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Abstract
We construct, for any sentence Ψ of the modal µ calculus (Lµ), a derived sentence ΨML in the
modal fragment ML of Lµ and a sentence ΨΠµ

1 in the fragment Πµ
1 of Lµ without least fixpoints

such that Ψ is equivalent to a formula in ML or Πµ
1 if and only if it is equivalent to ΨML or ΨΠµ

1

respectively. The formula ΨΣµ
1 such that Ψ is equivalent to ΨΣµ

1 if and only if Ψ is semantically
in the greatest-fixpoint free fragment Σµ1 is obtained by duality to ΨΠµ

1 . This yields a new proof
of decidability of the first levels of the modal µ alternation hierarchy. The blow-up incurred by
turning Ψ into the modal formula ΨML is shown to be necessary: there are ML formulas that can
be expressed sub-exponentially more efficiently with the use of fixpoints. For Πµ

1 and Σµ1 however,
as long as formulas are in guarded disjunctive form, the transformation into a syntactically Πµ

1
or Σµ1 does not increase the size of the formula.
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1 Introduction

The modal µ calculus (Lµ), a logic expressing properties of labelled transition systems, was
first introduced by Kozen in 1983 [5]. Its popularity is due to its simple but productive syntax
and appealing decidability: deciding satisfiability is exptime-complete; model checking is in
NP and conjectured to be in P.

Syntactically, Lµ consists simply of a propositional modal logic augmented with its
namesake least fixpoint operator µ and the dual greatest fixpoint operator ν. Both the
expressivity and complexity of the logic stem from the alternating usage of µ and ν: the
more alternations are allowed, the richer the fragment of Lµ but the more difficult its
model-checking. Indeed, the alternation hierarchy, consisting of Lµ fragments for which
the number of alternations is fixed is strict [10, 1]. For each fixed alternation-depth, the
model-checking problem is of polynomial complexity, but for whole of Lµ the best current
algorithms still have complexity exponential in a function of the alternation depth.

It is therefore of both practical and theoretical interest to reduce, whenever possible,
the number of alternations used to express a property. Even though the problem must be
at least exptime-hard, in practice model checking is likely to benefit from the one-time
cost of reducing a formula to its simplest form, especially since the size of the formula is
unlikely to dominate the runtime complexity of the model checking. However, only properties
expressible in modal logic or with a single type of fixpoint operator are currently known to
be recognisable. In general, for a given Φ, finding an equivalent Ψ with smallest alternation
depth is one of the main open problems surrounding the modal µ calculus.
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Here we focus on the lowest levels of the alternation hierarchy, which are known to be
decidable. The class ML of properties expressible in modal logic, Lµ without fixpoints,
resides at the base of the alternation hierarchy. These are properties which dictate some
behaviour in the initial fragment of a structure, up to fixed depth. Otto [13] showed that
properties of this class are recognisable via a reduction to S2S, the monadic second order
logic over binary trees. Küsters and Wilke showed in [8] that the problem of deciding whether
a property of Lµ can be expressed with only least fixpoints, or, by duality, only greatest
fixpoints, is exptime-complete. Their proof first constructs a bottom-up tree automaton
of which the states correspond to sets of subformulas based on the Lµ formula. Roughly
speaking, the bottom-up automaton accepts a structure if it has an initial fragment such
that every completion admits a valid assignment of automaton states to its nodes. This
automaton is closed under bisimulation if and only if it is Σµ1 definable and equivalent to the
original formula.

Both Otto’s, and Küsters and Wilke’s results focus on deciding whether a property is
expressible with a formula of the lower class, but they pay little heed to the target formula.
The Σµ1 -formula is described in the technical report [9] as part of the proof of decidability of
the first alternation level. Unfortunately the transformation can incur a double-exponential
blow-up in the size of the formula. From a model-checking point of view, this is problematic:
not only is the transformation into a Σµ1 -formula non trivial, but the transformation does not
reduce the complexity of the model-checking procedure. The formula is also quite complex
and does not necessarily resemble the original formula, so it is difficult to follow how the
redundant fixpoints were eliminated. Otto does not describe the target ML formula at all
but it seems that if one can be extracted from the decision procedure for ML, it will also be
based on a power-set construction around subformulas of the original formula.

This paper puts the focus on the relation between a formula and its equivalent formulas
in lower alternation classes. It describes ΨML,ΨΠµ

1 and ΨΣµ
1 , formulas based on, and

syntactically close to Ψ such that Ψ is semantically equivalent to ΨC if Ψ is semantically
in the class C. We show that the required transformations into a ML, Πµ

1 or Σµ
1 formula

are conceptually very simple and easily implementable. The formula ΨML is perhaps as one
could anticipate: if Ψ is semantically in ML, then there is some m such that Ψ is equivalent
to the formula obtained by approximating all fixpoints to their mth stage and truncating the
resulting formula at modal depth m. As it turns out, m needs to be at most exponential
in the length of the formula. Interestingly, the potential blow-up in the size of the formula
is not accidental: there are properties which are semantically modal but can be expressed
with much shorter Σµ

1 -formulas than ML-formulas. We show that in this sense, Σµ
1 is at

least sub-exponentially more concise than ML. There is a clear trade-off between syntactic
complexity and formula length. From the model checking point of view, this means that if
a formula has high modal depth, it may be wise to retain some fixpoint operators which
will keep the size of the formula down. In contrast to ΨML, the most interesting aspect of
ΨΠµ

1 is perhaps its simplicity. As long as Ψ is given in disjunctive form, ΨΠµ
1 and its dual

ΨΣµ
1 are at most as large as Ψ: for disjunctive formulas, Πµ

1 and Σµ
1 are perfectly concise

in the sense that using further alternations to express the same property does not reduce
the size of the formula. This is significant in that the transformation from Ψ to ΨΠµ

1 results
in a genuinely simpler formula instead of a formula in which alternations are eliminated
at the cost of conciseness. The exponential complexity of the resulting decision procedure
which compares Ψ with ΨΠµ

1 is also optimal. The transformation itself is also noteworthy: it
consists roughly speaking of replacing every µ-operator with either ⊥ or a ν-operator. In
other words, in Lµ, any satisfiable µ-subformula is either necessary or interchangeable with
the identical ν-subformula.
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The key to the transformation into ΨΠµ
1 is the use of disjunctive form. Disjunctive form,

introduced in [4], is a syntactic constraint on conjunctions and universal modalities. It has
been used in the context of tableau methods to decide satisfiability for example but as this
paper shows, it is also a promising tool for syntactic manipulations.

