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Abstract
We study the finite satisfiability problem for the two-variable fragment of the first-order logic
extended with counting quantifiers (C2) and interpreted over linearly ordered structures. We
show that the problem is undecidable in the case of two linear orders (in presence of two other
binary symbols). In the case of one linear order it is NExpTime-complete, even in presence of the
successor relation. Surprisingly, the complexity of the problem explodes when we add one binary
symbol more: C2 with one linear order and its successor, in presence of other binary predicate
symbols, is decidable, but it is as expressive (and as complex) as Vector Addition Systems.
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1 Introduction

Since 1930s, when Alonzo Church and Alan Turing proved that the satisfiability problem
for first-order logic is undecidable, much effort was put to find decidable subclasses of this
logic. One of the most prominent decidable cases is the two-variable fragment FO2. FO2

is particularly important in computer science because of its decidability and connections
with other formalisms like modal, temporal or description logics or applications in XML
or ontology reasoning. The satisfiability of FO2 was proved to be decidable in [31, 23] and
NExpTime-complete in [8].

All decidable fragments of first-order logic have a limited expressive power and a lot of
effort is being put to extend them beyond the first-order logic while preserving decidability.
Many extensions of FO2, in particular with transitive closure or least fixed-point operators,
quickly lead to undecidability [7, 11]. Extensions that go beyond the first order logic and
enjoy decidable finite satisfiability problem include FO2 over restricted classes of structures
where one [15] or two relation symbols [16] are interpreted as equivalence relations; where one
[25] or two relations are interpreted as linear orders [30]; where two relations are interpreted
as successors of two linear orders [20, 6, 4]; where one relation is interpreted as linear order
and another one as equivalence [1]; where one relation is transitive [33]; where an equivalence
closure can be applied to two binary predicates [14]; where deterministic transitive closure
can be applied to one binary relation [3]. It is known that the finite satisfiability problem is
undecidable for FO2 with two transitive relations [13], with three equivalence relations [15],
with one transitive and one equivalence relation [16], with three linear orders [12], with two
linear orders and their two corresponding successors [20]. A summary of complexity results
for extensions of FO2 with order relations can be found in [21].
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The two-variable fragment with counting quantifiers (C2) extends FO2 by allowing
counting quantifiers of the form ∃<k, ∃≤k, ∃=k, ∃≥k and ∃>k, for all natural numbers k. The
two problems of satisfiability and finite satisfiability for C2 (which are two different problems
as C2 does not have a finite model property) were proved to be decidable in [10]. Another
solution of the satisfiability problem together with NExpTime-completeness result under
unary encoding of numbers in counting quantifiers can be found in [26]. Pratt-Hartmann
in [27] established NExpTime-completeness of both satisfiability and finite satisfiability
under binary encoding of numbers in counting quantifiers. All these algorithms are quite
sophisticated, a significant simplification can be found in [28]. There are not many known
decidable extensions of C2. In [4] it is shown that finite satisfiability for C2 interpreted
over structures where two binary relations are interpreted as forests of finite trees (which
subsumes the case of two successor relations on two linear orders) is NExpTime-complete.
[29] shows that the satisfiability and finite satisfiability problems for C2 with one equivalence
relation are both NExpTime-complete.

In this paper we study the extensions of C2 with linear orders. We show that the finite
satisfiability problem for C2 with two linear orders, in presence other binary predicate
symbols, is undecidable. For C2 with one linear order, even if the successor of this linear
order is present, in absence of other binary predicate symbols, it is decidable and NExpTime-
complete. A surprising result is that when we add one more binary predicate symbol, the
complexity of the problem explodes: C2 with one linear order and its successor, in presence of
other binary predicate symbols, is as expressive (and as complex) as multicounter automata.

Multicounter automata (MCA) is a very simple formalism equivalent to Petri Nets and
vector addition systems (VAS) [24], which are used e. g., to describe distributed, concurrent
systems and chemical/biological processes. One of the main reasoning tasks for VAS is to
determine reachability of a given vector. It is known that this problem is decidable [17, 22, 18]
and ExpSpace-hard [19], but precise complexity is not known, and after over 40 years of
research it is even not known if the problem is elementary. We give a reduction from
the emptiness problem of MCA (which is equivalent to the reachability for VAS) to finite
satisfiability of C2 with one linear order and its successor, in presence of one more binary
predicate symbol. Although we show that C2 with one linear order and its successor, in
presence of arbitrary number of binary predicate symbols is decidable, it is very unlikely
that it has an elementary decision algorithm since existence of such an algorithm implies
existence of an elementary algorithm for VAS reachability.

Due to space limits we have omitted most proofs. The missing proofs can be found in
the full version of the paper.

2 Preliminaries

We will consider finite satisfiability problems for the two-variable logic with counting (C2 for
short) over finite structures, where some binary symbols are interpreted as linear orders or
successors of linear orders. W.l.o.g. we will be interested in largest antireflexive relations
< contained in linear orders ≤; for a linear order ≤ we write a < b iff a ≤ b and a 6= b.
We overload notation and name these relations < linear orders. We use symbols <, <1,
<2 to denote linear orders and +1, +11, +12 to denote their resp. successors. Given a finite
vocabulary Σ we write O(Σ, <,+1) to denote the class of finite structures on vocabulary
Σ, where < and +1 have appropriate interpretation, and we adopt a similar notation for
other classes of structures. Logics we consider will be denoted by C2[U,B, I], where U and
B are vocabularies of resp. unary and binary symbols allowed in formulas, and I ⊆ B is
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the vocabulary of interpreted binary symbols. When B = I we write C2[U, I] instead of
C2[U, I, I].

