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Abstract
We study n-player turn-based games played on a finite directed graph. For each play, the players
have to pay a cost that they want to minimize. Instead of the well-known notion of Nash
equilibrium (NE), we focus on the notion of subgame perfect equilibrium (SPE), a refinement of
NE well-suited in the framework of games played on graphs. We also study natural variants of
SPE, named weak (resp. very weak) SPE, where players who deviate cannot use the full class of
strategies but only a subclass with a finite number of (resp. a unique) deviation step(s).

Our results are threefold. Firstly, we characterize in the form of a Folk theorem the set of
all plays that are the outcome of a weak SPE. Secondly, for the class of quantitative reachability
games, we prove the existence of a finite-memory SPE and provide an algorithm for computing
it (only existence was known with no information regarding the memory). Moreover, we show
that the existence of a constrained SPE, i.e. an SPE such that each player pays a cost less than
a given constant, can be decided. The proofs rely on our Folk theorem for weak SPEs (which
coincide with SPEs in the case of quantitative reachability games) and on the decidability of
MSO logic on infinite words. Finally with similar techniques, we provide a second general class
of games for which the existence of a (constrained) weak SPE is decidable.
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1 Introduction

Two-player zero-sum infinite duration games played on graphs are a mathematical model
used to formalize several important problems in computer science. Reactive system synthesis
is one such important problem. In this context, see e.g. [14], the vertices and the edges of the
graph represent the states and the transitions of the system; one player models the system
to synthesize, and the other player models the (uncontrollable) environment of the system.
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In the classical setting, the objectives of the two players are opposite, i.e. the environment is
adversarial. Modeling the environment as fully adversarial is usually a bold abstraction of
reality and there are recent works that consider the more general setting of non zero-sum
games which allow to take into account the different objectives of each player. In this latter
setting the environment has its own objective which is most often not the negation of the
objective of the system. The concept of Nash equilibrium (NE) [12] is central to the study of
non zero-sum games and can be applied to the general setting of n player games. A strategy
profile is a NE if no player has an incentive to deviate unilaterally from his strategy, since he
cannot strictly improve on the outcome of the strategy profile by changing his strategy only.

However in the context of sequential games (such as games played on graphs), it is
well-known that NEs present a serious weakness: a NE allows for non-credible threats that
rational players should not carry out [16]. Hence, for sequential games, the notion of NE has
been strengthened into the notion of subgame perfect equilibrium (SPE): a strategy profile is
an SPE if it is a NE in all the subgames of the original game. While the notion of SPE is
rather well understood for finite state game graphs with ω-regular objectives or for games
in finite extensive form (finite game trees), less is known for game graphs with quantitative
objectives in which players encounter costs that they want to minimize, like in classical
quantitative objectives such as mean-payoff, discounted sum, or quantitative reachability.

Several natural and important questions arise for such games: Can we decide the existence
of an SPE, and more generally the constrained existence of an SPE (i.e. an SPE in which
each player encounters a cost less than some fixed value)? Can we compute such SPEs
that use finite-memory strategies only? Whereas several authors have studied what the
hypotheses are to impose on games in a way to guarantee the existence of an SPE, the
previous algorithmic questions are still wide open. In this article, we provide progress in
the understanding of the notion of SPE. We study some variants of SPEs and establish a
theorem that characterizes their possible outcomes in quantitative games. We derive from this
characterization interesting algorithms and information on the strategies for two important
classes of quantitative games. Our contributions are detailed in the next paragraph.

Contributions. First, we formalize a notion of deviation step from a strategy profile that
allows us to define two natural variants of NEs. While a NE must be resistant to the unilateral
deviation of one player for any number of deviation steps, a weak (resp. very weak) NE must
be resistant to the unilateral deviation of one player for any finite number of (resp. a unique)
deviation step(s). Then we use those variants to define the corresponding notions of weak
and very weak SPE. The latter notion is very close to the one-step deviation property [13].
Any very weak SPE is also a weak SPE, and there are games for which there exists a weak
SPE but no SPE. Also, for games with upper-semicontinuous cost functions and for games
played on finite game trees, the three notions are equivalent.

Second, we characterize in the form of a Folk theorem1 all the possible outcomes of weak
SPEs. The characterization is obtained starting from all possible plays of the game and the
application of a nonincreasing operator that removes plays that cannot be outcome of a weak
SPE. We show that the limit of the nonincreasing chain of sets always exists and contains
exactly all the possible outcomes of weak SPEs. Furthermore, we show how for each such
outcome, we can associate a strategy profile that generates it and which is a weak SPE.

1 We do not consider our result as folklore, but we use this terminology, as also done in [6], in reference
to the “classical folk theorems" for repeated games which characterize the payoff profiles of NEs and
SPEs in repeated games (see for instance Chapter 8 in [13]).
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Additionally, to illustrate the potential of our Folk theorem, we show how it can be
refined and used to answer open questions about two classes of quantitative games. The first
class of games that we consider are quantitative reachability games, such that each player
aims at reaching his own set of target states as soon as possible. As the cost functions
in those games are continuous, our Folk theorem characterizes precisely the outcomes of
SPEs and not only weak SPEs. In [1, 7], it has been shown that quantitative reachability
games always have SPEs. The proof provided for this theorem is non constructive since it
relies on topological arguments. Here, we strengthen this existential result by proving that
there always exists, not only an SPE but, a finite-memory SPE. Furthermore, we provide an
algorithm to construct such a finite memory SPE. This algorithm is based on a constructive
version of our Folk Theorem for the class of quantitative reachability games: we show that
the nonincreasing chain of sets of potential outcomes stabilizes after a finite number of steps
and that each intermediate set is an ω-regular set that can be effectively described using
MSO sentences. The second class of games that we consider is the class of games with cost
functions that are prefix-independent, whose range of values is finite, and for which each
value has an ω-regular pre-image. For this general class of games, with similar techniques as
for quantitative reachability games, we show how to construct an effective representation of
all possible outcomes compatible with a weak SPE, and consequently that the existence of a
weak SPE is decidable. In those two applications, we show that our construction also allow
us to answer the question of existence of a constrained (weak) SPE, i.e. a (weak) SPE in
which players pays a cost which is bounded by a given value.