2 Preliminaries

I Definition 1 (Modal µ). Given a set of atomic propositions Prop = {P,Q, ...} and a set
of fixpoint variables V ar = {X,Y, ...} , the syntax of Lµ is given by:

φ := P | X | ¬P | φ ∧ φ | φ ∨ φ | ♦φ | �φ | µX.φ | νX.φ | ⊥ | >

This definition only allows formulas in positive from: negation is only applied to pro-
positional variables. Positivity does not restrict the expressivity of the logic. A formula is
guarded if every fixpoint variable is within its binding in the scope of a modality. As is well
documented in the literature [11, 7] every Lµ formula is equivalent to a formula in guarded
form. Without loss of expressivity, we therefore restrict ourselves to Lµ in guarded positive
form. For the sake of clarity, we only consider the uni-modal Lµ but expect the multi-modal
case, as defined in [2] for example, to behave broadly speaking similarly.

Notation

If φ(X) is a formula, we write φ(ψ) for the formula φ where every occurrence of the variable
X is replaced with ψ. For readability, if φ is the binding formula of the fixpoint variable X
as in µX.φ, then φ(ψ) is also φ with X substituted by ψ.

Formulas of Lµ are evaluated on transition systems, referred to as structures, represented
by potentially infinite trees annotated with propositions.

I Definition 2 (Structures). A structure M = (S, s0, R, P ) consists of a set of states S,
rooted at some initial state s0 ∈ S, and a successor relation R ⊆ S × S between the states.
Every state s is associated with a set of propositions P (s) ⊆ Prop which it is said to satisfy.
In this document it is sufficient for us to consider finitely branching structures, so we require
that nodes only have finitely many successors. It is well-known that any structure can be
represented as a potentially infinite tree. To ease the manipulation of structures, we adopt
this representation.

For clarity and conciseness, we give the semantics directly in terms of parity games – the
equivalence between these and the usual semantics is a standard result. For a presentation
of the standard semantics of Lµ and a proof of the equivalence to the above, see for example
Bradfield and Stirling [2].

I Definition 3 (Parity games). A parity game is a potentially infinite two-player game on
a graph G = (V0, V1, E, vI ,Ω) of which the vertices consist of two disjoint sets, V0 and V1
belonging to the players Even and Odd respectively, and are annotated with positive integer
priorities bounded by some maximal priority q, via Ω : V0 ∪ V1 → {0, 1, ..., q}. Player Even
and her opponent, player Odd, move a token along the edges E ∈ (V0 ∪ V1)× (V0 ∪ V1) of
the graph starting from an initial position vI ∈ V0 ∪ V1, each choosing the next position
when the token is on a vertex in their partition. Some positions p might have no successors
in which case they are winning for the player of the parity of Ω(p). A play consists of the
potentially infinite sequence of vertices visited by the token. For finite plays, the last visited
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parity decides the winner of the play. For infinite plays, the parity of the lowest priority
visited infinitely often decides the winner of the game: Even wins if the lowest priority visited
infinitely often is even; otherwise Odd wins. Note that in the literature, the highest priority
is sometimes used, equivalently, as the most significant priority.

The winner of a parity game is defined in terms of existence of winning strategies. Strategies
in general can depend on the history of the game, but in the case of parity games positional
strategies which depend on the current position alone are sufficient, so we define strategies
as mappings from position to position.

I Definition 4 (Positional Strategies). A positional strategy σ for one of the players in a
parity game G is a mapping from the Player’s positions V0 or V1 in the game to a valid
successor position. A play respects a Player’s strategy σ if the successor positions in the
play belonging to the Player are those dictated by σ. If σ is Even’s strategy and τ is Odd’s
strategy, then there is a unique play σ × τ respecting both strategies. The winner of the
parity game at a position is the player who has a strategy σ, said to be a winning strategy,
such that they win σ × τ from that position for any counter-strategy τ . A strategy σ is said
to reach a position if there is a counter-strategy τ such that the position is along the play
σ × τ .

Parity games are positionally determined: for every position either Even or Odd has a
winning positional strategy [3]. This means that strategies gain nothing from looking at the
whole play rather than just the current position. As a consequence, we may take a strategy
to be memoryless: it maps each position of a player to a successor.

For any modal µ formula φ and a structureM we define a parity gameM×φ, constructed
in polynomial time, and say thatM satisfies φ, writtenM |= φ, if and only if Even has a
winning strategy inM× φ.

I Definition 5 (Model-checking parity game). For any formula φ of Lµ, taken to be in positive
form, and a modelM, define a parity gameM× φ with positions (s, ψ) where s is a state
ofM and ψ is a subformula of φ. The initial position is (s0, φ) where s0 is the root ofM.
Positions (s, ψ) where ψ is a disjunction or a formula starting with an existential modality ♦
belong to Even while conjunctions and formulas starting with a universal modality � belong
to Odd. Other positions have at most one successor so their owner is irrelevant; let them
be Even’s. There are edges from (s, ψ ∨ ψ′) and (s, ψ ∧ ψ′) to both (s, ψ) and (s, ψ′); from
(s, µX.φ) and (s, νX.φ) to (s, φ); from (s,X) to (s, νX.ψ) if X is bound by ν, or (s, µX.ψ)
if it is bound by µ; finally, from (s,♦ψ) and (s,�ψ) to every (s′, ψ) where (s, s′) is an edge
in the modelM. Positions (s, P ), (s,¬P ), (s,>) and (s,⊥) have no successors. The parity
function assigns an even priority to (s,>) and also to (s, P ) if P satisfies s in M and to
(s,¬P ) if s does not satisfy P in M; otherwise (s, P ) and (s,¬P ) receive odd priorities,
along with (s,⊥). Fixpoint variables are given distinct priorities such that ν-bound variables
receive even priorities while µ-bound variables receive odd priorities. Furthermore, whenever
X has priority i, Y has priority j and i > j, X must not appear free in the formula ψ binding
Y in µY.ψ or νY.ψ. In other words, inner fixpoints receive higher, less significant priorities
while outer fixpoint receive low priorities. Other nodes receive a priority max which is larger
than any of the priorities assigned to fixpoint nodes. This ensures that these will never be
the lowest priority seen infinitely often.