Let Σu and Σb be countably infinite vocabularies of resp. unary and binary symbols and
such that {<,+1, <1,+11, <2,+12,=} ⊆ Σb. Specifically, we will be interested in the following
logics: C2[Σu,Σb, {<}], C2[Σu,Σb, {<,+1}] and C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1
and s2 are some binary symbols. By C2[Σu,Σb, {<}] we mean the logic C2 where vocabulary
of every formula is a finite subset of Σu∪Σb and < is interpreted as a linear order. Definition
of C2[Σu,Σb, {<,+1}] is similar, with the exception that +1 is interpreted as successor of <.
The logic C2[Σu, {<1, s1, <2, s2}, {<1, <2}] allows arbitrary number of unary and at most 4
binary symbols, two of them are interpreted as linear orders. Notice that we do not allow
constant symbols in vocabularies, but this does not cause loss of generality since constants
can be simulated by unary predicates and counting quantifiers.

3 Two linear orders

We start with an observation that the successor relation of a linear order can be expressed in
C2[Σu,Σb, {<}]. More precisely, let s be a free binary symbol. The following lemma says
that s can be defined to mean the successor of < in C2[Σu, {<, s}, {<}]. Intuitively, it is
enough to express that s is a subrelation of < such that each node (with the exception of
the least and the greatest one) has exactly one s-successor and exactly one s-predecessor.

I Lemma 1. There exists a formula ϕs of C2[Σu, {<, s}, {<}] such that for every finite
structureM, we haveM |= ϕs if and only if sM is the successor relation of <M.

I Corollary 2. Finite satisfiability of C2[Σu,Σb, {<,+1}] is reducible in constant time to
finite satisfiability of C2[Σu,Σb, {<}].

I Corollary 3. Finite satisfiability of C2[Σu, {<1,+11, <2,+12}, {<1,+11, <2,+12}] is reducible
in constant time to finite satisfiability of C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1 and s2
are some binary symbols.

Since FO2[Σu, {<1,+11, <2,+12}, {<1,+11, <2,+12}], i. e., the two-variable logic with two
linear orders and their corresponding successors, is undecidable [20], we have the following
conclusion.

I Corollary 4. Finite satisfiability problem of C2[Σu,Σb, {<1, <2}] is undecidable. This
remains true even for C2[Σu, {<1, s1, <2, s2}, {<1, <2}], where s1 and s2 are distinct binary
symbols.

4 C2[Σu, {<, +1}, {<, +1}] is NExpTime-complete

We will show that finite satisfiability problem for C2[Σu, {<,+1}, {<,+1}] is NExpTime-
complete. Since the lower bound follows from the complexity of FO2 with only unary
predicates [5, Theorem 11], we will concentrate on proving the upper bound. The proof
presented here is similar to a corresponding result [2] on FO2 on finite trees.

We assume that the input C2[Σu, {<,+1}, {<,+1}] formula ϕ is in a normal form

ϕ = ∀x∀y.χ(x, y) ∧
m∧
h=1
∀x∃lhChy.χh(x, y),

where χ, χ1, . . . , χm are quantifier-free formulas with arbitrary unary predicates and binary
predicates <,+1, symbols lh ∈ {≤,≥} for h = {1, . . . ,m}, and C1, . . . , Cm are positive
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integers encoded in binary. For the rest of this section the constant c is fixed and it equals
max{Ch | h ∈ {1, . . . ,m}}. It is well known [9, Theorem 2.2] that by adding additional unary
predicates each C2 formula ϕ can be transformed in polynomial time to an equisatisfiable
formula in normal form.

Observe that C2[Σu, {<,+1}, {<,+1}] may be seen as a fragment of the weak monadic
second-order logic with one successor WS1S, where unary relations are simulated by second-
order existential quantifiers and counting quantifiers by first-order ones (e.g., a formula of the
form ∃≤kx.χ(x) can be replaced by an equivalent formula with k + 1 universal quantifiers).
However, this view leads to formulas with three alternations of quantifiers that can be checked
for satisfiability in 4ExpTime, which is not a desired complexity bound.

Because an element of a model of ϕ may require up to c witnesses for satisfaction, we will
be interested in multisets counting these witnesses. Let Nc = {n ∈ N | n ≤ c} ∪ {∞}. For
k, k′ ∈ Nc define cutc(k) = k if k ≤ c and cutc(k) =∞ if k > c. Define k⊕c k′ = cutc(k+k′).
A c-multiset of elements from a given set A is any function f : A→ Nc. For a given element
a in A, by {a} we denote the multiset defined by {a}(x) = 1 if x = a and {a}(x) = 0
for x 6= a. The union of two multisets f and g is a function denoted f ∪ g such that
(f ∪ g)(x) = f(x)⊕c g(x). Empty multiset denoted ∅ is the constant function equal 0 for all
arguments.

Let us call maximal consistent formulas specifying the relative position of a pair of
nodes in a structure in O(Σ, <,+1) order formulas. There are five possible order formu-
las: x=y ∧ ¬ +1(y, x) ∧ ¬ +1(x, y) ∧ y 6<x ∧ x 6<y, x 6=y ∧+1(y, x) ∧ ¬+1(x, y) ∧ y<x ∧ x 6<y,
x6=y ∧+1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, x 6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ x<y ∧ y 6<x, and
x6=y ∧ ¬+1(x, y) ∧ ¬+1(y, x) ∧ y<x ∧ x 6<y. They are denoted, respectively, as: θ=, θ−1,
θ+1, θ<, θ>. Let Θ be the set of these five formulas.