Related work. The concept of SPE has been first introduced and studied by the game
theory community. The notion of SPE has been first introduced by Kuhn in finite extensive
form games [10]. For such games, backward induction can be used to prove that there always
exists an SPE. By inspecting the backward induction proof, it is not difficult to realize that
the notion of very weak SPE and SPE are equivalent in this context.

SPEs for infinite trees defined as the unfolding of finite graphs with qualitative, i.e.
win-lose, ω-regular objectives, have been studied by Ummels in [19]: it is proved that such
games always have an SPE, and that the existence of a constrained SPE is decidable.

In [9], the authors provide an effective representation of the outcomes of NEs in concurrent
priced games by constructing a Büchi automaton accepting the language of outcomes of
all NEs satisfying a bound vector. The existence of NEs in quantitative games played on
graphs is studied in [3]; it is shown that for a large class of games, there always exists a
finite-memory NE. This result is extended in [4] for two-player games and secure equilibria
(a refinement of NEs); additionally the constrained existence problem for secure equilibria is
also shown decidable for a large range of cost functions. None of these articles consider SPEs.

In [6], the authors prove that for quantitative games with cost functions that are upper-
semicontinous and with finite range, there always exists an SPE. This result also relies on
a nonincreasing chain of sets of possible outcomes of SPEs. The main differences with our
work is that we obtain a Folk theorem that characterizes all possible outcomes of weak SPEs
with no restriction on the cost functions. Moreover we have shown that our Folk theorem
can be made effective for two classes of quantitative games of interest. Effectiveness issues
are not considered in [6]. Prior to this work, Mertens shows in [11] that if the cost functions
are bounded and Borel measurable then there always exists an ε-NE. In [7], Fudenberg et al.
show that if the cost functions are all continuous, then there always exists an SPE. Those
results were recently extended in [15] by Le Roux and Pauly.
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Organization of the article. In Section 2, we present the notions of quantitative game,
classical NE and SPE, and their variants. In Section 3, we propose our Folk Theorem for
weak SPEs. In Section 4, we provide an algorithm for computing a finite-memory SPE for
quantitative reachability games, and a second algorithm to decide the constrained existence
of an SPE for this class of games. We also show that the existence of a (constrained) weak
SPE is decidable for another class of games. A conclusion and future work are given in the
last section.

2 Preliminaries and Variants of Equilibria

In this section, we recall the notions of quantitative game, Nash equilibrium, and subgame
perfect equilibrium. We also introduce variants of Nash and subgame perfect equilibria, and
compare them with the classical notions.

2.1 Quantitative Games
We consider multi-player turn-based non zero-sum quantitative games in which, for each
infinite play, players pay a cost that they want to minimize.2

I Definition 1. A quantitative game is a tuple G = (Π, V, (Vi)i∈Π, E, λ̄) where:
Π is a finite set of players,
V is a finite set of vertices,
(Vi)i∈Π is a partition of V such that Vi is the set of vertices controlled by player i ∈ Π,
E ⊆ V ×V is a set of edges, such that3 for all v ∈ V , there exists v′ ∈ V with (v, v′) ∈ E,
λ̄ = (λi)i∈Π is a cost function such that λi : V ω → R ∪ {+∞} is player i cost function.

A play of G is an infinite sequence ρ = ρ0ρ1 . . . ∈ V ω such that (ρi, ρi+1) ∈ E for all i ∈ N.
Histories of G are finite sequences h = h0 . . . hn ∈ V + defined in the same way. The length
|h| of h is the number n of its edges. We denote by First(h) (resp. Last(h)) the first vertex
h0 (resp. last vertex hn) of h. Usually histories are non-empty, but in specific situations it
will be useful to consider the empty history ε. The set of all histories (ended by a vertex
in Vi) is denoted by Hist (by Histi). A prefix (resp. suffix) of a play ρ is a finite sequence
ρ0 . . . ρn (resp. infinite sequence ρnρn+1 . . .) denoted by ρ≤n or ρ<n+1 (resp. ρ≥n). We use
notation h < ρ when a history h is prefix of a play ρ. Given two distinct plays ρ and ρ′, their
longest common prefix is denoted by ρ̂ρ′.

When an initial vertex v0 ∈ V is fixed, we call (G, v0) an initialized quantitative game.
A play (resp. a history) of (G, v0) is a play (resp. history) of G starting in v0. The set
of histories h ∈ Hist (resp. h ∈ Histi) with First(h) = v0 is denoted by Hist(v0) (resp.
Histi(v0)). In the figures of this article, we will often unravel the graph of the game (G, v0)
from the initial vertex v0, which ends up in an infinite tree.

Given a play ρ ∈ V ω, its cost is given by λ̄(ρ) = (λi(ρ))i∈Π. In this article, we are
particularly interested in quantitative reachability games in which λi(ρ) is equal to the
number of edges to reach a given set of vertices.

I Definition 2. A quantitative reachability game is a quantitative game G such that the cost
function λ̄ : V ω → (N ∪ {+∞})Π is defined as follows. Each player i has a target set Ti ⊆ V ,
and for each play ρ = ρ0ρ1 . . . of G, the cost λi(ρ) is the least index n such that ρn ∈ Ti if it
exists, and +∞ otherwise.

2 Alternatively, players could receive a payoff that they want to maximize.
3 Each vertex has at least one outgoing edge.
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Notice that the cost function λ̄ of a quantitative game is often defined from |Π|-tuples of
weights labeling the edges of the game. For instance, in inf games, λi(ρ) is equal to the
infimum of player i weights seen along ρ. Some other classical examples are liminf, limsup,
mean-payoff, and discounted sum games [5]. In case of quantitative reachability on graphs
with weighted edges, the cost λi(ρ) for player i is replaced by the sum of the weights seen
along ρ until his target set is reached. We do not consider this extension here. Notice that
when weights are positive integers, replacing each edge with cost c by a path of length c
composed of c new edges allows to recover Definition 2.

