
A Definability Dichotomy for Finite Valued CSPs
Anuj Dawar and Pengming Wang

University of Cambridge Computer Laboratory, UK
{anuj.dawar, pengming.wang}@cl.cam.ac.uk

Abstract
Finite valued constraint satisfaction problems are a formalism for describing many natural op-
timization problems, where constraints on the values that variables can take come with rational
weights and the aim is to find an assignment of minimal cost. Thapper and Živný have recently
established a complexity dichotomy for finite valued constraint languages. They show that each
such language either gives rise to a polynomial-time solvable optimization problem, or to an
NP-hard one, and establish a criterion to distinguish the two cases. We refine the dichotomy by
showing that all optimization problems in the first class are definable in fixed-point language with
counting, while all languages in the second class are not definable, even in infinitary logic with
counting. The definability dichotomy is not conditional on any complexity-theoretic assumption.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases descriptive complexity, constraint satisfaction, definability, fixed-point
logic, optimization

Digital Object Identifier 10.4230/LIPIcs.CSL.2015.60

1 Introduction

Constraint Satisfaction Problems (CSPs) are a widely-used formalism for describing many
problems in optimization, artificial intelligence and many other areas. The classification
of CSPs according to their tractability has been a major area of theoretical research ever
since Feder and Vardi [8] formulated their dichotomy conjecture. The main aim is to classify
various constraint satisfaction problems as either tractable (i.e. decidable in polynomial time)
or NP-hard and a number of dichotomies have been established for special cases of the CSP
as well as generalizations of it. In particular, Cohen et al. [5] extend the algebraic methods
that have been very successful in the classification of CSPs to what they call soft constraints,
that is constraint problems involving optimization rather than decision problems. In this
context, a recent result by Thapper and Živný [12] established a complexity dichotomy for
finite valued CSPs (VCSPs). This is a formalism for defining optimization problems that can
be expressed as sums of explicitly given rational-valued functions (a more formal definition is
given in Section 2). As Thapper and Živný argue, the formalism is general enough to include
a wide variety of natural optimization problems. They show that every finite valued CSP is
either in P or NP-hard and provide a criterion, in terms of the existence of a definable XOR
function, that determines which of the two cases holds.

In this paper we are interested in the definability of constraint satisfaction problems in a
suitable logic. Definability in logic has been a significant tool for the study of CSPs for many
years. A particular logic that has received attention in this context is Datalog, the language
of inductive definitions by function-free Horn clauses. A dichotomy of definability has been
established in the literature, which shows that every constraint satisfaction problem on a
fixed template is either definable in Datalog or it is not definable even in the much stronger
Cω—an infinitary logic with counting. This result has not been published as such but is

© Anuj Dawar and Pengming Wang;
licensed under Creative Commons License CC-BY

24th EACSL Annual Conference on Computer Science Logic (CSL 2015).
Editor: Stephan Kreutzer; pp. 60–77

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CSL.2015.60
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Dawar and P. Wang 61

an immediate consequence of results in [2] where it is shown that every CSP satisfying a
certain algebraic condition is not definable in Cω, and in [3] where it is shown that those
that fail to satisfy this condition have bounded width and are therefore definable in Datalog.
The definability dichotomy so established does not line up with the (conjectured) complexity
dichotomy as it is known that there are tractable CSPs that are not definable in Datalog.

In the context of the definability of optimization problems, one needs to distinguish
three kinds of definability. In general an optimization problem asks for a solution (which
will typically be an assignment of values from some domain D to the variables V of the
instance) minimising the value of a cost function. This problem is standardly turned into a
decision problem by including a budget b in the instance and asking if there is a solution
that achieves a cost of at most b. Sentences in a logic naturally define decision problems,
and in the context of definability a natural question is whether the decision problem is
definable. Asking for a formula that defines an actual optimal solution may not be reasonable
as such a solution may not be uniquely determined by the instance and formulas in logic are
generally invariant under automorphisms of the structure on which they are interpreted. An
intermediate approach is to ask for a term in the logic that defines the cost of an optimal
solution and this is our approach in this paper.

Our main result is a definability dichotomy for finite valued CSPs. In the context of
optimization problems involving numerical values, Datalog is unsuitable so we adopt as
our yardstick definability in fixed-point logic with counting (FPC). This is an important
logic that defines a natural and powerful proper fragment of the polynomial-time decidable
properties (see [6]). It should be noted that Cω properly extends the expressive power of
FPC and therefore undefinability results for the former yield undefinability results for the
latter. We establish that every finite valued CSP is either definable in FPC or undefinable in
Cω. Moreover, this dichotomy lines up exactly with the complexity dichotomy of Thapper
and Živný. All the valued CSPs they determine are tractable are in fact definable in FPC,
and all the ones that are NP-hard are provably not in Cω. Unlike the complexity dichotomy,
the definability dichotomy is not conditional on any complexity- theoretic assumption. Even
if it were the case that P = NP, the finite valued CSPs still divide into those definable in FPC
and those that are not on these same lines. It should be noted that this is a feature of the
classification discovered by Thapper and Živný. They identify the tractable cases with those
that can be solved using the basic linear programming (BLP) relaxation and those which have
the (XOR) property, and this classification is not conditional on any complexity-theoretic
assumption

The positive direction of our result builds on the recent work of Anderson et al. [1]
showing that solutions to explicitly given instances of linear programming are definable in
FPC. Thapper and Živný show that the optimal solutions to the tractable VCSPs can be
found by solving their BLP relaxation. Thus, to establish the definability of these problems
in FPC it suffices to show that the reduction to the BLP is itself definable in FPC, which we
do in Section 4.

For the negative direction, we use the reductions used in [12] to establish NP-hardness
of VCSPs and show that these reductions can be carried out within FPC. We start with
the standard CSP form of 3-SAT, which is not definable in Cω as a consequence of results
from [2]. Details of all these reductions are presented in Section 5.

There is one issue with regard to the representation of instances of VCSPs as relational
structures which we need to consider in the context of definability. An instance is defined
over a language which consists of a set Γ of functions from a finite domain D to the rationals.
If Γ is a finite set, it is reasonable to fix the relational signature to have a relation for each

CSL 2015

62 A Definability Dichotomy for Finite Valued CSPs

function in Γ, and the FPC formula defining the class of VCSPs would be in this fixed
relational signature. However, we can also consider the uniform definability of VCSP(Γ)
when Γ is infinite (note that only finitely many functions from the language Γ are used
in constraints in any instance). A natural way to represent this is to allow the functions
themselves to be elements of the relational structure coding an instance. We can show that
our dichotomy holds even under this uniform representation. For simplicity of exposition,
we present the results for finite Γ and then, in Section 6, we explain how the proof can be
modified to the uniform case where the functions are explicitly given as elements of the
structure.

2 Background

Notation. We write N for the natural numbers, Z for the integers, Q for the rational
numbers and Q+ to denote the positive rationals.

We use bars v̄ to denote vectors. A vector over a set A indexed by a set I is a function
v̄ : I → A. We write va for v̄(a). Often, but not always, the index set I is {1, . . . , d}, an
initial segment of the natural numbers. In this case, we also write |v̄| for the length of v̄, i.e.
d. A matrix M over A indexed by two sets I, J is a function M : I × J → A. We use the
symbol ∪̇ for the disjoint union operator on sets.

If v̄ is an I-indexed vector over A and f : A→ B is a function, we write f(v̄) to denote
the I-indexed vector over B obtained by applying f componentwise to v̄.

2.1 Valued Constraint Satisfaction
We begin with the basic definitions of valued constraint satisfaction problems. These
definitions are based, with minor modifications, on the definitions given in [12].

I Definition 1. Let D be a finite domain. A valued constraint language Γ over D is a set of
functions, where each f ∈ Γ has an associated arity m = ar(f) and f : Dm → Q+.