A 1-type over the signature Σ is a maximal consistent conjunction of atomic and negated
atomic formulas over Σ involving only the variable x. The set of all 1-types over Σ will be
denoted Π(Σ). The family of all multisets of 1-types over the signature Σ is denoted NΠ(Σ)

c .

IDefinition 5 (Full type over Σ w.r.t. c). A full type over Σ w.r.t. c is a function σ : Θ→ NΠ(Σ)
c ,

such that σ(θ−1) and σ(θ+1) are singletons or empty, and σ(θ=) is a singleton.

I Definition 6 (Full type in A w.r.t. c). Let A be a structure over a vocabulary Σ and let a
be an element of A. A full type of a in A, denoted ftA(a) is a function σ : Θ→ NΠ(Σ)

c such
that

σ(θ=) is the singleton of the 1-type of a in A,
σ(θ−1) is the singleton of the 1-type of the predecessor of a (if a has a predecessor) or
empty multiset (if a has no predecessor),
σ(θ+1) is the singleton of the 1-type of the successor of a (if a has a successor) or empty
multiset (if a has no successor),
σ(θ<) is the c-multiset of 1-types of elements strictly smaller than a in A, excluding the
predecessor (if it exists), and
σ(θ>) is the c-multiset of 1-types of elements strictly greater than a in A, excluding the
successor (if it exists).

A structure A is said to realise a full type σ if ftA(a) = σ for some a ∈ A.

In the following, we often identify a full type σ, which is a function, with the tuple
〈σ(θ−1), σ(θ=), σ(θ+1), σ(θ<), σ(θ>)〉. We define Σ-c-graph as the graph 〈V,E〉 where the set
V of nodes is the set of full-types over Σ w.r.t. c and the set E of edges is defined as follows.

〈〈Π−1, {π}, {π+1},Π<,Π>〉, 〈{π}, {π+1},Π′+1,Π′<,Π′>〉〉 ∈ E iff Π′< = Π< ∪Π−1 and
Π> = Π′> ∪Π′+1
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Let σ be a full type such that σ(θ=) = {π} and let ∀x∃lhChy.χh(x, y) be a conjunct in ϕ.
The following five functions are used to count witnesses w.r.t. this conjunct for elements of
full type σ.

Wχh
= (σ) =

{
1 if π(x) |= χh(x, x)
0 otherwise

Wχh

−1 (σ) =
{

1 if σ(θ−1) = {π′} and π(x) ∧ π′(y) ∧ θ−1(x, y) |= χh(x, y)
0 otherwise

Wχh

+1 (σ) =
{

1 if σ(θ+1) = {π′} and π(x) ∧ π′(y) ∧ θ+1(x, y) |= χh(x, y)
0 otherwise

Wχh
< (σ) = cutc

( ∑
π′:π(x)∧π′(y)∧θ<(x,y)|=χh(x,y)

(σ(θ<))(π′)
)

Wχh
> (σ) = cutc

( ∑
π′:π(x)∧π′(y)∧θ>(x,y)|=χh(x,y)

(σ(θ>))(π′)
)

Note that in the definition above (σ(θ>))(π′) is simply the number of occurrences of the
1-type π′ in the multiset σ(θ>).

I Definition 7 (Compatible full types). We say that a full type σ such that σ(θ=) = {π} is
compatible with formula ϕ if the following conditions are satisfied.

π(x) |= χ(x, x),
π(x) ∧ π′(y) ∧ θ(x, y) |= χ for all θ ∈ {θ−1, θ+1, θ<, θ>} and all π′ ∈ σ(θ), and
for each conjunct ∀x∃lhChy.χh(x, y) of ϕ we have

Wχh
= (σ) +Wχh

+1 (σ) +Wχh

−1 (σ) +Wχh
> (σ) +Wχh

< (σ) lh Ch

It is quite obvious that whenever A |= ϕ, all full types realised in A are compatible
with ϕ. It is not difficult to see that the converse is also true, as the following lemma says.

I Lemma 8. For any ordered structure A and any C2[Σu, {<,+1}, {<,+1}] formula ϕ in
normal form, if all full types realised in A are compatible with ϕ then A |= ϕ.

We define Σ-c-ϕ-graph as the subgraph of Σ-c-graph consisting of nodes compatible with
ϕ. The nodes of the form 〈∅, . . . , . . . , ∅, . . .〉 are called source nodes; the nodes of the form
〈. . . , . . . , ∅, . . . , ∅〉 are called target nodes. Intuitively, a source node corresponds to a full
type of the least element in some model of ϕ while a target node corresponds to the greatest
element in some model.

I Lemma 9. Let ϕ be a C2[Σu, {<,+1}, {<,+1}] formula in normal form over vocabulary Σ.
Formula ϕ is finitely satisfiable if and only if there exists a path from a source node to a
target node in Σ-c-ϕ-graph.

Lemma 9 leads us directly to the main theorem of this section. To check satisfiability of a
formula in C2[Σu, {<,+1}, {<,+1}] it is enough to guess an appropriate path in Σ-c-ϕ-graph.
Moreover, it is enough to use only exponentially many different full types in the guessed
path.