Let us recall the notions of prefix-independent, continuous, and lower- (resp. upper-)
semicontinuous cost functions. Since V is endowed with the discrete topology, and thus V ω
with the product topology, a sequence of plays (ρn)n∈N converges to a play ρ = limn→∞ ρn
if every prefix of ρ is prefix of all ρn except, possibly, of finitely many of them.

I Definition 3. Let λi be a player i cost function. Then
λi is prefix-independent if λi(hρ) = λi(ρ) for any history h and play ρ.
λi is continuous if whenever limn→∞ ρn = ρ, then limn→∞ λi(ρn) = λi(ρ).
λi upper-semicontinuous (resp. lower-semicontinuous) if whenever limn→∞ ρn = ρ, then
lim supn→∞ λi(ρn) ≤ λi(ρ) (resp. lim infn→∞ λi(ρn) ≥ λi(ρ)).

For instance, the cost functions used in liminf and mean-payoff games are prefix-independent,
contrarily to the case of inf games. Clearly, if λi is continuous, then it is upper- and
lower-semicontinuous. The cost functions of liminf and mean-payoff games are neither upper-
semicontinuous nor lower-semicontinuous, whereas they are continuous in discounted sum
games. The cost functions λi used in quantitative reachability games can be transformed into
continuous ones as follows [1]: λ′i(ρ) = 1− 1

λi(ρ)+1 if λi(ρ) < +∞, and λ′i(ρ) = 1 otherwise.

2.2 Strategies and Deviations

A strategy σ for player i ∈ Π is a function σ : Histi → V assigning to each history4 hv ∈ Histi
a vertex v′ = σ(hv) such that (v, v′) ∈ E. In an initialized game (G, v0), σ is restricted to
histories starting with v0. A player i strategy σ is positional if it only depends on the last
vertex of the history, i.e. σ(hv) = σ(v) for all hv ∈ Histi. It is a finite-memory strategy if it
needs only finite memory of the history (recorded by a finite strategy automaton, also called
a Moore machine). A play ρ is consistent with a player i strategy σ if ρk+1 = σ(ρ≤k) for all k
such that ρk ∈ Vi. A strategy profile of G is a tuple σ̄ = (σi)i∈Π of strategies, where each σi is
a player i strategy. It is called positional (resp. finite-memory) if all σi, i ∈ Π, are positional
(resp. finite-memory). Given an initial vertex v0, such a strategy profile determines a unique
play of (G, v0) that is consistent with all the strategies. This play is called the outcome of σ̄
and is denoted by 〈σ̄〉v0 .

Given σi a player i strategy, we say that player i deviates from σi if he does not stick
to σi and prefers to use another strategy σ′i. Let σ̄ be a strategy profile. When all players
stick to their strategy σi except player i that shifts to σ′i, we denote by (σ′i, σ−i) the derived
strategy profile, and by 〈σ′i, σ−i〉v0 its outcome in (G, v0). In the next definition, we introduce
the notion of deviation step of a strategy σ′i from a given strategy profile σ̄.

4 In this article we often write a history in the form hv with v ∈ V to emphasize that v is the last vertex
of this history.
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I Definition 4. Let (G, v0) be an initialized game, σ̄ be a strategy profile, and σ′i be a player
i strategy. We say that σ′i has a hv-deviation step from σ̄ for some history hv ∈ Histi(v0)
with v ∈ Vi, if hv < 〈σ′i, σ−i〉v0 and σi(hv) 6= σ′i(hv).

Notice that the previous definition requires that hv is a prefix of the outcome 〈σ′i, σ−i〉v0 ; it
says nothing about σ′i outside of this outcome. A strategy σ′i can have a finite or an infinite
number of deviation steps in the sense of Definition 4. A strategy with three deviation steps
is depicted in Figure 1 such that each hkvk-deviation step from σ̄, 1 ≤ k ≤ 3, is highlighted
with a dashed edge.

v0

v1

v′1

v2

v′2

v3

v′3

〈σ′i, σ−i〉v0

h1

h2

h3

Figure 1 A strategy σ′
i with a finite

number of deviation steps.

In light of Definition 4, we introduce the follow-
ing classes of strategies.

I Definition 5. Let (G, v0) be an initialized game,
and σ̄ be a strategy profile.

A strategy σ′i is finitely deviating from σ̄ if it
has a finite number of deviation steps from σ̄.
It is one-shot deviating from σ̄ if it has a v0-
deviation step from σ̄, and no other deviation
step.

In other words, a strategy σ′i is finitely deviating
from σ̄ if there exists a history hv < 〈σ′i, σ−i〉v0

such that for all h′v′, hv ≤ h′v′ < 〈σ′i, σ−i〉v0 ,
we have σ′i(h′v′) = σi(h′v′) (σ′i acts as σi from
hv along 〈σ′i, σ−i〉v0). The strategy σ′i is one-shot
deviating from σ̄ if it differs from σi at the initial
vertex v0, and after v0 acts as σi along 〈σ′i, σ−i〉v0 .
As for Definition 4, the previous definition says
nothing about σ′i outside of 〈σ′i, σ−i〉v0 . Clearly
any one-shot deviating strategy is finitely deviating.
The strategy of Figure 1 is finitely deviating but
not one-shot deviating.

2.3 Nash and Subgame Perfect
Equilibria, and Variants
In this paper, we focus on subgame perfect equilibria and their variants. Let us first recall
the classical notion of Nash equilibrium. A strategy profile σ̄ in an initialized game is a Nash
equilibrium if no player has an incentive to deviate unilaterally from his strategy, since he
cannot strictly decrease his cost when using any other strategy.

I Definition 6. Given an initialized game (G, v0), a strategy profile σ̄ = (σi)i∈Π of (G, v0)
is a Nash equilibrium (NE) if for all players i ∈ Π, for all player i strategies σ′i, we have
λi(〈σ′i, σ−i〉v0) ≥ λi(〈σ̄〉v0).