I Definition 2. An instance of the valued constraint satisfaction problem (VCSP) over a
valued constraint language Γ is a pair I = (V,C), where V is a finite set of variables and C
is a finite set of constraints. Each constraint in C is a triple (σ, f, q), where f ∈ Γ, σ ∈ V ar(f)

and q ∈ Q+.
A solution to an instance I of VCSP(Γ) is an assignment h : V → D of values in D to

the variables in V . The cost of the solution h is given by costI(h) :=
∑

(σ,f,q)∈C q · f(h(σ)).
The valued constraint satisfaction problem is then to find a solution with minimal cost.

In the decision version of the problem, an additional threshold constant t ∈ Q is given,
and the question becomes whether there is a solution h with costI(h) ≤ t.

Given a valued constraint language Γ, there are certain natural closures Γ′ of this set
of functions for which the computational complexity of VCSP(Γ) and VCSP(Γ′) coincide.
The first we consider is called the expressive power of Γ, which consists of functions that can
be defined by minimising a cost function given by a fixed VCSP(Γ)-instance I over some
projection of the variables in I. The second closure of Γ we consider is under scaling and
translation. Both of these are given formally in the following definition.

I Definition 3. Let Γ be a valued constraint language over D. We say that a function
f : Dm → Q, is expressible in Γ, if there is some instance If = (Vf , Cf) ∈ VCSP(Γ) and a
tuple of distinct elements v̄ = (v1, . . . , vm) ∈ V mf such that

f(x̄) = min
h∈Hx̄

costIf
(h),

A. Dawar and P. Wang 63

where Hx̄ := {h : Vf → D | h(vi) = xi , 1 ≤ i ≤ m}. We then say the function f is expressed
by the instance If and the tuple v̄, and call the set of all functions that can be expressed by
an instance of VCSP(Γ) the expressive power of Γ, denoted by 〈Γ〉.

Furthermore, we write f ′ ≡ f if f ′ is obtained from f by scaling and translation, i.e.
there are a, b ∈ Q, a > 0 such that f ′ = a · f + b. For a valued constraint language Γ, we
write Γ≡ to denote the set {f ′ | f ′ ≡ f for some f ∈ Γ}.

The next two lemmas establish that closing Γ under these operations does not change
the complexity of the corresponding problem. The first of these is implicit in the literature,
and we prove a stronger version of it in Lemma 13.

I Lemma 4. Let Γ and Γ′ be valued constraint languages on domain D such that Γ′ ⊆ Γ≡.
Then VCSP(Γ′) is polynomial-time reducible to VCSP(Γ).

I Lemma 5 (Theorem 3.4, [5]). Let Γ and Γ′ be valued constraint languages on domain D
such that Γ′ ⊆ 〈Γ〉. Then VCSP(Γ′) is polynomial-time reducible to VCSP(Γ).

In the study of constraint satisfaction problems, and of structure homomorphisms more
generally the core of a structure plays an important role. The corresponding notion for
valued constraint languages is given in the following definition.

I Definition 6. We call a valued constraint language Γ over domain D a core if for for all
a ∈ D, there is some instance Ia ∈ VCSP(Γ) such that in every minimal cost solution over
Ia, some variable is assigned a. A valued constraint language Γ′ over a domain D′ ⊆ D is a
sub-language of Γ if it contains exactly the functions of Γ restricted to D′. We say that Γ′ is
a core of Γ, if Γ′ is a sub-language of Γ and also a core.

I Lemma 7 (Lemma 2.4, [12]). Let Γ′ be a core of Γ. Then, minh costI(h) = minh costI′(h)
for all I ∈ VCSP(Γ) and I ′ ∈ VCSP(Γ′) where I ′ is obtained from I by replacing each
function of Γ by its restriction in Γ′.

Finally, we consider the closure of Γ under parameterized definitions. That is, we define
Γc, the language obtained from Γ by allowing functions that are obtained from those in Γ by
fixing some parameters.

I Definition 8. Let Γ be a core over D, we denote by Γc the language that contains exactly
those functions f : Dm → Q for which there exists

a function g ∈ Γ, with g : Dn → Q with n ≥ m,
a set of indices Tf ⊆ {1, . . . , n},
a mapping sf : {1, . . . , n}\Tf → {1, . . . ,m},
and a partial assignment tf : Tf → D,

such that f is g restricted on tf , i.e. f(x1, . . . , xm) = g(t(1), . . . , t(n)), where t(i) = tf (i) if
i ∈ Tf , and t(i) = xsf (i) otherwise. Furthermore, we fix a mapping γ : Γc → Γ that assigns
each f ∈ Γc a function g = γ(f) ∈ Γ with the above properties.

For example, if g ∈ Γ, then the function f defined by f(x1, x2) := g(x1, a, x2) for some fixed
a ∈ D is in Γc.

2.2 Linear Programming
I Definition 9. Let QV be the rational Euclidean space indexed by a set V . A linear
optimization problem is given by a constraint matrix A ∈ QC×V and vectors b̄ ∈ QC , c̄ ∈ QV .
Let PA,b̄ := {x̄ ∈ QV |Ax̄ ≤ b̄} be the set of feasible solutions. The linear optimization

CSL 2015

64 A Definability Dichotomy for Finite Valued CSPs

problem is then to determine either that PA,b̄ = ∅, or to find a vector ȳ = argmaxx̄∈PA,b̄
c̄T x̄,

or to determine that maxx̄∈PA,b̄
c̄T x̄ is unbounded.

We speak of the integer linear optimization problem, if the set of feasible solutions is
instead defined as PA,b̄ := {x̄ ∈ ZV |Ax̄ ≤ b̄}.

In the decision version of the problem, an additional constant t ∈ Q is given, and the
task is determine whether there exists a feasible solution x̄ ∈ PA,b̄, such that c̄T x̄ ≥ t.

It is often convenient to describe the linear optimization problem (A, b̄, c̄) as a system of
linear inequalities Ax̄ ≤ b̄ along with the objective maxx̄∈PA,b̄

c̄T x̄. We may also alternatively,
describe an instance with a minimization objective. It is easy to see that such a system can
be converted to the standard form of Defintion 9.

Let Γ now be a valued constraint language over D, and let I = (V,C) be an instance of
VCSP(Γ). We associate with I the following linear optimization problem in variables λc,ν
for each c ∈ C with c = (σ, f, q) and ν ∈ Dar(f), and µx,a for each x ∈ V and a ∈ D.

min
∑
c∈C

∑
ν∈Dar(f)

λc,ν · q · f(ν) where c = (σ, f, q) (1)

subject to the following constraints.
For each c ∈ C with c = (σ, f, q), each i with 1 ≤ i ≤ ar(f) and each a ∈ D, we have∑
ν∈Dar(f):νi=a

λc,ν = µσi,a; (2)

for each x ∈ V , we have∑
a∈D

µx,a = 1; (3)

and for all variables λc,ν and µx,a we have

0 ≤ λc,ν ≤ 1 and 0 ≤ µx,a ≤ 1. (4)

A feasible integer solution to the above system defines a solution h : V → D to the
instance I, given by h(x) = a iff µx,a = 1. Equations 2 then ensure that λc,ν = 1 for
c = (σ, f, q) just in case h(σ) = ν. Thus, it is clear that an optimal integer solution gives us
an optimal solution to I.

If we consider rational solutions instead of integer ones, we obtain the basic LP-relaxation
of I, which we denote BLP(I). The following theorem characterises for which languages Γ
BLP(I) has the same optimal solutions as I.

For the statement of the dichotomy result from [12], we need to introduce an additional
notion. We say that the property (XOR) holds for a valued constraint language Γ over
domain D if there are a, b ∈ D, a 6= b, such that 〈Γ〉 contains a binary function f with
argmin f = {(a, b), (b, a)}.

I Theorem 10 (Theorem 3.3, [12]). Let Γ be a core over some finite domain D.
Either for each instance I of VCSP(Γ), the optimal solutions of I are the same as BLP(I);
or property (XOR) holds for Γc and VCSP(Γ) is NP-hard.