We now use parity games to define the semantics of Lµ.

I Definition 6 (Satisfaction relation). A structureM, rooted at s0 is said to satisfy a formula
Ψ of Lµ, writtenM |= Ψ if and only if the Even player has a winning strategy from (s0,Ψ)
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inM×Ψ . M satisfies a subformula φ of Ψ if it satisfies the formula φ where free fixpoint
variables X are recursively replaced with their fixpoint binding µX.φ or νX.φ from Ψ. This
is the case if and only if Even has a winning strategy from (s, φ) inM×Ψ.

Formulas are semantically equivalent if they are satisfied by exactly the same structures.

I Definition 7 (Modal Logic, Πµ
1 and Σµ

1 ). ML is the class of properties of structures
expressible in modal logic, that is to say in Lµ without any fixpoint operators. A formula
without fixpoint operators is said to be modal and has a modal depth which is the greatest
number of nested modal operators in it. Πµ

1 is the class of properties expressible by a formula
in positive form without using the least fixpoint operator µ and Σµ1 is the class of properties
expressible by a formula in positive form without using the greatest fixpoint operator ν.
If a formula does not contain µ, ν or both it is said to be syntactically in Πµ

1 ,Σ
µ
1 or ML

respectively.

Beyond ML, Πµ
1 and Σµ1 , the syntactic complexity of formulas is measured by the number

of alternations between least and greatest fixpoint operators. This is the alternation depth of
a formula and corresponds to the number of priorities needed in the model-checking parity
game. A precise definition of the alternation depth is given for example in [2]. The fragments
of Lµ with bounded alternation depth form the alternation hierarchy, which is known to be
strict: for each level, there are formulas which cannot be expressed with a formula of lower
alternation depth [1, 10].

If a formula is equivalent to a formula syntactically in some alternation level, it is said to
be semantically in that alternation level. Thus a formula of high syntactic alternation level
may be of low semantic alternation level.

Our concern is to decide whether a formula is semantically in one of Πµ
1 ,Σ

µ
1 or ML and

produce an equivalent formula syntactically in the appropriate alternation level.

3 The formula for ML

The modal fragment of Lµ, or ML, was shown by Otto to be decidable: for any formula of
Lµ, we can decide whether there is an equivalent modal formula [13]. This section proposes
a proof of decidability by formula construction: given a guarded formula Ψ, it presents a
formula ΨML in ML which Ψ is equivalent to if and only if Ψ is semantically a modal formula.
The crux of the argument is that a semantically modal formula Ψ can only reach depth 22|Ψ|

in any structure and therefore, if a formula is equivalent to a modal formula, it is sufficient
to first approximate all fixpoints to the 22|Ψ|-th stage of induction and then truncate the
formula at modal depth 22|Ψ|. At first sight this might seem like a wasteful solution since
the size of the formula increases as it is unfolded. However, Example 20 shows that there
are formulas which cannot be expressed in modal logic without at least a sub-exponential
increase in formula size. This proves that approximating the fixponts to their 22|Ψ|th stage of
induction is hardly excessive.

The first two definitions fix the notation for measuring the depth of a structure and
approximating fixpoints. Note that all structures are represented as trees since we are
interested in how far into a structure a formula can reach and this is easier to do when
reasoning about trees rather than graphs.

I Definition 8 (Rank and depth). The rank of a state without successors is 0. The rank of a
state with finitely many successors is h+ 1 where h is the maximal rank amongst the state’s
successors. The depth of the root of a structure is 0; otherwise the depth of a state is one
greater than the depth of its parent.
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The rank of a finite tree is the rank of its root and corresponds to the length of the longest
path in the tree.

The next definition formalises the notion of simultaneously evaluating all fixpoints to
their nth stage of induction.

I Definition 9 (Approximants). Let µX0.φ = ⊥ and µXn.φ(X) = φ(µXn−1.φ(X)); let
νX0.φ = > and νXn.φ(X) = φ(νXn−1.φ(X)).
Then, using the notation φ[a/b] to mean φ where all instances of b are substituted with a, and
fixpoints(φ) is the set of fixpoint variables in φ, let φn = φ[νXn/νX;µXn/µX]∀X∈fixpoints(φ),
the formula φ where every fixpoint µX or νX is substituted with its nth approximation µXn

or νXn. See, e.g., [2].

We can then show easily enough that for trees of bounded height n, there is never any
need to go beyond the nth stage of induction. The intuition is as follows: without change
in semantics, we can unfold all the fixpoints in φ all of n times each to obtain a formula
equivalent to φ which only differs syntactically from φn at modal depth greater than n. On
trees of bounded height n, the model-checking parity game will never reach this point for
either formula. Therefore, both games for φ and φn must agree.

I Lemma 10. If φ is guarded, φ and φn agree on trees of rank bounded by n.

Proof. The game for φn is similar to the game for φ except for the additional rule that each
priority p has a counter attached to it which counts how many times p occurs in the play
without a smaller priority occurring in between. If a counter for an odd priority reaches
n + 1, Even loses immediately; if an even priority counter reaches n + 1, then Odd loses
immediately. IfM is a tree of bounded rank, that is to say with a longest path of length no
more than n, and φ is guarded, all plays inM× φ visit at most n states and do not visit a
position (s, ψ) more than once. Therefore no priority is seen more than n times: no counter
can reach n+ 1, so Even wins φn ×M if and only if she can win φ×M. Hence, onM a
tree of rank at most n, φ and φn must agree. WriteM |= φ if and only ifM |= φn. J

The formula φn is a modal formula but it may have modal depth greater than n, for example
if a fixpoint is guarded by more than one modality or if it has interacting fixpoints. We will
therefore define a truncating operation which reduces the modal depth of a formula to n.