We say that a player i strategy σ′i is a profitable deviation for i w.r.t. σ̄ if λi(〈σ′i, σ−i〉v0) <
λi(〈σ̄〉v0). Therefore σ̄ is a NE if no player has a profitable deviation w.r.t. σ̄.

Let us propose the next variants of NE.

I Definition 7. Let (G, v0) be an initialized game. A strategy profile σ̄ is a weak NE (resp.
very weak NE) in (G, v0) if, for each player i ∈ Π, for each finitely deviating (resp. one-shot
deviating) strategy σ′i of player i, we have λi(〈σ′i, σ−i〉v0) ≥ λi(〈σ̄〉v0).

CSL 2015
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v0

v1 v2

v3 v4

σ1 σ′1

(3, 3) σ2 σ′2

(3, 4) (1, 3)

Figure 2 A simple two-
player quantitative game.

v0 v1v2 v3

(2, 0)

(0, 0)
(2, 0)

(0, 0)

(1, 2) (0, 1)

Figure 3 A two-player game with a (very) weak SPE and
no SPE. For each player, the cost of a play is his unique
weight seen in the ending cycle.

I Example 8. Consider the two-player quantitative game depicted in Figure 2. Circle (resp.
square) vertices are player 1 (resp. player 2) vertices. The edges are labeled by couples of
weights such that weights (0, 0) are not specified. For each player i, the cost λi(ρ) of a play
ρ is the weight of its ending loop. In this simple game, each player i have two positional
strategies that are respectively denoted by σi and σ′i (see Figure 2).

The strategy profile (σ1, σ
′
2) is not a NE since σ′1 is a profitable deviation for player 1

w.r.t. (σ1, σ
′
2) (player 1 pays cost 1 instead of cost 3). This strategy profile is neither a weak

NE nor a very weak NE because in this simple game, player 1 can only deviate from σ1 by
using the one-shot deviating strategy σ′1. On the contrary, the strategy profile (σ1, σ2) is a
NE with outcome v0v

ω
1 of cost (3, 3). It is also a weak NE and a very weak NE.

By definition, any NE is a weak NE, and any weak NE is a very weak NE. The contrary
is false: in the previous example, (σ′1, σ2) is a very weak NE, but not a weak NE. We will see
later an example of game with a weak NE that is not an NE (see Example 12).

The notion of subgame perfect equilibrium is a refinement of NE. In order to define it, we
need to introduce the following notions. Given a quantitative game G = (Π, V, (Vi)i∈Π, E, λ̄)
and a history h of G, we denote by G�h the game G�h = (Π, V, (Vi)i∈Π, E, λ̄�h) where
λ̄�h(ρ) = λ̄(hρ) for any play of G�h5, and we say that G�h is a subgame of G. Given an
initialized game (G, v0), and a history hv ∈ Hist(v0), the initialized game (G�h, v) is called
the subgame of (G, v0) with history hv. Notice that (G, v0) can be seen as a subgame of itself
with history hv0 such that h = ε. Given a player i strategy σ in (G, v0), we define the strategy
σ�h in (G�h, v) as σ�h(h′) = σ(hh′) for all histories h′ ∈ Histi(v). Given a strategy profile
σ̄ = (σi)i∈Π, we use notation σ̄�h for (σi�h)i∈Π, and 〈σ̄�h〉v is its outcome in the subgame
(G�h, v).

We can now recall the classical notion of subgame perfect equilibrium: it is a strategy
profile in an initialized game that induces a NE in each of its subgames. In particular, a
subgame perfect equilibrium is a NE.

I Definition 9. Given an initialized game (G, v0), a strategy profile σ̄ of (G, v0) is a subgame
perfect equilibrium (SPE) if σ̄�h is a NE in (G�h, v), for every history hv ∈ Hist(v0).

As for NE, we propose the next variants of SPE.

I Definition 10. Let (G, v0) be an initialized game. A strategy profile σ̄ is a weak SPE
(resp. very weak SPE) if σ̄�h is a weak NE (resp. very weak NE) in (G�h, v), for all histories
hv ∈ Hist(v0).

5 In this article, we will always use notation λ̄(hρ) instead of λ̄�h(ρ).
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I Example 11. We come back to the game depicted in Figure 2. We have seen before that
the strategy profile (σ1, σ2) is a NE. Notice that this NE uses a non-credible threat of player 2
that prefers to pay a cost of 4 instead of 3 (by using σ′2). Such a threat is not allowed for
SPEs. Indeed consider the subgame (G�v0 , v2) of (G, v0) with history v0v2. In this subgame,
σ′2 is a profitable deviation for player 2, showing that (σ1, σ2) is not an SPE. One can easily
verify that the strategy profile (σ′1, σ′2) is an SPE, as well as a weak SPE and a very weak
SPE, due to the simple form of the game.

The previous example is too simple to show the differences between classical SPEs and
their variants. The next example presents a game with a (very) weak SPE but no SPE.

I Example 12. Consider the two-player game (G, v0) in Figure 3. The edges are labeled by
couples of weights, and for each player i the cost λi(ρ) of a play ρ is the unique weight seen
in its ending cycle. With this definition, λi(ρ) can also be seen as either the mean-payoff, or
the liminf, or the limsup, of the weights of ρ. It is known that this game has no SPE [17].

Let us show that the strategy profile σ̄ depicted with thick edges is a very weak SPE.
Due to the simple form of the game, only two cases are to be treated. Consider the subgame
(G�h, v0) with h ∈ (v0v1)∗, and the one-shot deviating strategy σ′1 of player 1 such that
σ′1(v0) = v2. Then 〈σ̄�h〉v0 = v0v1v

ω
3 and 〈σ′1, σ2�h〉v0 = v0v

ω
2 , showing that σ′1 is not

a profitable deviation for player 1. One also checks that in the subgame (G�h, v1) with
h ∈ (v0v1)∗v0, the one-shot deviating strategy σ′2 of player 2 such that σ′2(v1) = v0 is not
profitable for him.