2.3 Logic
A relational vocabulary (also called a signature or a language) τ is a finite sequence of relation
and constant symbols (R1, . . . , Rk, c1, . . . , cl), where every relation symbol Ri has a fixed

A. Dawar and P. Wang 65

arity ai ∈ N. A structure A = (dom(A), RA
1 , . . . , R

A
k , c

A
1 , . . . , c

A
l) over the signature τ (or a

τ -structure) consists of a non-empty set dom(A), called the universe of A, together with
relations RA

i ⊆ dom(A)ai and constants cA
j ∈ dom(A) for each 1 ≤ i ≤ k and 1 ≤ j ≤ l.

Members of the set dom(A) are called the elements of A and we define the size of A to be
the cardinality of its universe.

2.3.1 Fixed-point Logic with Counting
Fixed-point logic with counting (FPC) is an extension of inflationary fixed-point logic with
the ability to express the cardinality of definable sets. The logic has two sorts of first-order
variables: element variables, which range over elements of the structure on which a formula
is interpreted in the usual way, and number variables, which range over some initial segment
of the natural numbers. We write element variables with lower-case Latin letters x, y, . . .
and use lower-case Greek letters µ, η, . . . to denote number variables.

The atomic formulas of FPC[τ] are all formulas of the form µ = η or µ ≤ η, where µ, η
are number variables; s = t where s, t are element variables or constant symbols from τ ;
and R(t1, . . . , tm), where each ti is either an element variable or a constant symbol and R
is a relation symbol (i.e. either a symbol from τ or a relational variable) of arity m. Each
relational variable of arity m has an associated type from {elem,num}m. The set FPC[τ]
of FPC formulas over τ is built up from the atomic formulas by applying an inflationary
fixed-point operator [ifpR,x̄φ](t̄); forming counting terms #xφ, where φ is a formula and x an
element variable; forming formulas of the kind s = t and s ≤ t where s, t are number variables
or counting terms; as well as the standard first-order operations of negation, conjunction,
disjunction, universal and existential quantification. Collectively, we refer to element variables
and constant symbols as element terms, and to number variables and counting terms as
number terms.

For the semantics, number terms take values in {0, . . . , n}, where n = dom(A) and
element terms take values in dom(A). The semantics of atomic formulas, fixed-points and
first-order operations are defined as usual (c.f., e.g., [7] for details), with comparison of
number terms µ ≤ η interpreted by comparing the corresponding integers in {0, . . . , n}.
Finally, consider a counting term of the form #xφ, where φ is a formula and x an element
variable. Here the intended semantics is that #xφ denotes the number (i.e. the element of
{0, . . . , n}) of elements that satisfy the formula φ. For a more detailed definition of FPC, we
refer the reader to [7, 10].

We also consider Cω—the infinitary logic with counting, and finitely many variables. We
will not define it formally (the interested reader may consult [11]) but we need the following
two facts about it: its expressive power properly subsumes that of FPC, and it is closed
under FPC-reductions, defined below.

It is known by the Immerman-Vardi theorem [7] that fixed-point logic can express all
polynomial-time properties of finite ordered structures. It follows that in FPC we can express
all polynomial-time relations on the number domain. In particular, we have formulas with
free number variables α, β for defining sum and product, and we simply write α + β and
α · β to denote these formulas. For a number term α and a non-negative integer m, we write
α = m as short-hand for the formula that says that α is exactly m. We write BIT(α, β) to
denote the formula that is true just in case the β-th bit in the binary expansion of α is 1.
Finally, for each constant c, we assume a formula MULTc(W,x, y) which works as follows.
If B is an ordered set and W ⊆ B is a unary relation that codes the binary representation
of an integer w, then MULTc defines a binary relation R ⊆ B2 which on the lexicographic
order on B2 defines the binary representation of c · w.

CSL 2015

66 A Definability Dichotomy for Finite Valued CSPs

2.3.2 Reductions
We frequently consider ways of defining one structure within another in some logic L, such
as first-order logic or FPC. Consider two signatures σ and τ and a logic L. An m-ary
L-interpretation of τ in σ is a sequence of formulae of L in vocabulary σ consisting of: (i) a
formula δ(x̄); (ii) a formula ε(x̄, ȳ); (iii) for each relation symbol R ∈ τ of arity k, a formula
φR(x̄1, . . . , x̄k); and (iv) for each constant symbol c ∈ τ , a formula γc(x̄), where each x̄, ȳ or
x̄i is an m-tuple of free variables. We call m the width of the interpretation. We say that an
interpretation Θ associates a τ -structure B to a σ-structure A if there is a surjective map h
from the m-tuples {ā ∈ dom(A)m | A |= δ[ā]} to B such that:

h(ā1) = h(ā2) if, and only if, A |= ε[ā1, ā2];
RB(h(ā1), . . . , h(āk)) if, and only if, A |= φR[ā1, . . . , āk];
h(ā) = cB if, and only if, A |= γc[ā].

Note that an interpretation Θ associates a τ -structure with A only if ε defines an equivalence
relation on dom(A)m that is a congruence with respect to the relations defined by the
formulae φR and γc. In such cases, however, B is uniquely defined up to isomorphism and
we write Θ(A) := B. Throughout this paper, we will often use interpretations where ε is
simply defined as the usual equality on ā1 and ā2. In these instances, we omit the explicit
definition of ε.

The notion of interpretations is used to define logical reductions. Let C1 and C2 be two
classes of σ- and τ -structures respectively. We say that C1 L-reduces to C2 if there is an
L-interpretation Θ of τ in σ, such that Θ(A) ∈ C2 if and only if A ∈ C1, and we write
C1 ≤L C2.

It is not difficult to show that formulas of FPC compose with FPC-reductions in the
sense that, given an interpretation Θ of τ in σ and a τ -formula φ, we can define a σ-formula
φ′ such that A |= φ′ if, and only if, Θ(A) |= φ. Moreover Cω is closed under FPC-reductions.
So if C2 is definable in Cω and C1 ≤L C2, then C1 is also definable in Cω.

2.3.3 Representation
In order to discuss definability of constraint satisfaction and linear programming problems,
we need to fix a representation of instances of these problems as relational structures. Here,
we describe the representation we use.

Numbers and Vectors. We represent an integer z as a relational structure in the following
way. Let z = s ·x, with s ∈ {−1, 1} being the sign of z, and x ∈ N, and let b ≥ dlog2(x)e. We
represent z as the structure z with universe {1, . . . , b} over the vocabulary τZ = {X,S,<},
where < is interpreted the usual linear order on {1, . . . , b}; Sz is a unary relation where
Sz = ∅ indicates that s = 1, and s = −1 otherwise; and Xz is a unary relation that encodes
the bit representation of x, i.e. Xz = {k ∈ {1, . . . , b} | BIT(x, k) = 1}. In a similar vein, we
represent a rational number q = s · xd by a structure q over the domain τQ = {X,D, S,<},
where the additional relation Dq encodes the binary representation of the denominator d in
the same way as before.

In order to represent vectors and matrices over integers or rationals, we have multi-sorted
universes. Let T be a non-empty set, and let v be a vector of integers indexed by T . We
represent v as a structure v with a two-sorted universe with an index sort T , and bit sorts
{1, . . . , b}, where b ≥ dlog2(|m|)e, m = maxt∈T vt, over the vocabulary (X,D, S,<). Now,
the relation S is of arity 2, and Sv(t, ·) encodes the sign of the integer vt for t ∈ T . Similarly,
X is a binary relation interpreted as Xv = {(t, k) ∈ T × {1, . . . , b} | BIT(vt, k) = 1}. In

A. Dawar and P. Wang 67

order to represent matrices M ∈ ZT1×T2 , indexed by two sets T1, T2, we allow three-sorted
universes with two sorts of index sets. The generalisation to rationals carries over from the
numbers case. We write τvec to denote the vocabulary for vectors over Q and τmat for the
vocabulary for matrices over Q.