I Theorem 10. The finite satisfiability problem for C2[Σu, {<,+1}, {<,+1}] is NExpTime-
complete.
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Proof. The lower bound follows from the complexity of FO2 with only unary predicates. For
the upper bound, an algorithm for deciding finite satisfiability of C2[Σu, {<,+1}, {<,+1}]
works as follows. We take a C2[Σu, {<,+1}, {<,+1}] formula ϕ and convert it to an equisat-
isfiable normal form (in polynomial time) if necessary. Then we guess a path from a source
node to a target node in Σ-c-ϕ-graph where Σ is the vocabulary of ϕ. This requires in
particular verification of the fact that all nodes are compatible with ϕ. All this can be
accomplished in time polynomial in the size of the graph. This size is potentially doubly
exponential in |ϕ|: the number of all 1-types over Σ is exponential in |ϕ|, so the number of
sets of 1-types, and, in consequence, the number of full types, is doubly exponential. The
potential 2NExpTime complexity of the algorithm can be lowered to NExpTime using
the observation that the θ< and θ> components of full types behave in a monotone way
along any path connecting any source node with any target node. The θ< component may
only increase and θ> only decrease along any such path. Since a multiset may increase only
exponentially many times (and only exponentially many times it may decrease) there are
only exponentially many such multisets occurring along the path. Therefore it is enough to
guess only exponentially many different full types. J

5 Hardness of C2[Σu, {<, +1, s}, {<, +1}]

We will show that finite satisfiability problem for C2[Σu, {<,+1, s}, {<,+1}], where s is a
binary relation, is at least as hard as non-emptiness of multicounter automata. Below, for
a given MCA M we construct a C2[Σu, {<,+1, s}, {<,+1}] formula ϕM which has a finite
model if and only if M is non-empty.

Multicounter automata

We adopt a notion of multicounter automata (MCA for short) similar to one in [32], but
with empty input alphabet and simplified counter manipulation. Intuitively, a MCA is a
finite state automaton without input but equipped with a finite set of counters which can
be incremented and decremented, but not tested for zero. More formally, a multicounter
automaton M is a tuple 〈Q,C,R, δ, qI , F 〉, where the set Q of states, the initial state qI ∈ Q
and the set F ⊆ Q of final states are as in usual finite state automata, C is a finite set (the
counters) and R is a subset of C. The transition relation δ is a subset of

Q× {inc(c), dec(c), skip | c ∈ C} ×Q.

An MCA is called reduced if it does not have skip transitions and R = C (in this case we
just omit R component of tuple M).

A configuration of a multicounter automaton M is a pair 〈p, ~n〉 where p is a state and
~n ∈ NC gives a value ~n(c) for each counter c in C. Transitions with inc(c) and skip can always
be applied, whereas transitions with dec(c) can only be applied to configurations with ~n(c) > 0.
Applying a transition 〈p, inc(c), q〉 to a configuration 〈p, ~n〉 yields a configuration 〈q, ~n0〉 where
~n0 is obtained from ~n by incrementing its c-th component and keeping values of all other
components unchanged. Analogously, applying (an applicable) transition 〈p, dec(c), q〉 to a
configuration 〈p, ~n〉 yields a configuration 〈q, ~n0〉 where ~n0 is obtained from ~n by decrementing
its c-th component. Transitions with skip do not change value of any counter in C. A run is
an interleaving sequence of configurations and transitions conf 1, trans1, . . . , transk−1, conf k
such that transi applied to conf i gives conf i+1, for 1 ≤ i < k. A run is accepting, if it starts
in configuration 〈qI ,~0〉 and ends in some configuration 〈qF , ~nF 〉 with qF ∈ F and ~nF (c) = 0
for every c ∈ R. The emptiness problem for multicounter automata is the question whether
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a given automaton M has an accepting run. It is well known that this problem (for both
MCA and reduced MCA) is decidable, as it is polynomial-time equivalent to reachability
problem in Vector Addition Systems/Petri Nets[17, 22].

I Definition 11. Let M = 〈Q,C, δ, qI , F 〉 be a reduced MCA. Let Σ = {q | q ∈ Q} ∪
{incc, decc | c ∈ C} ∪ {min,max, <,+1, s} where predicates q, incc, decc,min and max are
unary and <,+1 and s are binary. Define ϕM as the conjunction of the following Σ-
formulas.
1. ∃=1x.min(x) ∧ ∃=1x.max(x)
2. ∀x∀y. (min(x)→ (x < y ∨ x = y)) ∧ (max(x)→ (y < x ∨ y = x))
3. ∀x.

(∨
q∈Q q(x)

)
∧
∧
q∈Q

(
q(x)→

∧
q′∈Q\{q} ¬q′(x)

)
4. ∀x. (min(x)→ qI(x)) ∧

(
max(x)→

∨
qF∈F qF (x)

)
5. ∀x∀y.+1(x, y)→∨

〈q,inc(c),q′〉∈δ (q(x) ∧ incc(x) ∧ q′(x)) ∨
∨
〈q,dec(c),q′〉∈δ (q(x) ∧ decc(x) ∧ q′(x))

6. ∀x. (¬max(x))→
∨
c∈C (incc(x) ∨ decc(x))

7. ∀x.
∧
c∈C

(
incc(x)→ ¬decc(x) ∧

∧
c′∈C\{c} (¬decc′(x) ∧ ¬incc′(x))

)
8. ∀x.