Similarly, one can prove that σ̄ is a weak SPE (see also Proposition 13 hereafter). Notice
that σ̄ is not an SPE. Indeed the strategy σ′2 such that σ′2(hv1) = v0 for all h, is a profitable
deviation for player 2 in (G, v0). This strategy is (of course) not finitely deviating. Finally
notice that σ̄ is a weak NE that is not an NE.

From Definition 10, any SPE is a weak SPE, and any weak SPE is a very weak SPE. The
next proposition states that weak SPE and very weak SPE are equivalent notions, but this is
no longer true for SPE and weak SPE as shown previously by Example 12. The first part of
the proof is based on arguments from the one-step deviation property used to prove Kuhn’s
theorem [10]. The second part follows from Example 12 [17].

I Proposition 13.
Let (G, v0) be an initialized game, and σ̄ be a strategy profile. Then σ̄ is a weak SPE iff
σ̄ is a very weak SPE.
There exists an initialized game (G, v0) with a weak SPE but no SPE.

Under the next hypotheses on the game or the costs, the equivalence between SPE, weak
SPE, and very weak SPE holds. The first case, when the cost functions are continuous, is a
classical result in game theory, see for instance [8]; the second case appears as a part of the
proof of Kuhn’s theorem [10].

I Proposition 14. Let (G, v0) be an initialized game, and σ̄ be a strategy profile.
If all cost functions λi are continuous, or even upper-semicontinuous6, then σ̄ is an SPE
iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.
If G is a finite tree7, then σ̄ is an SPE iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.

6 In games where the players receive a payoff that they want to maximize, the hypothesis of upper-
semicontinuity has to be replaced by lower-semicontinuity.

7 In a finite tree game, the plays are finite sequences of vertices ending in a leaf and their cost is associated
with the ending leaf. An example of such a game is depicted in Figure 2.
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Recall that discounted sum games and quantitative reachability games are continuous.
Thus for these games, the three notions of SPE, weak SPE and very weak SPE, are equivalent.

I Corollary 15. Let (G, v0) be an initialized quantitative reachability game, and σ̄ be a
strategy profile. Then σ̄ is an SPE iff σ̄ is a weak SPE iff σ̄ is a very weak SPE.

On the opposite, the initialized game of Figure 3 has a weak SPE but no SPE. Its cost
function λ2 is not upper-semicontinuous. Indeed, we have that limn→∞(v0v1)nvω3 = (v0v1)ω
and limn→∞ λ2((v0v1)nvω3 ) = 1 > 0 = λ2((v0v1)ω).

3 Folk Theorem for Weak SPEs

In this section, we characterize in the form of a Folk Theorem the set of all outcomes of weak
SPEs. To this end we define a nonincreasing sequence of sets of plays that initially contain
all the plays, and then lose, step by step, some plays that for sure are not outcomes of a
weak SPE, until finally reaching a fixpoint.

Let (G, v0) be a game. For an ordinal α and a history hv ∈ Hist(v0), let us consider the
set Pα(hv) = {ρ | ρ is a potential outcome of a weak NE in (G�h, v) at step α}. This set is
defined by induction on α as follows:

I Definition 16. Let (G, v0) be a quantitative game. The set Pα(hv) is defined as follows
for each ordinal α and history hv ∈ Hist(v0):

For α = 0,
Pα(hv) = {ρ | ρ is a play in (G�h, v)}. (1)

For a successor ordinal α+ 1,
Pα+1(hv) = Pα(hv) \Eα(hv) (2)

such that ρ ∈ Eα(hv) (see Figure 4) iff
there exists a history h′, hv ≤ h′ < hρ, and Last(h′) ∈ Vi for some i,
there exists a vertex v′, h′v′ 6< hρ,
such that ∀ρ′ ∈ Pα(h′v′): λi(hρ) > λi(h′ρ′).

For a limit ordinal α:
Pα(hv) =

⋂
β<α

Pβ(hv). (3)

Notice that an element ρ of Pα(hv) is a play in (G�h, v) (and not in (G, v0)). Therefore it
starts with vertex v, and hρ is a play in (G, v0). For α+ 1 being a successor ordinal, play
ρ ∈ Eα(hv) is erased from Pα(hv) when for all ρ′ ∈ Pα(h′v′), player i pays a lower cost
λi(h′ρ′) < λi(hρ), meaning that ρ is no longer a potentiel outcome of a weak NE in (G�h, v).

The sequence (Pα(hv))α is nonincreasing by definition, and reaches a fixpoint:

I Proposition 17. There exists an ordinal α∗ such that Pα∗(hv) = Pα∗+1(hv) for all
histories hv ∈ Hist(v0).

In the sequel, α∗ always refers to the ordinal mentioned in Proposition 17.
Our Folk Theorem for weak SPEs is the next one.

I Theorem 18. Let (G, v0) be a quantitative game. There exists a weak SPE in (G, v0) with
outcome ρ iff Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and ρ ∈ Pα∗(v0).

The proof of Theorem 18 follows from Lemmas 19 and 20.

I Lemma 19. If (G, v0) has a weak SPE σ̄, then Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and
〈σ̄〉v0 ∈ Pα∗(v0).
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v0

v

v′

∈ Vi

ρ ∈ Eα(hv) ∀ρ′ (G�h, v)Pα(h′v′)

h

h′

Figure 4 ρ ∈ Eα(hv).

Proof. Let us show, by induction on α, that 〈σ̄�h〉v ∈ Pα(hv) for all hv ∈ Hist(v0).
For α = 0, we have 〈σ̄�h〉v ∈ Pα(hv) by definition of P0(hv).
Let α+ 1 be a successor ordinal. By induction hypothesis, we have that 〈σ̄�h〉v ∈ Pα(hv)

for all hv ∈ Hist(v0). Suppose that there exists hv such that 〈σ̄�h〉v 6∈ Pα+1(hv), i.e.
〈σ̄�h〉v ∈ Eα(hv). This means that there is a history h′ = hg ∈ Histi for some i ∈ Π
with hv ≤ h′ < hρ, and there exists a vertex v′ with h′v′ 6< hρ, such that ∀ρ′ ∈ Pα(h′v′),
λi(h·〈σ̄�h〉v) > λi(h′ρ′). In particular, by induction hypothesis

λi(h·〈σ̄�h〉v) > λi(h′ ·〈σ̄�h′〉v′). (4)

Let us consider the player i strategy σ′i in (G�h, v) such that g ·〈σ̄�h′〉v′ is consistent with σ′i.
Then σ′i is a finitely deviating strategy with the (unique) g-deviation step from σ̄�h. It is a
profitable deviation for player i in (G�h, v) by (4), a contradiction with σ̄ being a weak SPE.