Linear Programs. Let an instance of a linear optimization problem be given by a constraint
matrix A ∈ QC×V , and vectors b̄ ∈ QC , c̄ ∈ QV over some set of variables V and constraints
C. We represent this instance in the natural way as a structure over the vocabulary
τLP = τvec ∪̇ τmat.

We can now state the result from [1] that we require, to the effect that there is an FPC
interpretation that can define solutions to linear programs.

I Theorem 11 (Theorem 11, [1]). Let an instance (A ∈ QC×Q, b̄ ∈ QC , c̄ ∈ QV) of
a LP be explicitly given by a relational representation in τLP . Then, there is a FPC-
interpretation that defines a representation of (f ∈ Q, v̄ ∈ QV), such that f = 1 if and only
if maxx̄∈PA,b̄

c̄T x̄ is unbounded, v̄ /∈ PA,b̄ if and only if there is no feasible solution, and
f = 0, v̄ = argmaxx̄∈PA,b̄

c̄T x̄ otherwise.

CSPs. We next examine how instances of VCSP(Γ) for finite Γ are represented as relational
structures. We return to the case of infinite Γ in Section 6.

For a fixed finite language Γ = {f1, . . . , fk}, we represent an instance I of VCSP(Γ)
as a structure I = (dom(I), <, (RI

f)f∈Γ,W
I
N ,W

I
D) over the vocabulary τΓ. The universe

dom(I) = V ∪̇ C ∪̇ B is a three-sorted set, consisting of variables V , constraints C, and a
set B of bit positions. We assume that |B| is at least as large as the number of bits required
to represent the numerator and denominator of any rational weight occurring in I. The
relation < is a linear order on B. The relation RI

f ⊆ V ar(f)×C contains (σ, c) if c = (σ, f, q)
is a constraint in I. The relations W I

N ,W
I
D ⊆ C ×B encode the weights of the constraints:

W I
N (c, β) (or W I

D(c, β)) holds if and only if the β-th bit of the bit-representation of the
numerator (or denominator, respectively) of the weight of constraint c is one. For the decision
version of the VCSP, we have two additional unary relations TN and TD in the vocabulary
which encode the binary representation of the numerator and denominator of the threshold
constant of the instance.

We are now ready to define what it means to express VCSP(Γ) in a logic such as FPC.
For a fixed finite langauge Γ, we say that the decision version of VCSP(Γ) is definable in
a logic L if there is some τΓ ∪ {TN , TD}-sentence φ of L such that I |= φ if, and only if,
I is satisfiable, i.e the value of the optimal solution to I is below the given target value.
For the optimization problem, we say that VCSP(Γ) is definable in FPC if there is an FPC
interpretaion Θ of the vocabulary τQ in τΓ such that for any I, Θ(I) codes the value of an
optimal solution for the instance I. Note that if VCSP(Γ) is definable (in FPC or Cω) in
the above sense, then so is the corresponding decision problem.

The reductions we define between VCSPs in many cases preserve the optimum value
between instances. Formally, an optimum preserving L-reduction from VCSP(Γ′) to
VCSP(Γ) is an L-interpretation Θ from τΓ′ to τΓ, such that I has the same optimal value as
Θ(I). It is clear that optimum preserving reductions serve also as reductions between the
corresponding decision problems.

3 Definable Reductions

An essential part of the machinery that leads to Theorem 10 is that the computational
complexity of VCSP(Γ) is robust under certain changes to Γ. In other words, closing the class

CSL 2015

68 A Definability Dichotomy for Finite Valued CSPs

of functions Γ under certain natural operations does not change the complexity of the problem.
This is established by showing that the distinct problems obtained are inter-reducible under
polynomial-time reductions. Our aim in this section is to show that these reductions can be
expressed as interpretations in a suitable logic (in some cases first-order logic suffices, and in
others we need the power of counting). These reductions are used as essential links in our
proofs in Section 5.

The following lemma is analogous to Lemma 5 and shows that the reductions there can
be expressed as logical interpretations.

I Lemma 12. Let Γ and Γ′ be valued constraint languages of finite size over domain D such
that Γ′ ⊆ 〈Γ〉. Then VCSP(Γ′) ≤FPC VCSP(Γ), by an optimum-preserving reduction.

Proof. The construction of the reduction follows closely the proof of Theorem 3.4. in [5],
while ensuring it is definable in FPC.

Let I = (V,C) be a given instance of VCSP(Γ′). We fix for each function f ∈ Γ′ of arity
m an instance If = (Vf , Cf) of VCSP(Γ) and a m-tuple of distinct elements v̄f ∈ V mf that
together express f in the sense of Definition 3. The idea is now to replace each constraint
c = (σ, f, q) ∈ C by a copy of If where the variables vf1, . . . , vfm in If are identified with
σ1, . . . , σm, and the remaining variables are fresh. Since each If is an instance of VCSP(Γ),
the instance J = (U,E) obtained after all replacements is again an instance of VCSP(Γ).
Furthermore, by Definition 3 it has the same optimal solution as I.

Formally, we define the instance J = (U,E) as follows. The set of variables U consists of
the variables in V plus a fresh copy of the variables in Vf for each constraint in C that uses
the function f , so we can identify U with the following set.

U = V ∪̇ {(v, c) | c ∈ C, v ∈ Vf}.

Each constraint c = (σ, f, q) ∈ C gives rise to a set of constraints Ec, representing a copy of
the constraints in Cf .

Ec = {(hc(ν), g, q · r) | (ν, g, r) ∈ Cf},

where hc : Vf → U is defined as the mapping hc(v) = σi, if v = vfi, and hc(v) = (v, c)
otherwise. The set of constraints E is then simply the union of all sets Ec.

Let τΓ = (<, (Rf)f∈Γ,WN ,WD) and τΓ′ = (<, (Rf)f∈Γ′ ,WN ,WD) be the vocabularies
for instances of VCSP(Γ) and VCSP(Γ′) respectively. We aim to define an FPC reduction
Θ = (δ̄, ε, φ<, (φRf

)f∈Γ, φWN
, φWD

) such that J = Θ(I) corresponds to the above construction
of the instance J .

Let an instance I = (V,C) of VCSP(Γ′) be given as a structure I over τΓ′ with the
three-sorted universe dom(I) = V ∪̇ C ∪̇ B. For each m-ary function f ∈ Γ we have fixed
an instance If = (Vf , Cf) and a tuple v̄f = (vf1, . . . , vfm) that together express f . As
the construction of J depends on these instances, we fix an encoding of them in an initial
segment of the natural numbers. To be precise, as the sets V̂ =

⋃
f∈Γ′ Vf and Ĉ =

⋃
f∈Γ′ Cf

are of fixed size (independent of I), let nV̂ = |V̂ | and nĈ = |Ĉ|. We then fix bijections
var : V̂ → {1, . . . , nV̂ } and con : Ĉ → {1, . . . , nĈ} such that for each f ∈ Γ′, there are
intervals Vf = [lvf , rvf] and Cf = [lcf , rcf] such that var(Vf) = Vf and con(Cf) = Cf . We
assume that dom(I) is larger than max(nV̂ , nĈ) so that we can use number terms to index
the elements of V̂ and Ĉ. There are only finitely many instances I smaller than this, and
they can be handled in the interpretation Θ individually.

In defining the formulas below, for an integer interval I we write µ ∈ I as shorthand for
the formula

∨
m∈I µ = m.

A. Dawar and P. Wang 69

The universe of J is a three-sorted set dom(J) = U ∪̇ E ∪̇ B′ consisting of variables U ,
constraints E, and bit positions B′. The set U is defined by the formula

δU (x, µ) =

x ∈ C ∧ ∨
f∈Γ′

(∃ȳ ∈ V ar(f) : Rf (ȳ, x) ∧ µ ∈ Vf)

 ∨ (µ = 0 ∧ x ∈ V).