I Definition 11. Let the formula φn be the one obtained from a modal formula φ by replacing
subformulas �ψ of modal depth n or larger with > and ♦ψ of modal depth n or larger with
⊥.

I Lemma 12. Let Φ be guarded. ThenM |= φn iffMn |= φ whereMn is the infinite tree
ofM truncated at depth n. That is to say, φn is true inM iff the initial three of height n
ofM satisfies φ.

Proof. First note that in the model checking parity game of modal formulas, a state at depth
n can only be reached at a subformula that is itself at modal depth n. AssumingM |= φn,
Even has a winning strategy σ inM× φn to prove it. This game is identical toM× φ until
a position s at depth n is reached at ⊥ or > instead of ♦ψ or �ψ respectively. If Even can
win, her strategy cannot reach any position (s,⊥). The gameMn × φ is also identical to
M× φ until a position at depth n is reached. The strategy σ is winning inMn × φ since it
can avoid (s,♦ψ) positions where s it at depth n and positions (s,�ψ) are automatically
winning for states s at depth n since they have no successors inMn.
Conversely, assume Even has a winning strategy σ inMn × φ. She can use this strategy
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in M |= φn until it reaches positions (s, ψ) where s is at depth n. Since these are leaves,
her winning strategy does not reach any state (s,♦ψ) where s is at depth n. InM |= φn

her strategy σ therefore only reaches final positions (s, P ) and (s,>) where s is at depth n,
which are winning for her. A strategy is therefore winning in M× φn if and only if it is
winning inMn × φ and thereforeM |= φn iffMn |= φ. J

I Example 13. Consider the modal formula φ = A0 ∧ ♦A1 ∧ �(♦♦A2 ∨ �A3) ∧ ���A4.
Then φ3 = A0 ∧ ♦A1 ∧ �(♦⊥ ∨ �A3) ∧ ��> is true in M iff its initial tree of height 3
satisfies φ. Similarly φ2 = A0 ∧♦A1 ∧�(⊥∨>)∧�> is true inM if its initial tree of height
2 satisfies φ. Finally φ1 = A0 ∧ ⊥ ∧ > = ⊥ , which is reasonable since the root ofM cannot
satisfy ♦A1 without having any successors.

We use the following lemma, which Otto also uses in [13]. The intuition is that if a formula
is equivalent to a ML-formula of modal depth m, then what happens beyond depth m

in a structure can have no effect on whether the formula holds in this structure or not.
The semantic modal depth of a semantically ML formula is the least modal depth of any
equivalent ML formula. Note that the syntactic alternation-depth of a formula is irrelevant
to its semantic modal depth but only semantically ML formulas have a finite modal depth.

I Lemma 14. If φ is guarded and of semantic modal depth m, then M |= φ iff Mm |= φ

whereMm is the infinite tree ofM truncated at depth m.

Proof. If φ is guarded and of semantic modal depth m, there are formulas ψ equivalent to φ
of syntactic modal depth m. The model checking parity game for a modal formula has no
infinite paths in it. Furthermore for a formula of modal depth m, a play can visit at most m
distinct states. As a result, in the gamesM× ψ, only positions containing states no deeper
than m are reachable: M×ψ andMm×ψ are identical. Since ψ is equivalent to φ,M |= φ

iffMm |= φ. J

We can now show that if φ is of semantic modal depth m, then it is equivalent to the
formula φmm where fixpoints are first approximated to the mth stage of induction as detailed
in Definition 9 and then truncated at modal depth m as per Definition 11.

I Theorem 15. If φ is guarded and of semantic modal depth m, then φ is equivalent to φmm.

Proof. Let φ be a guarded Lµ formula equivalent to a modal formula of modal depth m.
Then M |= φ iff Mm |= φ. However, φ agrees with φm on all trees of height at most m.
Therefore the following are equivalent:
(1) M |= φ

(2) Mm |= φ

(3) Mm |= φm
(4) M |= φmm
The conditions (1) and (2) are equivalent since φ is semantically modal of depth m, as per
Lemma 14. Then (2) and (3) are equivalent since φ and φm have the same truth-value on
Mm , from Lemma 10. Finally, (3) and (4) are equivalent by definition of φmm. J

Next we aim to show that m can be calculated from φ, using an argument similar to the
one used by Otto [13]. The argument relies on labelling the states of structures with the
subformulas of φ it satisfies and noting that the successors of a state can freely change as
long as the set of successor-labels remains the same without affecting the formulas the state
satisfies. The crux of the argument is that if two structures only differ at very high depth,
but one satisfies φ and the other one does not, then the state labels must repeat themselves
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before the point at which the structures differ. Then we can duplicate a portion of the
branch leading to the difference in order to create structures which are differentiated even
deeper but still only one of them satisfies φ. This shows that if φ is modal, its modal depth
cannot be deeper that the point at which the state labels need to start repeating themselves.
22|φ| + 1 is an upper bound for that point.

The next lemma uses the fact that in an infinite tree, any subtree rooted at s can be
replaced with a distinct subtree rooted at s′ without affecting the subformulas of Ψ satisfied
above depth s as long as the subtrees rooted at s and s′ agree on all subformulas of Ψ. For a
proof, see for example [6]. This should be clear from the notion that whether a state satisfies
a subformula of Φ depends only on the propositional variables that state satisfies and the
subformulas satisfied by its successor states.

I Definition 16. LetM = (M, iM , EM , PM ) be an infinite tree and t be a state ofM, and
let Ψ ∈ Lµ. We denote by αΨ

M (t) the set of subformulas of Ψ satisfied by the state t inM.

I Lemma 17 (Consistent labelling). Let there be two disjoint trees,M = (M, iM , EM , PM )
and M′ = (M ′, iM ′ , EM ′ , PM ′), and a sentence Ψ ∈ Lµ. Let s and s′ be states of M and
M′ respectively, such that αΨ

M (s) = αΨ
M ′(s′), and let v be the predecessor of s in M .