Let α be a limit ordinal. By induction hypothesis 〈σ̄�h〉v ∈ Pβ(hv),∀β < α. Therefore
〈σ̄�h〉v ∈ Pα(hv) =

⋂
β<α Pβ(hv). J

I Lemma 20. Suppose that Pα∗(hv) 6= ∅ for all hv ∈ Hist(v0), and let ρ ∈ Pα∗(v0). Then
(G, v0) has a weak SPE with outcome ρ.

Proof. We are going to show how to construct a very weak SPE σ̄ (and thus a weak SPE
by Proposition 13) with outcome ρ. The construction of σ̄ is done step by step thanks to
a progressive labeling of the histories hv ∈ Hist(v0). Let us give an intuitive idea of the
construction of σ̄. Initially, we partially construct σ̄ such that it produces an outcome in
(G, v0) equal to ρ ∈ Pα∗(v0); we also label each non-empty prefix of ρ by ρ. Then we consider
a shortest non-labeled history h′v′, and we correctly choose some ρ′ ∈ Pα∗(h′v′) (we will
see later how). We continue the construction of σ̄ such that it produces the outcome ρ′ in
(G�h′ , v′), and for each non-empty prefix g of ρ′, we label h′g by ρ′ (notice that the prefixes
of h′ have already been labeled by choice of h′). And so on. In this way, the labeling is a
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map γ : Hist(v0)→
⋃
hv Pα∗(hv) that allows to recover from h′g the outcome ρ′ of σ̄�h′ in

(G�h′ , v′) of which g is prefix. Let us now go into the details.
Initially, none of the histories is labeled. We start with history v0 and the given play

ρ ∈ Pα∗(v0). The strategy profile σ̄ is partially defined such that 〈σ̄〉v0 = ρ, that is, if
ρ = ρ0ρ1 . . ., then σi(ρ≤n) = ρn+1 for all ρn ∈ Vi and i ∈ Π. The non-empty prefixes h of ρ
are all labeled with γ(h) = ρ.

At the following steps, we consider a history h′v′ that is not yet labeled, but such that
h′ has already been labeled. By induction, γ(h′) = 〈σ̄�h〉v such that hv ≤ h′. Suppose that
Last(h′) ∈ Vi, we then choose a play ρ′ ∈ Pα∗(h′v′) such that (see Figure 5)

λi(h·〈σ̄�h〉v) ≤ λi(h′ρ′). (5)

Such a play ρ′ exists for the next reasons. By induction, we know that 〈σ̄�h〉v ∈ Pα∗(hv).
Since Pα∗(hv) = Pα∗+1(hv) by Proposition 17, we have 〈σ̄�h〉v 6∈ Eα∗(hv), and we get the
existence of ρ′ by definition of Eα∗(hv). We continue to construct σ̄ such that 〈σ̄�h′〉v′ = ρ′,
i.e. if ρ′ = ρ′0ρ

′
1 . . ., then σi(h′ρ′≤n) = h′ρ′n+1 for all ρ′n ∈ Vi and i ∈ Π. For all non-empty

prefixes g of ρ′, we define γ(h′g) = ρ′ (notice that the prefixes of h′ are already labeled).
Let us show that the constructed profile σ̄ is a very weak SPE. Consider a history

hv ∈ Histi for some i ∈ Π, and a one-shot deviating strategy σ′i from σ̄�h in the subgame
(G�h, v). Let v′ be such that σ′i(v) = v′. By definition of σ̄, we have γ(hv) = 〈σ̄�g〉u for some
history gu ≤ hv and h·〈σ̄�h〉v = g ·〈σ̄�g〉u; and we have also γ(hvv′) = 〈σ̄�hv〉v′ . Moreover
λi(g·〈σ̄�g〉u) ≤ λi(hv·〈σ̄�hv〉v′) by (5), and λi(hv·〈σ̄�hv〉v′) = λi(h·〈σ′i, σ−i�h〉v) because σ′i is
one-shot deviating. Therefore

λi(h·〈σ̄�h〉v) = λi(g ·〈σ̄�g〉u) ≤ λi(hv ·〈σ̄�hv〉v′) = λi(h·〈σ′i, σ−i�h〉v)

which shows that σ̄�h is a very weak NE in (G�h, v). Hence σ̄ is a very weak SPE, and thus
also a weak SPE. J

4 Quantitative Reachability Games

v0

v

v′

∈ Vi

〈σ̄�h〉v ρ′ = 〈σ̄�h′〉v′ Pα∗(h′v′)

h

g

h′

Figure 5 Construction of a very weak
SPE σ̄.

In this section, we focus on quantitative reachability
games, such that the player i cost of a play is the
number of edges to reach his target set Ti (see
Definition 2). Recall that for those games, SPEs,
weak SPEs, and very weak SPEs, are equivalent
notions (see Corollary 15). It is known that there
always exists an SPE in quantitative reachability
games [1, 7].

I Theorem 21 ([1, 7]). Each quantitative reacha-
bility game (G, v0) has an SPE.

As SPEs and weak SPEs coincide in quantita-
tive reachability games, we get the next result by
Theorem 18.

I Corollary 22. Let (G, v0) be a quantitative reach-
ability game. The sets Pα∗(hv) are non-empty,
for all hv ∈ Hist(v0), and Pα∗(v0) is the set of
outcomes of SPEs in (G, v0).



Th. Brihaye, V. Bruyère, N. Meunier, and J.-F. Raskin 515

The proof provided for Theorem 21 is non constructive since it relies on topological
arguments. Our main result is that one can algorithmically construct an SPE in (G, v0) that
is moreover finite-memory, thanks to the sets Pα∗(hv).