In other words, the elements of U are pairs (x, µ), where x ∈ V ∪ C and µ is a number and
we make the following case distinction: Either x ∈ C and there is a constraint x = (ȳ, f, q) in
I, and a variable v ∈ Vf with var(v) = µ; then the pair represents one of the fresh variables
in C × V̂ . Or, x ∈ V and µ = 0 and the pair represents an element of V .

Similarly, the constraints E are given by

δE(x, µ) = x ∈ C ∧
∨
f∈Γ′

(∃ȳ ∈ V ar(f) : Rf (ȳ, x) ∧ µ ∈ Cf).

Again, the elements of E are pairs (x, µ), with x ∈ C and µ an element of the number
domain, and we require that if there is a constraint of the form x = (ȳ, f, q), then there is a
constraint c ∈ Cf with con(c) = µ.

For the domain of bit positions, we just need to make sure that the set is large enough to
encode all weights in J . Taking B′ = B2 suffices, so

δB′(x1, x2) = x1, x2 ∈ B

and we take φ<(x̄, ȳ) to be the formula that defines the lexicographic order on pairs.
The constraints of J are encoded in the relations Rg, g ∈ Γ. For an m-ary function g,

this is defined by a formula φRg in the free variables (x1, µ1, . . . , xm, µm, e, ν) where each
(xi, µi) ranges over elements of U , and (e, ν) ranges over elements of E. To be precise, we
define the formula by:

φRg
=
∨
f∈Γ′

(
∃ȳ ∈ V ar(f) : Rf (ȳ, e) ∧ ν ∈ Cf

∧
∨

e′=(ρ,g,r)∈Cf

ν = con(e′) ∧
∧

i:ρi∈v̄f

(xi = e ∧ µi = var(ρi))

∧
∧

i:ρi 6∈v̄f

(xi = yi ∧ µi = 0)

 .

Finally, we define the weight relations. The weight of a constraint ē = (e1, e2) is assigned
the product of the weight of e1 ∈ C and the weight of e2 ∈ Ĉ. We have

φWN
(ē, β̄) =

∨
e′∈Ĉ

e2 = con(e′) ∧MULTw(WN (e1, ·), β̄),

where w is the numerator of the weight of the constraint e′. The definition of the denominator
relation is analogous. J

The next lemma similarly establishes that the reduction in Lemma 4 can be realised as
an FPC interpretation.

I Lemma 13. Let Γ and Γ′ be valued languages of finite size over domain D such that
Γ′ ⊆ Γ≡. Then VCSP(Γ′) ≤FPC VCSP(Γ), by an optimum-preserving reduction.

CSL 2015

70 A Definability Dichotomy for Finite Valued CSPs

Proof. Note that adding constants to the value of constraints does not change the optimal
solution of the instance. Hence, we only need to adapt to the scaling of the constraint
functions. This can be achieved by changing the weights accordingly.

Let I = (V,C) be an instance of VCSP(Γ′), given as the relational structure I =
(dom(I), (Rf)f∈Γ′ ,WN ,WD). We aim to construct an instance J = (U,E) of VCSP(Γ) with
the same optimal solution.

The set of variables of J is V . For any f ∈ Γ′ we fix a function S(f) ∈ Γ such that
S(f) ≡ f . Then, the formula φRg (σ, d) =

∨
f∈Γ′;g=S(f)Rf (σ, d) defines the constraints of J .

Let d = (σ, g, r) be any constraint in E, and c = (σ, f, q) be the corresponding constraint
in C where g = S(f), and g = a · f + b for some a, b ∈ Q. We then set the weight r of the
constraint d to be a · q. This can again be defined by a formula in FPC. J

Next, we show that there is a definable reduction from VCSP(Γ) to the problem defined
by a core of Γ.

I Lemma 14. Let Γ be a valued language over D, and Γ′ a core of Γ. Then, VCSP(Γ) ≤FO
VCSP(Γ′), by an ptimum-preserving reduction.

Proof. Since the functions in Γ′ are exactly those in Γ, only restricted to some subset of D,
we can interpret any instance of VCSP(Γ) directly as an instance of VCSP(Γ′). Since the
optimum of both instances is the same, by Lemma 7, this constitutes a reduction. J

The next two Lemmas together show that VCSP(Γ) and VCSP(Γc) are FPC-equivalent for
a core language Γ. The proof follows closely the proof from [9] that they are polynomial-time
equivalent.

I Lemma 15 (Lemma 2, [9]). Let Γ be a core over domain D. There exists an instance Ip
of VCSP(Γ) with variables V = {xa | a ∈ D} such that hid(xa) = a is an optimal solution of
Ip and for every optimal solution h, the following hold:
1. h is injective; and
2. for every instance I ′ of VCSP(Γ) and every optimal solution h′ of I ′, the mapping sh ◦ h′

is also an optimal solution, where sh(a) := h(xa).

I Lemma 16. Let Γ be a core over a domain D of finite size. Then, VCSP(Γc) ≤FPC
VCSP(Γ), by an optimum-preserving reduction.

Proof. Let Ic = (Vc, Cc) be an instance of VCSP(Γc), and let Ip = (Vp, Cp) be an instance
of VCSP(Γ) that satisfies the conditions of Lemma 15. We construct an instance I = (V,C)
of VCSP(Γ) as follows. The set of variables V is

V := Vc ∪̇ Vp = Vc ∪̇ {xa | a ∈ D}.

By Definition 8, each function f ∈ Γc is associated with some function g = γ(f) ∈ Γ, such
that f is obtained from g by fixing the values of some set of variables of g. Let Tf be the
corresponding index set, tf : Tf → D the corresponding partial assignment of variables of
g, and sf the injective mapping between parameter positions of f and g. Then, we add for
each constraint c′ = (σ′, f, q) ∈ Cc the constraint c = (σ, g, q) to C, where we replace each
parameter of g that is fixed to a ∈ D by the variable xa, or formally, σi = xtf (i) if i ∈ Tf ,
and σi = σ′

s−1
f

(i) otherwise. Additionally, we add each constraint of Cp to C with its weight
multiplied by some sufficiently large factor M such that every optimal solution to I, when
restricted to {xa | a ∈ D}, constitutes also an optimal solution to Ip. For instance, M can
be chosen as M :=

∑
(σ,g,q)∈C\Cp

q ·maxf∈Γc;x̄ f(x̄). Note that since the domain and the

A. Dawar and P. Wang 71

constraint language are finite, and the functions are finite valued, the value of maxf∈Γc;x̄ f(x̄)
exists and is a constant. Together, the set of constraints C is defined as

C ={(σ, g, q) | ∃σ′, f : g = γ(f), (σ′, f, q) ∈ Cc, ∀i ∈ Tf : σi = tf (i), ∀i /∈ Tf : σi = σ′
s−1

f
(i)}

∪ {(σ, g,M · q) | (σ, g, q) ∈ Cp}.

To see that this construction is a reduction, consider an optimal solution hc of Ic. This
gives rise to an optimal solution h of I, where h(x) = hc(x) for x ∈ Vc, and h(x) = hid(x)
for x ∈ Vp. In the other direction, let h be an optimal solution to I, and its restriction to Vp,
hp := h|Vp

is an optimal solution to Ip. By Lemma 15, the operation shp is a permutation
on D, and in particular, by repeatedly applying the second part of Lemma 15, the inverse
permutation s−1

hp
is an optimal solution to Ip as well. Now, again by application of the second

part of Lemma 15, we obtain an optimal solution h′ := s−1
hp
◦ h to I, for which h′(xa) = a for

each a ∈ D. Thus, the restriction of h′ to Vc is an optimal solution to Ic.
We now formulate the above construction as an FPC interpretation.
Let Ic be given as a structure Ic over τΓc

= (<, (Rf)Γc
,WN ,WD). Furthermore, let

Ip = (Vp, Cp) be some fixed instance of VCSP(Γ) that satisfies the conditions of Lemma 15. We
construct an FPC-interpretation Θ = (δ̄, ε, φ<, (φRf

)f∈Γ, φWN
, φWD

) that defines I = Θ(Ic).
The universe dom(Ic) is the three-sorted set Vc ∪̇ Cc ∪̇ Bc. In the same way, the universe of
the structure I is a three sorted set V ∪̇ C ∪̇ B. Just as in the proof of Lemma 12, to code
elements of Vp and Cp, we fix bijections var : Vp → {1, . . . , |Vp|} and con : Cp → {1, . . . , |Cp|}

The sets V and C are then defined by the formulas

δV (x) = x ∈ Vc ∨ x ∈ {1, . . . , |Vp|}; and δC(x) = x ∈ Cc ∨ x ∈ {1, . . . , |Cp|}.