Replace the edge e from v to s withinM by a new edge e′ from v to s′ to obtain a new
model N built from parts ofM andM′. More precisely, N = (N, iN , EN , PN ) with

N = M \ {u ∈ M | u extends or is equal to s} ∪ {u ∈ M ′ | u extends or is equal to s′}
as set of states;
iN = iM as initial node;
EN = (N ×N � EM )∪ (N ×N � EM ′)∪ {e′} as set of edges, where � denotes restriction;
and
PN = (PM � N ∪ PM ′) � N as propositional variables.

Then, since N ⊆M ]M ′ (where ] denotes disjoint union), the labelling (αΨ
M ∪ αΨ

M ′) � N is
defined on all states of N as well. Moreover, for all s ∈ N we have (N , s) |= φ if and only if
φ ∈ ((αΨ

M ∪ αΨ
M ′) � N)(s), meaning that (αΨ

M ∪ αΨ
M ′) � N is identical to αΨ

N .

I Lemma 18. Let φ be guarded and semantically modal, i.e. φ is equivalent to a formula in
ML. Then the semantic modal depth m of φ is bounded above by 22|φ| + 1.

Proof. Assume m > 22|φ| + 1 to be the semantic modal depth of φ. Then there exists a tree
M of height 22|φ| + 1 which is the prefix of two modelsM1 andM2 such thatM1 |= φ and
M2 6|= φ. That is to say, for every state s ofM, there are states s1 and s2 inM1 andM2
respectively such that s, s1 and s2 agree on propositions and for all inner nodes ofM, s′ is a
successor of s if and only if s′1 is a successor of s1, if and only if s′2 is a successor of s2. If d
is maximal such thatM1 andM2 agree up to depth d, write agree(M1,M2) = d. To start
with, agree(M1,M2) > 22|φ| sinceM1 andM2 agree on their prefixM of rank 22|φ| + 1 .

Label every state s ofM with a set αφM1
(s) consisting of subformulas of φ which are true

inM1 and a set αφM2
(s) consisting of subformulas of φ which are true inM2. For each branch

ofM, that is to say a path from the root ofM, if the branch is longer than 22|φ|, there are
two states a, b inM along the branch such that αφM1

(a) = αφM1
(b) and αφM2

(a) = αφM2
(b).

For each branch i, choose bi to be the first state on a branch which has an ancestor ai such
that αφM1

(ai) = αφM1
(bi) and αφM2

(ai) = αφM2
(bi). Note that for any pair of branches i and j,

either bi = bj or bi and bj are not reachable from one another.
For each branch i and its states ai and bi, let ai′1 be the root of a distinct copy of the

subtree inM1 rooted at ai. Similarly, let ai′2 be the root of a distinct copy of the subtree
rooted at ai inM2. LetM′1 be obtained fromM1 where for each branch i, the state bi is
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replaced with ai′1 and its induced subtree; letM′

2 be obtained fromM2 where bi is replaced
with ai′2 and its induced subtree. Note that these transformations do not affect each other:
recall that each bi is on a distinct branch and is replaced with a subtree of the original
structure. Since αφM1

(ai′1) = αφM1
(bi) and αφM2

(ai′2) = αφM2
(bi), all states preserve their labels

and we know thatM′1 |= φ andM′2 6|= φ, from Lemma 17.
We now show that ifM1 andM2 agree up to depth d, thenM′1 andM′2 agree up to

depth d+ 1. Let i be a branch inM of length d such that i is extended differently in models
M1 andM2. Since depth(bi) > depth(ai) the modelsM′1 andM′2 agree along all extensions
of i to depth d− depth(ai) + depth(bi) > d . That is to sayM′1 andM′2 agree at least up to
d + 1. This establishes agree(M′1,M′2) > agree(M1,M2). In z = m − d many steps, we
will reach modelsMz

1 andMz
2 such that agree(Mz

1,Mz
2) ≥ m butMz

1 |= φ andMz
2 6|= φ.

This contradicts m being the modal depth of φ. J

I Corollary 19. Whether a guarded formula φ is equivalent to a modal formula can be decided
by testing whether φ is equivalent to φ2|φ|+1

2|φ|+1.

Proof. From the previous lemma, if a formula φ is modal, its semantic modal depth m is no
greater than 22|φ| + 1. If φ 6= φ2|φ|+1

2|φ|+1, then φ must disagree with φ2|φ|+1
2|φ|+1 on some structure

M. However, the two model checking gamesM× φ andM× φ2|φ|+1
2|φ|+1 are identical on plays

which do not reach states deeper than 2|φ| + 1, which, since m ≤ 2|φ| + 1, contradicts the
fact that the modal depth of φ is m. J

The most surprising aspect of this result is perhaps the exponential modal depth. This
is not due to the authors’ laziness: formulas with fixpoints can indeed be at least sub-
exponentially more compact than the equivalent modal formulas. The following exhibits
syntactically Σµ1 -formulas but semantically modal formulas with sub-exponential modal depth.
The idea of these formulas is to require a series of propositional variables to occur at different
frequencies until they all occur at the same time. The modal depth of the formula is then
the least common multiple of the frequencies.

I Example 20. There is a family of formulas Φn ∈ Σµ
1 which are semantically modal but

have modal depth Ω(2
√
n) in the length of Φn.

