally make this special case harder in
traditional topology as well.
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of coherence problem. For example, it certainly is necessary that, for any a : A and p : a = a,
there is a proof ca,p : apf,a(p) = reflf(a). From ca,p, we can construct a proof that apa,f (p � p)
equals reflf(a), using functoriality of apf,a. If we want the family c to be “fully coherent”,
we have to force this proof to be the same as ca,p � p. The work [8] concludes with a precise
conjecture of how all the required coherence conditions can be captured in the general case.
At this time, it is unknown whether this can be used to fill in the missing parts of Figure 2.
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