The set B needs to be large enough to code all weights. We can take B = B2
c .

δB(x1, x2) = x1, x2 ∈ Bc,

and let φ< define the lexicographic order on B2
C .

For each m-ary function g ∈ Γ, we have the formula

φRg
(x̄, c) =

∨
e=(ρ,g,r)∈Cp

c = con(e) ∧
∧

1≤i≤m
xi = var(ρi)


∨

f :γ(f)=g

∃ȳ ∈ V ar(f)
c : Rf (ȳ, c) ∧

∧
i∈Tf

xi = var(tf (i))
∧
i/∈Tf

xi = ys−1
f

(i)

 .

The weights are given by

φWN
(c, β̄) = (c ∈ Cc ∧WN (c, β)) ∨

∨
e=(ρ,g,r)∈Cp

(c = con(e) ∧MULTr·L(Bc, β̄)),

where L is given by

L = max
f∈Γc;x̄∈Dar(f)

f(x̄).

The denominator is given by

φWD
(c, β̄) = (c ∈ Cc ∧WD(c, β)) ∨

∨
e∈Cp

(c = con(e) ∧ BIT(1, β)).

Here, another case distinction is in place. Either we have c ∈ Cc, and the weight is simply
the same as given by WN and WD. Or, the constraint c corresponds to some constraint
e = (ρ, g, r) ∈ Cp, and we assign the weight L · 2|Bc| · r to c. J

CSL 2015

72 A Definability Dichotomy for Finite Valued CSPs

4 Expressibility Result

The fact that VCSP(Γ) is definable in FPC whenever Γc does not have the (XOR) property
is obtained quite directly from Theorems 10 and 11. Here we state the result in somewhat
more general form.

I Theorem 17. For any valued constraint language Γ over a finite domain D, there is an
FPC interpretation Θ of τQ in τΓ that takes an instance I to a representation of the optimal
value of BLP(I).

Proof. We show that it is possible to interpret BLP(I) as a τLP -structure in I by means of
an FPC-interpretation. The statement then follows by Theorem 11 and the composition of
FPC-reductions.

Let I = (V,C) be given as the τΓ structure I with universe dom(I) = V ∪̇ C ∪̇ B.
Our goal is to define a τLP -structure P representing BLP(I) given by (A, b̄, c̄). The set
of variables of P is the union of the two sets λ = {λc,ν | c = (σ, f, q) ∈ C, ν ∈ D|σ|} and
µ = {µx,a | x ∈ V, a ∈ D}. In order to refer to elements of D in our interpretation, we fix a
bijection dom : D → {1, . . . , |D|} between D and an initial segment of the natural numbers.

Then, the sets λ and µ are defined by

λ(c, ν̄) =
∨
f∈Γ

∃ȳ ∈ V ar(f) : Rf (ȳ, c) ∧
∧

1≤i≤ar(f)

∨
a∈D

νi = dom(a)

 .

Here, we assume that ν̄ is a tuple of number variables of length maxf∈Γ ar(f). This creates
some redundant variables, related to constraints whose arity is less than the maximum. We
also have

µ(x, α) = x ∈ V ∧
∨
a∈D

y = dom(a).

For the set of linear constraints, we observe that the constraints resulting from the
equalities of the form (2) can be indexed by the set

J(2) = {jc,i,a,b | c = (σ, f, q) ∈ C, i ∈ {1, . . . , |σ|}, a ∈ D, b ∈ {0, 1}},

since we have for each c ∈ C, i ∈ {1, . . . , |σ|}, and a ∈ D a single equality, and hence two
inequalities, one for each value of b. This can be expressed by

J(2)(c, ι, α, β) =c ∈ C ∧
∨
f∈Γ
∃ȳ ∈ V ar(f) : Rf (ȳ, c)

∧ ι ≤ ar(f) ∧
∨
a∈D

α = dom(a) ∧ β ∈ {0, 1}.

Similarly, the constraints resulting from (3) can be indexed by J(3) = {jx,b | x ∈ V, b ∈
{0, 1}}, defined by the formula,

J(3)(x, β) = x ∈ V ∧ β ∈ {0, 1}.

Finally, we have two inequalities bounding the range of each variable, indexed by J(4) =
{jv,b | v ∈ λ ∪ µ, b ∈ {0, 1}}, defined by

J(4)(v̄, β) = λ(v̄) ∨ µ(v̄) ∧ β ∈ {0, 1}.

A. Dawar and P. Wang 73

The universe dom(L) is then the three-sorted set Q ∪̇ R ∪̇ B′ with index sets Q and R
for columns and rows respectively, and a domain for bit positions B′, defined by

δQ(x̄) = λ(x̄) ∨ µ(x̄); δR(x̄) = J(2)(x̄) ∨ J(3)(x̄) ∨ J(4)(x̄); and δB′(x) = x ∈ B.

The entries in the matrix A ∈ QQ×R, and the two vectors b̄ ∈ QQ and c̄ ∈ QR consist
only of elements of {0, 1,−1} and the weight of some constraint in C. It is easily seen that
these can be suitably defined in FPC. J

Combining this with Theorem 10 gives the positive half of the definability dichotomy.

I Corollary 18. If Γ is a valued constraint language such that property (XOR) does not hold
for Γc, then VCSP(Γ) is definable in FPC.

5 Inexpressibility Result

We now turn to the other direction and show that if VCSP(Γ) is such that Γc has the
(XOR) property then VCSP(Γ) is not definable in FPC. In fact, we will prove the stronger
inexpressibility result that those VCSPs are not even definable in the stronger logic Cω.

Our proof proceeds as follows. The main result in [12] characterizes the intractable
constraint languages Γ as exactly those languages whose extension Γc has the property
(XOR), by constructing a polynomial time reduction from MAXCUT to VCSP(Γ). We show
that this reduction can also be carried out in FPC. It is then left to show that MAXCUT
itself is not definable in Cω. To this end, we describe a series of FPC-reductions from 3-SAT
to MAXCUT which roughly follow known polynomial time counterparts. Finally, results of
[4] and [2] establish that 3-SAT is not definable in Cω, concluding the proof.

We consider the problem MAXCUT, where one is given an undirected graph G = (V,E)
along with a weight function w : E → Q+ and is looking for a bipartition of vertices
p : V → {0, 1} that maximises the payout function b(p) =

∑
(u,v)∈E;p(u)6=p(v) w(u, v). In the

decision version of the problem, an additional constant t ∈ Q+ is given and the question is
then whether there is a partition p with b(p) ≥ t.

An instance of (decision) MAXCUT is given as a relational structure I over the vocabulary
τMAXCUT = (E,<,WN ,WD, TN , TD). The universe dom(I) is a two-sorted set U = V ∪̇ B,
consisting of vertices V , and a set B of bit positions, linearly ordered by <. In addition to
the edge relation E ⊆ V × V , there are two weight relations WN ,WD ⊆ V × V ×B which
encode the numerator and denominator of the weight between two vertices. Finally, the
unary relations TN , TD ⊆ B encode the numerator and denominator of the threshold.