Proof. Write �n for �...� repeated n times. The formula µX.(A ∧ (�nX ∨B) states that
A occurs every nth state on any path until B also occurs at a state whose depth is a multiple
of n. By combining such formulas we can write [�aµX.A ∧ (�aX ∨ (B ∧ C))] ∧ [�bµX.B ∧
(�bX ∨ (A ∧ C))] ∧ [�cµX.C ∧ (�cX ∨ (A ∧ B))] which sets the frequencies at which A,
B and C are seen until they are seen simultaneously. This formula is modal since if it is
true, at the latest at depth a × b × c , all of A,B and C are seen simultaneously. More
precisely, its modal depth is the least common multiple of a, b and c. Generalising this, for a
fixed n, let ψd = µX.�d(Pd ∧X) ∨ (

∧
i≤n Pi) be the formula stating that the proposition

Pd occurs at frequency d until all propositions Pi for i ≤ n occur at the same time, at a
depth multiple of d. Now, let Φn =

∧
d≤n ψd . The modal depth of Φn is the least common

multiple of the integers up to n, written lcm(n). For sufficiently large n, lcm(n) > 2n [12] so
the formula Φn is of length O(n2) and has modal depth Ω(2n) which proves the correctness
of the example. J

4 The formulas for Πµ
1 and Σµ

1

The previous section addressed how to eliminate accidental complexity from semantically
modal formulas. This section studies the same question for Πµ

1 , the class of properties
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expressible without least fixpoint operators, and its dual, Σµ1 . Küsters and Wilke [8] showed
that it is decidable whether a formula is equivalent to a Πµ

1 formula; this section constructs
the desired formula, yielding an alternative decision procedure for Πµ

1and Σµ
1 . We first

formalise the idea that if a property is in Σµ1 , then some finite initial tree is always sufficient
to show that a structure satisfies the property. We then introduce disjunctive form. The final
subsection shows how unnecessary fixpoints can be eliminated syntactically from formulas in
disjunctive form by using the fact that Σµ1 formulas have finite proofs.

4.1 Properties in Πµ
1 have finite counter-proofs

In this section we characterise properties in Σµ
1 and Πµ

1 as properties with finite proofs
and counter-proofs respectively. Informally, µ-formulas express finite behaviour such as
reachability – proofs of such properties are finite: once the desired state is reached, the rest
of the structure is irrelevant. Dually, ν-formulas express infinite behaviour and if a structure
fails to display infinite behaviour, the state at which it fails must be finitely reachable.

I Lemma 21. Let M be a structure with finite branching such that M 6|= Ψ . If Ψ ∈ Πµ
1

then there is some n such that for any structure M′, if M′ agrees with M up to depth n,
thenM′ 6|= Ψ.

Proof. Assume Ψ is semantically in Πµ
1 and Φ is the equivalent formula with no least fixpoints.

SinceM 6|= Φ, Even has a winning strategy inM×¬Φ. Note that ¬Φ is a formula without
greatest fixpoints. That means that Even has a strategy σ winning inM×¬Φ which only
agrees with finite plays. Let n be the depth of the furthest state inM which σ reaches –
sinceM has finite branching, there is such an n. Note that agreement betweenM andM′
up to n + 1 requires any leaves at depth less than n in M to remain leaves in M′. Now
for any M′ which agrees with M up to n + 1, the strategy σ is still winning for Even so
M 6|= Ψ. J

4.2 Disjunctive form
Disjunctive form was introduced in [4] as a syntactic restriction to universal branching. It
had been used for example to show the completeness of Kozen’s axiomatisation [14]. Here we
show that disjunctive forms are also a tool for simplifying syntactic manipulations. Informally,
the idea of disjunctive form is to push conjunctions into the leaves and allow player Odd to
make exactly one choice per state.

I Definition 22. (Disjunctive formulas) The set of disjunctive form formulas of (unimodal)
Lµ is the smallest set F satisfying:

Propositional variables and their negations, fixpoint variables and > and ⊥ are in F ;
If ψ ∈ F and φ ∈ F , then ψ ∨ φ ∈ F ;
If A is a set of literals and B ⊆ F (B is finite), then

∧
A ∧→B where →B is short for

(
∧
ψ∈B ♦ψ) ∧ �

∨
ψ∈B ψ – that is to say, every formula in B is realised by at least one

successor and every successor realises at least one of the formulas in B;
µX.ψ and νX.ψ are in F as long as ψ ∈ F and X only appears positively and never in a
conjunction X ∧ α where α is another formula.

The last constraint ascertains that if µX.φ(X) is in disjunctive form, then φ(µX.φ(X)) is
also in disjunctive form.

Every formula is known to be equivalent to an effectively computable formula in disjunctive
form [14]. The transformation preserves guardedness.
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We can now prove our key lemma about formulas in disjunctive form which exploits the
restriction imposed on player Odd’s choices. With an arbitrary Lµ formula, once Even has
fixed a strategy, Odd may be able to choose to play to a state s at various different formulas.
For example, from (s,�ψ ∧�φ) Odd can choose to play any successor of s at either φ or ψ.
However, with some minor assumption about the structure, once a formula is in disjunctive
form and Even has fixed her strategy, Odd is much more restricted in his choices: if he
chooses to play to a state s, he can only choose to play a formula fixed by Even’s strategy or
a literal.

First we define well behaved strategies and models in which whenever a state s is required
to satisfy a modal formula →B, s has a distinct successor for each formula in B. Such a
well-behaved model can easily be derived from any model by duplicating the successor states
of s as necessary. A well-behaved model will allow the even player to use a well-behaved
strategy which chooses a distinct successor for each of the formulas Odd can choose at →B.

I Definition 23 (Well behaved models). A modelM of Ψ is well behaved with respect to an
Even’s winning strategy σ inM× Ψ if for each position (s,→B) reachable with σ, s has
distinct successors sφ such that sφ |= φ for each φ ∈ B and σ plays sφ if Odd picks φ from s

and φ if Odd picks sφ. Note that s may have more than one successor satisfying φ but σ
chooses only one such successor, sφ to play to whenever Odd chooses to play φ. A model is
well-behaved if it is well-behaved with respect to some winning strategy.

Every model M of Ψ is bisimilar to a well behaved model of Ψ obtained by duplicating
successor states as necessary. A strategy is said to be well-behaved if the model is well-
behaved with respect to that strategy. Next we define the tree of Odd’s playable positions
induced by Even’s strategy. This tree consists of the choices which Odd is left with once
Even has fixed her strategy.

I Definition 24 (Odd’s position tree). If σ is a strategy for Even, we consider the tree made
out of positions belonging to Odd which are reachable by plays respecting σ. One step
in the Odd’s position tree corresponds to one move by Odd followed by as many moves
dictated by σ as necessary to reach the next position belonging to Odd. Note that since σ is
Even’s strategy, Odd’s position tree does not have any disjunctive positions any more, only
conjunctions: all the non-leaf positions of this tree are of the form (s,

∧
A∧→B) for some set

of literals A and a set of formulas B. The leaves are of the form (s,A) where A is a literal.