∧
c∈C

(
decc(x)→ ¬incc(x) ∧

∧
c′∈C\{c} (¬incc′(x) ∧ ¬decc′(x))

)
9. ∀x. (max(x))→

∧
c∈C (¬incc(x) ∧ ¬decc(x))

10. ∀x∀y.s(x, y)→
∨
c∈C (incc(x) ∧ decc(y))

11. ∀x∀y. (s(x, y)→ x < y)
12. ∀x.

(
max(x) ∨ ∃=1y. (s(x, y) ∨ s(y, x))

)
We will interpret ϕM as a C2[Σu, {<,+1, s}, {<,+1}] formula. Models of ϕM encode accepting
runs of MCAM . The first two conjuncts of ϕM define the meaning of the auxiliary predicates
min and max; they hold for the least (resp. the greatest) element of a model. Each element
of the model corresponds to precisely one state q ∈ Q, as encoded by conjunct 3. Thus
the model is just a sequence of states. The first of them must be the starting state qI and
the last must be a final state qF ∈ F , as defined by conjunct 4. Every two consecutive
elements of the model form a transition. A state in which the transition is fired is marked
by predicate of the form incc or decc denoting a counter to increment or decrement; this is
specified by conjunct 5. Every state, with the exception of the last one, must be labelled
by precisely one predicate of the form incc or decc, as expressed by conjuncts 6–8. The last
element is not labelled by any of these predicates (conjunct 9), as no transition is fired there.
Since values of all counters in starting and final state is 0 and no counter may fall below 0,
each incrementation of a counter c must be followed by its decrementation, and conversely,
each decrementation of c must be preceded by its incrementation. We use the relation s to
match these increments and decrements, as stated in conjunct 10. Conjunct 11 states that
decrementation of a counter indeed follows its incrementation. Since each state, except the
final one, is a starting state of some transition, it either corresponds to incrementation or
decrementation of some counter. Therefore it emits or accepts precisely one edge labelled s,
as stated by conjunct 12 of ϕM . Formally, we have the following lemma and a corollary that
results from it.

I Lemma 12. Let M = 〈Q,C, δ, qI , F 〉 be a reduced multicounter automaton and let ϕM be
a C2[Σu, {<,+1, s}, {<,+1}] formula constructed in Definition 11. Formula ϕM is finitely
satisfiable if and only if M is non-empty.

I Corollary 13. Finite satisfiability problem for C2[Σu, {<,+1, s}, {<,+1}] is at least as hard
as emptiness problem for multicounter automata.
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6 Satisfiability of C2[Σu, Σb, {<, +1}]

In this section we show that the finite satisfiability problem of C2[Σu,Σb, {<,+1}] is decidable.
Fix a finite signature Σ satisfying Σ ⊆ Σu ∪ Σb. A 2-type is a maximal consistent

conjunction of atomic and negated atomic formulas over Σ involving only the variables x
and y and satisfying three additional restrictions: first, it contains ¬x = y; second, whenever
it contains +1(x, y) or +1(y, x), it also contains respectively x < y or y < x; and third, it
contains either x < y or y < x, but not both. We will identify a 1-type π (a 2-type τ)
with the set of positive atomic formulas occurring in π (in τ). Each 2-type τ(x, y) uniquely
determines two 1-types of x and y, respectively, that we denote tp1(τ) and tp2(τ). For a
2-type τ the 2-type obtained by swapping the variables x and y is denoted τ−1. Symbol
T (Σ) denotes the set of of 2-types over Σ.

For a structure A over the signature Σ and an element e ∈ A, tpA(e) denotes the unique
1-type π ∈ Π(Σ) such that A |= π(e). Similarly, for e1, e2 ∈ A, tpA(e1, e2) is the unique
2-type τ ∈ T (Σ) such that A |= τ(e1, e2). If A |= τ(e1, e2), we say that e1 emits the type τ
and e2 accepts it and that τ originates in e1. A 1-type π (resp. 2-type τ) is realised in A if
π = tpA(e) (resp. τ = tpA(e1, e2)) for some e ∈ A (resp. e1, e2 ∈ A, with e1 6= e2). Symbols
Π(A) and T (A) denote respectively the set of 1-types and the set of 2-types over Σ realised
in A. A 1-type κ ∈ Π(Σ) that has only one realisation in a structure A is said to be a king
1-type in A. If an element e of A realises a king 1-type then it is said to be a king in A. Any
structure may have multiple kings.

If Σ is a relational signature and f = f1, . . . , fm is a sequence of distinct binary predicates
in Σ, then the pair 〈Σ, f〉 is called a classified signature. Let 〈Σ, f̄〉 be a classified signature and
let τ(x, y) be a 2-type over Σ. We say that τ is a message type over 〈Σ, f̄〉 if f(x, y) ∈ τ(x, y)
for some distinguished predicate f in f̄ . Given a structure A over a signature 〈Σ, f̄〉 and an
element a ∈ A, we want to capture message types connecting a to other elements of A and
all 2-types connecting a to kings of A. We first define the set of all these 2-types. If K is a
set of king 1-types from A, then denote by τ(K,Σ, f̄) the set of all 2-types µ, such that µ is
a message type over 〈Σ, f̄〉 or tp2(µ) ∈ K. A 2-type from τ(K,Σ, f̄) is called an essential
type. If τ is an essential type (resp. a message type) such that τ−1 is also an essential type
(resp. a message type) then we say that τ is an invertible essential type (resp. invertible
message type). On the other hand, if τ is a 2-type such that neither τ nor τ−1 is an essential
type, then we say that τ is a silent type.