I Lemma 19. If Γ is a language for which (XOR) holds, then, MAXCUT ≤FPC VCSP(〈Γ〉≡).

Proof. Let I = (V,E,w, t) be a given MAXCUT instance. We define an equivalent instance
J = (U,C, t′) of VCSP(Γ≡) as follows. Since (XOR) holds for Γ, there are two distinct
elements a, b ∈ D for which 〈Γ〉≡ contains a binary function f , such that f(a, b) = 1 if a = b

and f(a, b) = 0 otherwise. By creating a variable for each vertex in V and adding a constraint
((u, v), f, w(e)) for each edge e = (u, v) ∈ E, we obtain a VCSP with the same optimal
solution. The threshold constant t′ is then set to t′ = M − t, where M :=

∑
e∈E w(e).

We now turn this into an FPC-interpretation Θ of τ〈Γ〉≡ in τMAXCUT. Let I be the
relational representation of I over τMAXCUT with the two-sorted universe V ∪̇ B.

The structure J = Θ(I) has a three-sorted universe dom(J) = U ∪̇ C ∪̇ B′ consisting of
variables U = V , constraints C = V 2, and bit positions B′ = B × {1, . . . , |E|}.

δU (x) = x ∈ V ; δC(x1, x2) = x1, x2 ∈ V ; and δB′(x, µ) = x ∈ B ∧ µ ≤ #y,zE(y, z).

CSL 2015

74 A Definability Dichotomy for Finite Valued CSPs

Since M ≤ |E|maxe∈E w(e), and each w(e) can be represented by |B| bits, |E| · |B| bits
suffice to represent the threshold M − t.

Each edge e = (u, v) gives rise to a constraint ((u, v), e, w(e)), which is encoded in Rf .

φRf
(x̄, c̄) = E(x̄) ∧ x̄ = c̄.

The weights are simply carried over.

φWN
(c̄, b) = WN (c̄, b) and φWD

(c̄, b) = WD(c̄, b)

The threshold is set to M − t. As FPC can define any polynomial-time computable function
on an ordered domain, it is possible to write formulas φTN

and φTD
defining the numerator

and denominator of the threshold M − t on the ordered sort B′.
The remaining relations Rg corresponding to functions in g ∈ 〈Γ〉≡\{f} are empty. J

The next ingredient is to show that the classical series of polynomial time reductions from
3-SAT to MAXCUT can also be carried out within FPC. The chain of reductions involves
three steps. The first one is a reduction from 3-SAT to 4-NAESAT (Not All Equal SAT),
followed by a reduction from 4-NAESAT to 3-NAESAT, and finally 3-NAESAT is reduced
to MAXCUT. We begin with defining the relational representations of these problems.

An instance of 3-SAT is given as a relational structure over the vocabulary τ3SAT =
(R000, . . . , R111) with eight ternary relations. The universe of the instance is a set of variables
V and we say the instance is satisfiable if there is a map h : V → {0, 1} such that for
any a, b, c ∈ V if (a, b, c) ∈ Rijk then it is not the case that h(a) = i and h(b) = j and
h(c) = k. Similarly, 3-NAESAT is a class of structures over τ3NAESAT = (N000, . . . , N111) and
an instance over the universe V is satisfiable if there is a map h : V → {0, 1} such that for any
a, b, c ∈ V if (a, b, c) ∈ Nijk then the values of h(a)⊕i, h(b)⊕j and h(c)⊕k are not all the same.
Finally, 4-NAESAT is defined similarly over the vocabulary τ4NAESAT = (N0000, . . . , N1111)
with sixteen 4-ary relations.

I Lemma 20. 3-SAT ≤FPC MAXCUT.

Proof. 3-SAT ≤FO 4-NAESAT: Let I = (V,R000, . . . , R111) be any given 3-SAT instance.
Consider a 4-NAESAT instance J = (U,N0000, . . . , N1111) with V ⊂ U , i.e. there is at least
one variable in U not contained in V . Furthermore, let (a, b, c, z) ∈ Nijk0 hold if, and only
if, (a, b, c) ∈ Rijk and z ∈ U\V , and let the relations Nijk1 be empty. The instance J is
now satisfiable if, and only if, I is satisfiable: Whenever there is a satisfying assignment
for I, the same assignment extended with z = 0 for all z ∈ U\V will also be a satisfying
assignment for J. In the other direction, if there is a satisfying assignment for J, there is
always a satisfying one that sets z = 0 for all z ∈ U\V , since negating every variable does
not change the value of a NAE-clause, and each clause only contains one variable in U\V .
In terms of a FPC-interpretation, this construction looks as follows.

We take as universe dom(J) the set V 2, and interpret an element (a, a) as representing
the variable a ∈ V , and any element (a, b), a 6= b as a fresh variable in U\V .

δU (x1, x2) = x1, x2 ∈ V

φNijk0(x̄, ȳ, z̄, w̄) = Rijk(x1, y1, z1) ∧ w1 6= w2 ∧
∧

v̄∈{x̄,ȳ,z̄}

v1 = v2

φNijk1(x̄, ȳ, z̄, w̄) = False

A. Dawar and P. Wang 75

4-NAESAT ≤FPC 3-NAESAT: Let I = (V,N0000, . . . , N1111) be an instance of
4-NAESAT. Note that we can split every clause NAE(a, b, c, d) into two smaller 3-NAESAT
clauses NAE(a, b, z) and NAE(¬z, c, d) for some fresh variable z. The following interpretation
realises this conversion.

In order to introduce a fresh variable for each clause of the 4-NAESAT instance, the
universe of the 3-NAESAT instance will consist of tuples from V 4 × {0, 1}5, where the first
eight components encode a clause in I and the last component is a flag indicating whether
the element represents a fresh variable or one that appears already in V . The convention is
then that an element of the form (a, a, a, a, 0, . . . , 0) represents the variable a ∈ V , and an
element of the form (a, b, c, d, i, j,m, n, 1) represents the fresh variable that is used to split
the clause Nijmn(a, b, c, d). The remaining relations are defined as empty.

3-NAESAT ≤FPC MAXCUT: The following construction transforms a given 3-NAESAT
instance I = (V,N000, . . . , N111) into an equivalent (decision) MAXCUT instance J =
(dom(J), E,WN ,WD, TN , TD). Let m be the number of clauses in I, and fix M := 10m. For
each variable v ∈ V , we have two vertices denoted v0 and v1, in our graph, along with an
edge (v0, v1) of weight M . For each tuple (x, y, z) ∈ Nijk we add a triangle between the
vertices xi, yj , and zk with edge-weight 1. Setting the cut threshold to t := |V | ·M + 2m
gives us an equivalent instance: If I is satisfiable, say by an assignment f , then the partition
given by p(vi) = f(v) + i mod 2 cuts through every edge of the form (v0, v1), and through
two edges in every triangle, resulting in a payout of |V | ·M + 2m. On the other hand, any
bipartition of payout larger or equal to |V | ·M + 2m has to cut through all edges of the
form (v0, v1), since it can only cut through two edges in each triangle. Hence, any such
bipartition induces a satisfying assignment to the 3-NAESAT instance. We use the following
FPC-interpretation to realise this construction.

The universe of J is defined as a two-sorted set dom(J) = U ∪̇ B, consisting of vertices
U = V × {0, 1} and bit positions B = {1, . . . , α} for some sufficiently large α. In particular,
α has to be chosen larger than log2 t. Since m is at most |V |3, taking α = |V |4 suffices.

δU (x1, x2) = x1 ∈ V, x2 ∈ {0, 1} and δB(µ̄) =
∧

1≤i≤4
µi ≤ #vv ∈ V.

The edge relation is given by

φE(x̄, ȳ) = x1 = y1 ∧ x2 6= y2∨
i,j,k∈{0,1}

∃u, v, w ∈ V : Nijk(u, v, w) ∧ x̄, ȳ ∈ {(u, i), (v, j), (w, k)}.