The following lemma shows how the syntactic constraints of disjunctive form simplify the
strategies in the parity game. It is the key to our proof of decidability. It states that once
Even has fixed her strategy, Odd can only reach a state s at a single formula

∧
A ∧→B.

This will allow us to replace s with the root of any structure which satisfies the same formula,
while preserving Even’s winning strategy.

I Lemma 25. If Ψ is in disjunctive form andM is the tree-representation of a well-behaved
model with respect to a strategy σ, then each state ofM appears in Odd’s position tree for σ
at most once at a non-leaf position.

Proof. For a state s to appear twice at such a formula, (s, φ0) and (s, φ1) must be two
positions of the tree with a last common ancestor, (t, ψ) where ψ has to be →B for some
B containing φ0 and φ1 . However, since σ is well behaved, if Odd chooses either φ ∈ B or
the successor tφ, the game goes to (tφ, φ) so each successor tφ only appears in one successor
position of (t, ψ). Furthermore, each non-indexed successor of t also appears in only one
successor position of (t, ψ). This can therefore not be the last common ancestor of (s, φ0)
and (s, φ1). J
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4.3 The formula ΨΠµ
1

This section proves the main theorem on the constructive decidability of Πµ
1 : any semantically

Πµ
1 formula in disjunctive form can be transformed into an equivalent syntactically Πµ

1 formula
by changing every occurrence of µ into either ν or ⊥.

To show this, we first select for each µ-subformula µX.φ in Ψ, a structureM such that
whether M satisfies Ψ or not depends on a restricted set of states satisfying the formula
µX.φ, as shown in Lemma 26. We then show in Lemma 27 that if a µ-subformula µX.φ
of Ψ is satisfiable but cannot be replaced with the corresponding ν-formula νX.φ, then for
any n we can build a twin structure forM agreeing withM up to n but disagreeing on Ψ.
This implies that Ψ is not a Πµ

1 formula, as Lemma 21 shows that Πµ
1 formulas have finite

counter-proofs. This leaves us with two scenarios: either the µ-subformula is unsatisfiable, in
which case it can be replaced by ⊥, using Lemma 28, or the µ-formula can be replaced with
the corresponding ν-formula. In either case, we can turn any semantically Πµ

1 formula into a
syntactically Πµ

1 formula by replacing µ-subformulas with either ⊥ or the dual ν-formula.

Notation. Let Ψ(ψ) be a formula in disjunctive form which contains a subformula ψ. We
will write Ψ(ψ′) for the formula in which ψ is substituted with the formula ψ′. With this
notation, we will use formulas related to Ψ in order to specify structures where the players’
strategies must exhibit some desired behaviours. For example, if for some structureM, Odd
can winM×Ψ(⊥), then Even can only winM×Ψ(µX.φ) by playing eventually to µX.φ.

In the following lemma we show that for a structure to satisfy ¬Ψ(φ) ∧Ψ(>) means that
Odd can win the game for Ψ(φ), but only by playing to a position (s, φ) for some s in a set
S. Then, if states of S are substituted with new substructures, Odd may only win if he can
win from one of the new substructures at φ.

I Lemma 26. Let Ψ be a formula in disjunctive guarded form with a subformula φ. IfM is
a structure such that M |= ¬Ψ(φ) ∧Ψ(>) and M is well-behaved for Ψ(>), then there is
a non-empty set of states S inM such that inM×Ψ(φ) each of Odd’s winning strategies
reaches (s, φ) for some s ∈ S– that is to say, for each of Odd’s winning strategies τ there is
a counter strategy σ such that (s, φ) is on the play τ × σ for some s ∈ S. Furthermore, if
every state si of S is replaced with some state ti, yielding a new modelM′, Odd only wins
inM′ ×Ψ(φ) if Odd wins from (ti, φ) in the same game for some ti.

Proof. If Even winsM×Ψ(>) but Odd winsM×Ψ(φ), then Odd cannot winM×Ψ(φ)
with a strategy which avoids φ, otherwise the same strategy would be winning inM×Ψ(>).
Let τ be one of Odd’s winning strategies in M× Ψ(φ) and let σ be Even’s well-behaved
winning strategy inM×Ψ(>) . SinceM×Ψ(>) is identical toM×Ψ(φ) until a play reaches
φ, the strategy σ is also an initial strategy inM×Ψ(φ), defined until φ is reached. The play
τ × σ must reach φ because otherwise it would have to be winning for Even due to it being
identical to a play respecting her winning strategy inM×Ψ(>). Let sτ be the first state at
which the play τ×σ reaches φ inM×Ψ(φ). Then S = {sτ |τ is a winning strategy for Odd }
is the set such that inM×Ψ(φ) each of Odd’s winning strategies reaches (s, φ) for some
s ∈ S.

For the second part of the lemma, first observe that if Even wins from (ti, φ) for all i,
then Odd cannot use any of his winning strategies from M× Ψ(φ) to win in M′ × Ψ(φ)
since if Even initially plays according to σ, the play reaches (ti, φ) from where Even has a
winning strategy. As a result, Odd cannot avoid all ti without losing. From Lemma 25 we
know that each ti is only seen at position (ti, φ) so not only can Odd not avoid all ti, Odd
cannot avoid all (ti, φ) without losing. Hence, if Odd loses from (ti, φ) for all i, Odd loses in
M′ ×Ψ(φ). J
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We can now prove the main result: to obtain the syntactically Πµ
1 formula equivalent to a

semantically Πµ
1 formula in guarded disjunctive form, it is sufficient to replace each least

fixpoint with either ⊥ or a greatest fixpoint. The crux is to show that each µ-binding in a
semantically Πµ

1 formula can either be replaced by ⊥ or ν. The following lemma identifies
two cases. The first is that the subformula µX.φ is unsatisfiable in the sense that there is no
structure T from the root of which Even can win at µX.φ in T ×Ψ(µX.φ). Then it can be
replaced with ⊥. In the other case, µX.φ can be replaced with νX.φ.