Given a structure A over a classified signature 〈Σ, f〉 and a message type τ , if A |= τ(e1, e2)
then e2 is called a witness for e1 in A. It follows that if τ is an invertible message type then
also e1 is a witness for e2. It is because A |= τ−1(e2, e1) and τ−1 is an (invertible) message
type.

Since we consider predicates of arity at most 2, a structure A can be seen as a complete
directed graph, where nodes are labelled by 1-types and edges are labelled by 2-types. Thus
to define such a structure it is enough to define 1-types of its elements and 2-types of all
pairs of elements provided that the projections of 2-types onto 1-types coincide with these
1-types and that for each pair 〈e1, e2〉 of elements connected by a 2-type µ the pair 〈e2, e1〉
is connected by the 2-type µ−1.

Normal form of C2 formulas

For a natural number n denote by n the set {1, . . . , n}. We will assume that input
C2[Σu,Σb, {<,+1}] formula ϕ is in a normal form

ϕ = ∀x∀y.(α(x, y) ∨ x = y)∧
∧
h∈m

∀x∃=1y.(fh(x, y) ∧ x 6= y) (1)
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where α is a quantifier-free formula with unary and binary predicate symbols and f1, . . . , fm
are distinguished binary predicates. By a routine adaptation of transformation in [9] we may
convert each C2 formula to an exponentially larger C2 formula ϕ′ in normal form, such that
ϕ and ϕ′ are equisatisfiable (on structures of cardinality > 1). From now on we also assume
that the classified vocabulary of ϕ is 〈Σ, f̄〉, where f̄ = f1, . . . fm and Σ is a finite subset of
Σu ∪ Σb.
I Remark. In Section 4 we use a notion of normal forms for C2 formulas with only polynomial
blowup. Here, for simplicity of presentation, we decided to employ the one with exponential
blowup. Since there is no elementary upper bound on the complexity of the problem to
which we reduce our logic, the construction in the present section would not benefit from the
usage of a more succinct normal form.

Normal structures

Now, to simplify the reasoning, we restrict the class of models that we consider.

I Definition 14. A finite structure A ∈ O(Σ, <,+1) over a classified signature 〈Σ, f̄〉 is
normal if
1. both the smallest and the largest elements w.r.t. <A are kings in A,
2. for every two non-king elements e1, e2 ∈ A satisfying e1 <

A e2 there exist two elements
e′1, e

′
2 ∈ A such that e′1 <A e′2, tpA(e1) = tpA(e′1), tpA(e2) = tpA(e′2), and tpA(e′1, e′2) is

a silent 2-type,
3. for every node e ∈ A and f ∈ f̄ we have |{e′ ∈ A | A |= f(e, e′)}| = 1, and
4. for every e1, e2 ∈ A if +1A(e1, e2) then tpA(e1, e2) is an invertible essential type.
The following lemma says that when dealing with models of C2[Σu,Σb, {<,+1}] formulas, we
may restrict to normal structures.

I Lemma 15. Let ϕ be a C2[Σu,Σb, {<,+1}] formula in normal form over a vocabulary
〈Σ, f̄〉. If ϕ is finitely satisfiable then there exists a vocabulary 〈Σ′, f̄ ′〉 such that Σ ⊆ Σ′
and f̄ ⊆ f̄ ′ and a finite normal 〈Σ′, f̄ ′〉-structure B such that B |= ϕ. Moreover, |Σ′| is
polynomial in |Σ| and |f̄ ′| = |f̄ |+ 2.

Star types

Given a structure A over a signature 〈Σ, f̄〉 and an element a ∈ A, we want to capture
essential 2-types emitted from a to other elements of A. For this reason we introduce star
types.

I Definition 16 (Star type in A). Let A be a normal structure over 〈Σ, f̄〉, and let a be an
element of A. Let K = {κ | κ is a king type in A}. A star type of a in A, denoted stA(a) is
a pair σ = 〈π, T 〉 where π = tpA(a) and T is the set of essential types originating in a:

T = {µ ∈ τ(K,Σ, f̄) | tpA(a, b) = µ for some b ∈ A}.

We denote the type π by π(σ). We say that a 2-type µ occurs in σ, written µ ∈ σ, if µ ∈ T .
We write σ− µ for the star-type σ′ = 〈π, T \ {µ}〉. When S is a set of 2-types we write σ \ S
to denote the star type 〈π, T \ S〉.

Observe that in the definition above σ satisfies the conditions
1. for all µ1, µ2 ∈ σ if f(x, y) ∈ µ1 and f(x, y) ∈ µ2 for some f ∈ f̄ then µ1 = µ2,
2. µ ∈ σ implies tp1(µ) = π for all µ ∈ τ(K,Σ, f̄),
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3. |{µ ∈ σ | tp2(µ) = κ}| = 1 for all κ ∈ K such that κ 6= π,
4. |{µ ∈ σ | tp2(µ) = π}| = 0 if π ∈ K.
The first of these conditions is obvious, as normal structures emit precisely one edge τ with
f(x, y) ∈ τ for f ∈ f̄ . The second one says that all 2-types originating in a have the same
1-type of the origin, namely the 1-type of a. The third one says that for all kings k (in A)
the element a is connected with k by exactly one 2-type (provided that k 6= a). The last
condition says that if a is a king then it is not connected with itself by any 2-type (recall
that 2-types connect different elements).