I Theorem 23. Each quantitative reachability initialized game (G, v0) has a finite-memory
SPE. Moreover there is an algorithm to construct such an SPE.

We can also decide whether there exists a (finite-memory) SPE such that the cost of its
outcome is component-wise bounded by a given constant vector.

I Corollary 24. Let (G, v0) be a quantitative reachability initialized game, and let c̄ ∈ N|Π|
be a given |Π|-tuple of integers. Then one can decide whether there exists a (finite-memory)
SPE σ̄ such that λi(〈σ̄〉v0) ≤ ci for all i ∈ Π.

The main ingredients of the proof of Theorem 23 are the next ones. They will be a little
detailed in the sequel of this section, as well as the proof of Corollary 24.

1. Given α, the infinite number of sets Pα(hv) can be replaced by the finite number of sets
PI
α(v) where I is the set of players that did not reach their target set along history h.

2. The fixpoint of Proposition 17 is reached with some natural number α∗ ∈ N.
3. Each PI

α(v) is a non-empty ω-regular set, thus containing a “lasso play" of the form h·gω.
4. The lasso plays of each PI

α(v) allow to construct a finite-memory SPE.

1. Sets PIα(v). Let (G, v0) be a quantitative reachability game. Given a history h =
h0 . . . hn in (G, v0), we denote by I(h) the set of players i such that ∀k, 0 ≤ k ≤ n, we have
hk 6∈ Ti. In other words I(h) is the set of players that did not reach their target set along
history h. If h is empty, then I(h) = Π. One can prove that sets Pα(hv) only depend on v
and I(h), and thus not on h (we do no longer take care of players that have reached their
target set along h). We can thus introduce the notations

PI
α(v) (resp. EI

α(v))

in place of Pα(hv) (resp. Eα(hv)). In particular, PΠ
α (v0) = Pα(v0) and EΠ

α (v0) = Eα(v0).
Hence given α, the infinite number of sets Pα(hv) can be replaced by the finite number of
sets PI

α(v).
A key result in the proof of Theorem 23 is the following one: given PI

α(v) and i ∈ I, if for
all ρ ∈ PI

α(v), we have λi(ρ) < +∞, then there exists c such that for all ρ ∈ PI
α(v), we have

λi(ρ) ≤ c. The constant c only depends on α, I, v, and i. As a consequence of this result,
we have that sup{λi(ρ) | ρ ∈ PI

α(v)} is equal to max{λi(ρ) | ρ ∈ PI
α(v)}. We use the next

notation for this maximum: given PI
α(v), we define Λ(PI

α(v)) such that

Λi(PI
α(v)) =

{
−1 if i 6∈ I,
max{λi(ρ) | ρ ∈ PI

α(v)} if i ∈ I.

In this definition, −1 indicates that player i has already visited his target set Ti, and the
max belongs to N ∪ {+∞}.

2. Fixpoint with α∗ ∈ N. To explain why the fixpoint (when computing the sets PI
α(v),

see Proposition 17) is reached in a finite number of steps, we need to adapt previous notation
Λ(PI

α(v)) to mention the maximum costs for plays in PI
α(v) starting with edge (v, v′):

Λi(PI
α(v), v′) =

{
−1 if i 6∈ I,
max{λi(ρ) | ρ ∈ PI

α(v) and ρ0ρ1 = vv′} if i ∈ I. (6)
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In this definition, the max is equal to -1 when {λi(ρ) | ρ ∈ PI
α(v) and ρ0ρ1 = vv′} = ∅.

One can prove that if PI
α(v) 6= PI

α+1(v), then there exist J ⊆ Π and (u, u′) ∈ E such
that Λ(PJ

α(u), u′) 6= Λ(PJ
α+1(u), u′). Notice that there is a finite number of sequences

(Λ(PI
α(v), v′))α as they only depend on I ⊆ Π and (v, v′) ∈ E, and that they are nonincreasing

for the usual component-wise ordering over (N ∪ {−1,+∞})Π. As this ordering is a well-
quasi-ordering, there exists an integer (and not only an ordinal) α′∗ such that Λ(PI

α′∗
(v), v′) =

Λ(PI
α′∗+1(v), v′) for all I ⊆ Π and (v, v′) ∈ E. We get that α∗ ≤ α′∗, showing that α∗ ∈ N.

3. The sets PIα(v) are ω-regular. We prefer to show that each set PI
α(v) is MSO-definable,

instead of providing the (technical) construction of a Büchi automaton, It is well-known that
a set of ω-words is ω-regular iff it is MSO-definable, by Büchi theorem [18]. Moreover from
the Büchi automaton, one can construct an equivalent MSO-sentence, and conversely. One
can also decide whether an MSO-sentence is satisfiable [18]. We recall that MSO-logic uses,
in addition to variables x, y, . . . (X,Y, . . . resp.) that describe a position (a set of positions
resp.) in an ω-word ρ, the relations x < y, Succ(x, y), X(x) to mention that x ∈ X, and
Qu(x) to mention that vertex u is at position x of ρ.

As a first step, we show that if PI
α(v) is MSO-definable, say by sentence φ, then Λ(PI

α(v))
is computable. By definition Λi(PI

α(v)) equals −1 if i 6∈ I, and is thus computable in this
case. Given i ∈ I, one can decide whether Λi(PI

α(v)) = +∞ by checking whether φ ∧ ϕ is
satisfiable, with ϕ = ∀x · ¬(∨u∈TiQu(x)). In case of a positive answer, Λi(PI

α(v)) is thus
computable. If not, one can prove that Λi(PI

α(v)) < n where n is the number of states of a
Büchi automaton accepting PI

α(v). We can then similarly test whether Λi(PI
α(v)) = c by

considering decreasing constants c from n− 1 to 0, and thus compute Λi(PI
α(v)).