I Lemma 27. If Ψ(µX.φ), a guarded formula in disjunctive form with a subformula µX.φ,
is semantically in Πµ

1 , then either there is no structure T such that Even wins from (r0, µX.φ)
in T ×Ψ(µX.φ) where r0 is the root of T , or Ψ(µX.φ)=Ψ(νX.φ).

Proof. Assume that Ψ(µX.φ) 6= Ψ(νX.φ) and that there is a structure T such that Even wins
from (r0, µX.φ) in T ×Ψ(µX.φ) where r0 is the root of T . Since Ψ(µX.φ) implies Ψ(νX.φ) but
not the other way around, then there is a structureM such thatM |= ¬Ψ(µX.φ)∧Ψ(νX.φ)
andM is well-behaved with respect to Ψ(νX.φ) . Recall that we require forM to be finitely
branching. We will show that for any n there is a structureM′ which agrees withM up to
depth n but which satisfies Ψ(µX.φ). Using Lemma 21, this will contradict Ψ(µX.φ) ∈ Πµ

1 .

For any n, we can write Ψ(µX.φ) as Ψ(
n︷︸︸︷

φ...φ(µX.φ)), where we drop some brackets for
readability, so φφ(X) should be understood as φ(φ(X)). Then, the structure M satisfies

¬Ψ(
n︷︸︸︷

φ...φ(µX.φ)) ∧Ψ(
n︷︸︸︷

φ...φ(>)) since
n︷︸︸︷

φ...φ(>) is implied by νX.φ. Furthermore,M is well-

behaved for Ψ(
n︷︸︸︷

φ...φ(>)). From Lemma 26 we know that there is a set S of states inM such
that for each si ∈ S, Even loses from (s,¬µX.φ) and if each si ∈ S is replaced with r0, the
root of T , to yield a new modelM′, then Ψ holds inM′. Furthermore, since X is guarded

in µX.φ, a play can only reach µX.φ from
n︷︸︸︷

φ...φ(µX.φ) at depth at least n: each si ∈ S is
at least at depth n thereforeM′ agrees withM up to depth n. We have built for any n, a
structure that agrees withM, a counter-model of Ψ, up to n but satisfies Ψ. This contradicts
the assumption that Ψ is in Πµ

1 , and has finite counter-proofs using Lemma 21. J

It now suffices to show that if a subformula µX.φ is unsatisfiable in the sense that there is
no structure T from the root of which Even can win at µX.φ in T ×Ψ(µX.φ), then µX.φ
can be replaced with ⊥. This should be intuitively justified by the idea that in no structure
can Even win by playing to µX.φ, so it is no worse for her to have ⊥ instead.

I Lemma 28. If there is no structure T rooted at t0 such that Even wins from (t0, µX.φ) in
T ×Ψ(µX.φ), then Ψ(µX.φ) = Ψ(⊥).

Proof. If Even wins M× Ψ(µX.φ) but there is no T rooted at t0 such that Even wins
from (t0, µX.φ), then Even’s winning strategy cannot reach any position (s, µX.φ). Then
the same strategy can be used inM×Ψ(⊥) to avoid any position (s,⊥). Since these two
games are identical up until µX.φ or ⊥ is reached, Even also wins in M× Ψ(⊥). This
shows Ψ(µX.φ) =⇒ Ψ(⊥). The other direction is trivial since ⊥ =⇒ µX.φ and Lµ is
monotone. J

I Theorem 29. If Ψ is a formula in guarded disjunctive form and semantically in Πµ
1 , then

either Ψ = Ψ[⊥/µX.φ] or Ψ[νX.φ/µX.φ] for any subformula µX.φ of Ψ.
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Proof. If there is no structure T such that Even wins from (r0, µX.φ) in T ×Ψ(µX.φ) where
r0 is the root of T , then from the previous lemma, Ψ = Ψ[⊥/µX.φ] . If there is such a
structure, then from Lemma 27 we know that Ψ = Ψ[νX.φ/µX.φ]. J

I Corollary 30. Πµ
1 and by duality Σµ1 are decidable.

Proof. Any formula Ψ of Lµ can be turned into a guarded formula in disjunctive guarded
form. Then, if Ψ is semantically in Πµ

1 , every occurrence of µX.φ can be eliminated either
by replacing it with ⊥ or νX.φ. Hence to decide whether a formula is semantically in Πµ

1 ,
it is sufficient to decide whether it is equivalent to the formula where each µX.φ formula
reachable by Even in the game for Ψ(µX.φ) is replaced with νX.φ .

By duality, to decide whether a formula is semantically in Σµ
1 it is sufficient to decide

whether its negation is in Πµ
1 . If this is the case, the Πµ

1 formula can be syntactically negated
to yield a formula in Σµ1 . J

5 Conclusion

We have defined syntactic transformations from Lµ into ML, Πµ
1 and Σµ

1 which preserve
meaning for formulas which are semantically, but not yet syntactically in the target class. A
straight-forward corollary of this result is an alternative decision procedure for the low levels
of the alternation hierarchy: to decide whether a Lµ formula is in Πµ

1 ,Σ
µ
1 or ML, it suffices

to check whether it is equivalent to its projection into that class.
For the modal fragment of Lµ, the transformation we describe incurs a potentially

exponential blow-up in the size of the formula – as such, it may be more concise to represent
a formula with some fixpoints. This blow-up is however necessary since fixpoint formulas
which are semantically modal can have at least subexponential modal depth.

For Πµ
1 on the other hand, assuming formulas are in guarded disjunctive form, the target

formula is no larger than the original one. The transformation into guarded disjunctive
form itself can incur an exponential blow-up, not least because the transformation involves
distributing conjunctions over disjunctions, causing duplication.

This result is of both practical and theoretical interest since the complexity of model
checking depends on the syntactic alternation depth of a formula, rather than the semantic
one. Thus for formulas that are semantically in a low alternation class, this transformation
can potentially turn an exponential model-checking procedure into a polynomial one by
eliminating the exponent. By providing a concise formula in the semantic alternation class
of a formula, our method provides an appealing pre-processing step for model checking.
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