I Definition 17. A star type over the set of 2-types τ(K,Σ, f̄) is any pair of the form 〈π, T 〉
satisfying conditions 1–4 above. A structure A is said to realise a star type σ if stA(a) = σ

for some a ∈ A.

For a given set of star types ST, by π(ST) we denote the set of 1-types {π(σ) | σ ∈ ST}, by
τ(ST) — the set of 2-types occurring in star types from ST, that is the set {µ | ∃σ ∈ ST.µ ∈ σ},
and by partial(ST) the set {〈π, T ′〉 | 〈π, T 〉 ∈ ST for some T satisfying T ′ ⊆ T }. Elements
of partial(ST) are called partial star types. A partial star type is said to be empty if it is of
the form 〈π, ∅〉.

Frames

We now introduce finite and small structures called frames. Frames will be used in deciding
the finite satisfiability problems for C2[Σu,Σb, {<,+1}]: together with multicounter automata
they provide a description of finite models of a given formula.

I Definition 18 (Frame). Let 〈Σ, f̄〉 be a classified signature, K be a set of 1-types over Σ,
let ST be a set of star types over τ(K,Σ, f̄) and let Ξ be a set of silent 2-types over 〈Σ, f̄〉.
A tuple 〈K, ST,Ξ,Σ, f̄〉 is called a frame if the following conditions are satisfied
1. for each 2-type τ ∈ τ(ST) ∪ Ξ if +1(x, y) ∈ τ or +1(y, x) ∈ τ then τ is an invertible

essential type,
2. there exists exactly one star type σfirst ∈ ST such that for every τ ∈ σfirst we have

+1(y, x) 6∈ τ ,
3. there exists exactly one star type σlast ∈ ST such that for every τ ∈ σlast we have

+1(x, y) 6∈ τ ,
4. for each κ ∈ K there exists exactly one σ ∈ ST such that π(σ) = κ, and
5. for each star type σ ∈ ST and each 2-type µ, if µ ∈ σ then tp2(µ) ∈ π(ST).

Frames are intended to describe local configurations in normal structures A. The set K
contains all king 1-types of A, ST — all star types of A and the set Ξ — all silent 2-types
realised in A. Condition 1 says that every node in A is connected to its successor and
predecessor by invertible essential types. Conditions 2 and 3 say that there are unique star
types for the first and the last node in A. Conditions 1–3 follow from the assumption that A
is normal. Condition 4 says that each king has exactly one star type. Condition 5 ensures
that if a neighbour of a node in a structure has some 1-type π, then there exists a star type
σ ∈ ST such that π ∈ π(ST). The above two conditions hold in every relational structure.

Intuitively, we want to check finite satisfiability of a C2 formula ϕ by guessing a right
frame. “Right” means here that two conditions must be satisfied. First, the frame should
be locally consistent with ϕ. This means that every 2-type occurring in the frame entails
the subformulas of ϕ of the form ∀x∀y . . ., and that the number of witnesses in every star
type is correct. This is formalised in the following definition. Second, the frame should be
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globally consistent in the sense that there exists a structure that conforms to this frame —
this is formalised in Definition 20.

I Definition 19 (F |= ϕ). Consider a frame F = 〈K,ST,Ξ,Σ, f̄〉 and a C2[Σu,Σb, {<,+1}]
formula ϕ in normal form (1) over 〈Σ, f̄〉. We say that F satisfies ϕ, in symbols F |= ϕ, if

for each 2-type µ ∈ Ξ ∪ τ(ST), the formula α is a consequence of µ and of µ−1, that is
|= µ→ α and |= µ−1 → α, where µ is seen as conjunction of literals, and
for each σ ∈ ST and h ∈ m we have |{µ ∈ σ | fh(x, y) ∈ µ}| = 1.

I Definition 20. Let 〈K, ST,Ξ,Σ, f̄ , c〉 be a frame, and A structure over 〈Σ, f̄〉. We say
that A fits to the frame F if

the set of king 1-types realised in structure A is K, and
the set of all silent types realised in A is a subset of Ξ, and
the set of star types of A is a subset of ST, in symbols stA(A) ⊆ ST.

The following proposition reduces the finite satisfiability problem of C2[Σu,Σb, {<,+1}] to
the problem of existence of a structure in O(Σ, <,+1) that fits to a given frame.

I Proposition 21. Let ϕ be a C2[Σu,Σb, {<,+1}] formula in normal form over a vocabulary
〈Σ, f〉, where {<,+1} ⊆ Σ. Let A be a structure in O(Σ, <,+1).
1. If A is normal and A |= ϕ then there exists a frame F , such that A fits to F and F |= ϕ.
2. If there exists a frame F such that A fits to F and F |= ϕ then A |= ϕ.

Proof. For the proof of the first statement, assume that A is normal and A |= ϕ. Let K be
the set of king 1-types realised in A, let ST be the set of star types of A and let Ξ be the set
of all silent types realised in A. The facts that tuple F = 〈K, ST,Ξ,Σ, f̄ , c〉 forms a frame,
F |= ϕ and A fits to F are immediate, once Definitions 18, 19 and 20 are spelled.