The edge weights and the cut threshold are defined by

φWN
(x̄, ȳ, β) = x1 = y1 ∧ x2 6= y2 ∧ BIT(1, β)

∨ BIT

10 ·
∑

i,j,k∈{0,1}

#u,v,wNijk(u, v, w), β

 ,

φTN
(β) = BIT

(2 + 10 ·#vv ∈ V) ·
∑

i,j,k∈{0,1}

#u,v,wNijk(u, v, w), β

 ,

φWD
(x̄, ȳ, β) = BIT(1, β),

φTD
(β) = BIT(1, β).

Note that the weights and the cut threshold are integer, hence the denominator relations
simply code 1. J

CSL 2015

76 A Definability Dichotomy for Finite Valued CSPs

I Lemma 21. 3-SAT is not expressible in Cω.

Proof. Note that a 3-SAT instance I = (V,RI
000, . . . , R

I
111) can also be interpreted as an

instance of CSP(Γ3SAT) for Γ3SAT = {R000, . . . , R111} and Rijk = {0, 1}3\(i, j, k). Hence,
we can apply results from the algebraic classification of CSPs to determine the definability
of 3-SAT. In this context, it has been shown in [4] that the algebra of polymorphisms
corresponding to Γ3SAT contains only essentially unary operations. It follows from the result
in [2] that 3-SAT is not definable in Cω. J

I Theorem 22. Let Γ be a valued constraint language of finite size and let Γ′ be a core of Γ.
If (XOR) holds for Γ′c, then VCSP(Γ) is not expressible in Cω.

Proof. Assume property (XOR) holds for Γ′c. By Lemma 19, MAXCUT FPC-reduces to
VCSP(〈Γ′c〉≡). Lemmas 12 to 16 provide a chain of FPC-reductions from VCSP(〈Γ′c〉≡) to
VCSP(Γ). Since Cω is closed under FPC-reductions, Lemmas 20 and 21 together show that
MAXCUT is not definable in Cω, and hence neither is VCSP(Γ). J

6 Constraint Languages of Infinite Size

In representing the problem VCSP(Γ) as a class of relational structures, we have chosen to
fix a finite relational signature τΓ for each finite Γ. An alternative, uniform representaation
would be to fix a single signature which allows for the representation of instances of VCSP(Γ)
for arbitrary Γ by coding the functions in Γ explicitly in the instance. In this section, we
give a description of how this can be done. Our goal is to show that our results generalise to
this case, and that the definability dichotomy still holds.

Let Γ now be a valued constraint language over some finite domain D. The challenge
of fixing a relational signature for instances of VCSP(Γ) is that different instances may use
different sets of functions of Γ in their constraints, and hence, we cannot represent each
function as a relation in the signature. Instead, we make the functions part of the universe,
together with tuples over D of different arities as their input. Let I be an instance of
VCSP(Γ) where the constraints use functions from a finite subset ΓI ⊂ Γ, and let m be
the maximal arity of any function in ΓI . We then represent I as a structure I with the
multi-sorted universe dom(I) = V ∪̇ C ∪̇ B ∪̇ F ∪̇ T , where V is a set of variables, C a set of
constraints, B a set of numbers on which we have a linear order, F a set of function symbols
corresponding to functions in ΓI , and T is a set of tuples from D ∪D2 ∪ . . . ∪Dm, over the
signature τD = (<,Rfun, Rscope,WN ,WD,DefN ,DefD,Enc). Here, the relations encode the
following information.

Rfun ⊆ C × F : This relation matches functions and constraints, i.e. (c, f) ∈ Rfun denotes
that c = (σ, f, q) is a constraint of the instance for some scope σ and weight q.
Rscope ⊆ C × V ×B: This relation fixes the scope of a constraint, i.e. (c, v, β) ∈ Rscope
denotes that c = (σ, f, q) is a constraint for some function f and weight q, where the β-th
component of σ is v.
WN ,WD ⊆ C × B: This is analogous to the finite case. These two relations together
encode the rational weights of the constraints.
DefN ,DefD ⊆ F ×T ×B: These two relations together fix the definition of some function
symbol in F . That is, (f, t, β) ∈ DefN denotes that the β-th bit of the numerator of the
value of f on input t is 1, and similarly for DefD and the denominator.
Enc ⊆ T × D × B: This relation fixes the encoding of tuples as elements in T , i.e.
(t, a, β) ∈ Enc denotes that the β-th component of the tuple t is the element a ∈ D.

A. Dawar and P. Wang 77

The above signature allows now for instances I, I ′ with different sets of functions ΓI and ΓI′
to be represented as structures of the same vocabulary. Since the set of function symbols
is part of the universe, the relations DefN ,DefD are required to give concrete meaning to
these function symbols.

We now say, for a (potentially infinite) valued constraint language Γ that VCSP(Γ)
is uniformly definable in FPC if there is an FPC-interpretation of τQ in τD which takes
an instance I of VCSP(Γ) to the cost of its optimal solution. Our inexpressibility result,
Theorem 22, immediately carries over to this setting as it is easy to construct an FPC
reduction from the τΓ representation of VCSP(Γ) to the τD representation.

I Theorem 23. Let Γ be a valued constraint language and let Γ′ be a core of Γ. If (XOR)
holds for Γ′c, then VCSP(Γ) is not uniformly definable in Cω.

For the positive direction, i.e. to show that VCSP(Γ) is uniformly definable in FPC in all
other cases, we simply need to adapt the proof of Theorem 17 to fit the new representation.

I Theorem 24. Let Γ be a valued constraint language and let Γ′ be a core of Γ. If (XOR)
does not hold for Γ′c, then VCSP(Γ) is uniformly definable in FPC.

References
1 M. Anderson, A. Dawar, and B. Holm. Maximum matching and linear programming in

fixed-point logic with counting. In Proceedings of the 28th Annual ACM/IEEE Symposium
on Logic in Computer Science, pages 173–182, 2013.

2 A. Atserias, A. Bulatov, and A. Dawar. Affine systems of equations and counting infinitary
logic. Theoretical Computer Science, 410(18):1666–1683, 2009.

3 L. Barto and M. Kozik. Constraint satisfaction problems solvable by local consistency
methods. J. ACM, 61, 2014.

4 A. Bulatov, P. Jeavons, and A. Krokhin. Classifying the complexity of constraints using
finite algebras. SIAM Journal on Computing, 34(3):720–742, 2005.

5 D. Cohen, M.C. Cooper, P. Jeavons, and A. Krokhin. The complexity of soft constraint
satisfaction. Artificial Intelligence, 170(11):983–1016, 2006.

6 A. Dawar. The nature and power of fixed-point logic with counting. ACM SIGLOG News,
2:8–21, 2015.

7 H-D. Ebbinghaus and J. Flum. Finite Model Theory. Springer, 2nd edition, 1999.
8 T. Feder and M.Y. Vardi. Computational structure of monotone monadic SNP and con-

straint satisfaction: A study through Datalog and group theory. SIAM Journal on Com-
puting, 28:57–104, 1998.

9 A. Huber, A. Krokhin, and R. Powell. Skew bisubmodularity and valued CSPs. SIAM
Journal on Computing, 43(3):1064–1084, 2014.

10 L. Libkin. Elements of Finite Model Theory. Springer, 2004.
11 M. Otto. Bounded Variable Logics and Counting – A Study in Finite Models, volume 9 of

Lecture Notes in Logic. Springer-Verlag, 1997.
12 J. Thapper and S. Živný. The complexity of finite-valued CSPs. In Proceedings of the 45th

ACM Symposium on the Theory of Computing, STOC’13, pages 695–704. ACM, 2013.

CSL 2015

	Introduction
	Background
	Valued Constraint Satisfaction
	Linear Programming
	Logic
	Fixed-point Logic with Counting
	Reductions
	Representation

	Definable Reductions
	Expressibility Result
	Inexpressibility Result
	Constraint Languages of Infinite Size