As a second step, we show that each PI
α(v) is MSO-definable by induction on α. For

α = 0, as PI
0(v) is the set of plays starting with v, the required sentence is Qv(0) ∧ ∀x ·

∨(u,u′)∈E(Qu(x) ∧Qu′(x+ 1)). Let α ∈ N, and suppose that PI
α(v) is a fixed MSO-definable

set. To show that PI
α+1(v) is also MSO-definable, it is enough to show that EI

α(v) is
MSO-definable. Thanks to Λ(PI

α(v)), the definition of ρ ∈ EI
α(v) (see Definition 16) can be

rephrased as follows: there exist n ∈ N, i ∈ I, and u, u′, v′ ∈ V with u′ 6= v′, (u, v′) ∈ E, such
that ρn = u ∈ Vi, ρn+1 = u′, and λi(ρ) > Λi(PJ′

α (v′)) + (n + 1), where J ′ is the subset of
players of I that did not visit their target set along ρ≤n. Notice that this inequality implies
that i ∈ J ′ and Λi(PJ′

α (v′)) < +∞. The sentence ψ defining EI
α(v) is the following one:

∃n ·
∨

u,u′ 6=v′∈V
(u,v′)∈E

∨
J′⊆I

∨
i∈J′,u∈Vi

Λi(PJ
′
α (v′))<+∞

(Qu(n) ∧Qu′(n+ 1) ∧ φJ′,n ∧ ϕJ′,n,v′,i) .

In sentence ψ, we use φJ′,n expressing the definition of J ′, and ϕJ′,n,v′,i expressing that if
player i visits its target set along ρ, it is after Λi(PJ′

α (v′)) + n+ 1 edges from ρ0. Notice that
the (computable) constant Λi(PJ′

α (v′)) can be considered as fixed, since PI
α(v) is fixed.

As a third step, as each PI
α(v) is ω-regular, then for all i ∈ I, PI

α∗(v) has a computable
lasso play ρ = hi,I,v·(gi,I,v)ω (depending on i, I, and v) with maximal cost λi(ρ) = Λi(PI

α∗(v)).

4. Construction of a finite-memory SPE. We have all the ingredients to prove that each
quantitative reachability game has a computable finite-memory SPE. The procedure is the
same as the one developed in the proof of Lemma 20, except that it uses the lasso plays
hi,I,v·(gi,I,v)ω ∈ PI

α∗(v). For the initial history v0, we use any play hi,Π,v0·(gi,Π,v0)ω ∈ PΠ
α∗(v0),

i ∈ Π. At the following steps, given a not yet labeled history h′v′, the proof of Lemma 20
requires to choose a play ρ′ ∈ PJ′

α∗(v
′) (for a certain J ′ ⊆ I) with a cost λi(h′ρ′) sufficiently



Th. Brihaye, V. Bruyère, N. Meunier, and J.-F. Raskin 517

large. We simply choose ρ′ = hi,J′,v′ ·(gi,J′,v′)ω that has maximal cost λi(ρ′) = Λi(PJ′

α∗(v
′)).

This strategy profile σ̄ is an SPE that is finite-memory since it depends on the finite number
of lasso plays hj,I,v ·(gj,I,v)ω.

It remains to prove the decidability of the constrained existence of an SPE for quantitative
reachability games, as announced in Corollary 24. Let c̄ ∈ N|Π| be a constant vector. We
know that the set PΠ

α∗(v0) of outcomes of SPEs in (G, v0) is MSO-definable. It is easy to
see that the set {ρ | ρ ∈ PΠ

α∗(v0) and λi(ρ) ≤ ci,∀i} is also MSO-definable. We can thus
decide whether this set is non-empty, which means that the constrained existence of an SPE
is decidable. In case of positive answer, this set contains a lasso play h·gω. Exactly as done
above, one can construct a finite-memory SPE σ̄ such that 〈σ̄〉v0 = h·gω.

To conclude this section, we present another large class of games for which one can
decide whether there exists a weak SPE.8 The hypotheses are general conditions on the cost
functions λi, i ∈ Π:

I Theorem 25. Let (G, v0) be an initialized game such that:
each cost function λi is prefix-independent, and with finite range Ci ⊂ Q,
for all i ∈ Π, ci ∈ Ci, and v ∈ V , the set of plays ρ in (G, v) with λi(ρ) = ci is an
ω-regular set.

Then one can decide whether (G, v0) has a weak SPE σ̄ (resp. such that λi(〈σ̄〉v0) ≤ ci forall i
for given ci ∈ Ci, i ∈ Π). In case of positive answer, one can construct such a finite-memory
weak SPE.

For example, the hypotheses of this theorem are satisfied by the liminf games and the
limsup games; they are also satisfied by the game of Example 12. The proof of this theorem
shares similar points with the proof given for quantitative reachability games. Again, it uses
our Folk Theorem for weak SPEs.

5 Conclusion and Future Work

In this article, we have studied the existence of (weak) SPEs in quantitative games. We have
proposed a Folk Theorem that characterizes all the outcomes of weak SPEs. To illustrate
the potential of this theorem, we have given two applications. The first one is concerned
with quantitative reachability games for which we have provided an algorithm to compute
a finite-memory SPE, and a second algorithm for deciding the constrained existence of a
(finite-memory) SPE. The second application is concerned with another large class of games
for which we have proved that the (constrained) existence of a (finite-memory) weak SPE is
decidable.

Future possible directions of research are the following ones. We would like to study the
complexities of the problems studied for the two classes of games. We also want to investigate
the application of our Folk Theorem to other classes of games. The example of Figure 3 is a
game with a weak SPE but no SPE (see Example 12). Recall that for this game, the cost
λi(ρ) can be seen as either the mean-payoff, or the liminf, or the limsup, of the weights of
ρ. We do not know if games with this kind of payoff functions always have a weak SPE or
not. Notice that using a variant of the techniques developed for weak SPEs, we were able
to obtain a Folk theorem for SPEs, nevertheless with a weaker characterization since one
implication requires that the cost functions are upper-semicontinuous (see [2]).

8 Contrarily to quantitative reachability games, we do not know if a weak SPE always exists for games in
this class.
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