For the proof of the second statement, let F be a frame such that F |= ϕ and let A be
a structure such that A fits to F . Since ϕ is in normal form, it is of the form (1). Let µ
be any 2-type realised in A. Then either µ is a silent type or it occurs in some star type
realised in A. In any case, by Definition 20 we have that µ ∈ Ξ ∪ τ(ST). By Definition 19
it follows that |= µ → α. So A |= ∀x∀y.(α ∨ x = y). Since A fits to F and F |= ϕ, it also
follows that for each star type σ realised in A and each h such that 1 ≤ h ≤ m we have
|{µ ∈ σ | fh(x, y) ∈ µ}| = 1, and thus A |=

∧
h∈m ∀x∃=1y.(fh(x, y) ∧ x 6= y). Hence A |= ϕ

as required. J

High-level multicounter automata

In the rest of this section we will want to decide for a given frame F if there exists a structure
in O(Σ, <,+1) that fits to this frame. This will be done by a reduction to emptiness problem
for Multicounter Automata.

We now introduce a syntactic extension to multicounter automata that we call High-level
MultiCounter Automata (HMCA). The idea is to specify transitions of an automaton as
programs in a higher-level imperative language with conditionals, loops and arrays, which
leads to clearer exposition of reachability problems. A transition in a High-Level MCA is a
sequence ∆ of actions; each action in turn may update and test finite-domain variables, and
conduct conditional or loop instructions depending on results of these tests. A transition
may also increment or decrement, but not test the value of, counters, which are the only
infinite-domain variables of the automaton.

Formally, an HMCA is a tuple H = 〈Vfin,VecN,Type,∆, ρI , PF , E〉. Set Vfin consists
of variables v to be interpreted in the finite domain Type(v). We may think of Vfin as
a declaration of finite-domain variables of the program. Set VecN corresponds to a declaration
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of arrays, it consists of variables −→vec to be interpreted as vectors of natural numbers indexed
by elements of some finite set A, where Type(−→vec) = A→ N. We will refer to the index set
A as the domain Dom(−→vec). The Type function assigns to every variable in Vfin ∪VecN its
type. The sequence of actions ∆ is the actual program built from actions defined below.
The starting state of H is ρI , the set of accepting states is PF . Set E is a subset of
{〈~v, a〉 | ~v ∈ VecN, a ∈ Dom(~v)}, and is used in the acceptance condition explained later.

We now define a set of actions α that constitute transitions in HMCA. The simplest
action is an assignment of the form v := Expr , where v is a variable of some domain
A = Type(v), and Expr is an expression built from variables from Vfin, constants from
appropriate domains and operators. An operator is any effectively computable function, e. g.,
∪, ∩, \ are operators of domain (2B)2 → 2B for any domain B; function π : ST(K,Σ, f̄)→ Π(Σ)
from Definition 16 is also an operator, provided that our finite domain contains ST(K,Σ, f̄)
and Π(Σ). We silently extend Type function to constants by letting Type(a) = A if a ∈ A,
and to expressions, e. g., Type(s1∪s2) = 2B if Type(s1) = 2B and Type(s2) = 2B. We require
that assignments v := Expr are well typed, i. e., that Type(v) = Type(Expr). An atomic
test is of the form Expr1 = Expr2 or Expr3 ∈ Expr4, where Expr1, Expr2, Expr3, Expr4 are
expressions such that Type(Expr1) = Type(Expr2) and Type(Expr4) = 2Type(Expr3). A test
is an arbitrary Boolean combination of atomic tests. Notice that tests do not use counters.
A non-deterministic assignment action is of the form guess v ∈ Expr with Test, where
Type(Expr) = 2Type(v) and the variable v may occur in Test. A conditional action is of the
form if Test then α∗ else α′∗ endif or if Test then α∗ endif. A loop action is of the form
while Test do α∗ endwhile. An incrementing action (resp. decrementing action) is of the
form inc(~f [Expr ]) (resp. dec(~f [Expr ])), where Expr evaluates to an index of the array ~f ,
that is, ~f ∈ VecN, Type(~f) = A→ N and Type(Expr) = A. The remaining action, Reject,
simply rejects current computation.

Expressions and tests are evaluated in context of variable valuations. A variable valuation
(also called a state) is any function ρ that assigns to every finite-domain variable v a value
JvKρ ∈ Type(v).We write JvKρ = ρ(v) for v ∈ Vfin, JExpr1 ./ Expr2Kρ = JExpr1Kρ ./

JExpr2Kρ, where ./∈ {∪,∩, \} and Jf(Expr1, . . . ,Exprk)Kρ = f(JExpr1Kρ, . . . , JExprkKρ),
where f is an operator. In a similar way we define semantics of tests.

A counter valuation is any function ϑ that assigns (a sequence of) natural numbers to
(arrays of) counters. A configuration of HMCA H is a pair 〈ρ, ϑ〉 where ρ is an variable
valuation (i. e., a state) and ϑ is a counter valuation. Actions transform configurations. Most
actions work only on variable valuations; the exceptions are incrementing and decrementing
of counters. With the exception of the decrementing action, the semantics of actions is
self-explanatory; dec(c) decrements the counter c if it is strictly positive and otherwise (if it
is 0) it rejects the current computation.

A run of an HMCA H is a sequence of configurations 〈ρ1, ϑ1〉, . . . 〈ρk, ϑk〉 such that
〈ρi+1, ϑi+1〉 is obtained after executing transition ∆ in configuration 〈ρi, ϑi〉, for i ∈
{1, . . . , k − 1}. A run is accepting, if it starts in an initial configuration 〈ρI , ϑ0〉 with
ρI being initial state and ϑ0 assigning 0 to all counters, and it ends in some configuration
〈ρF , ϑF 〉 with ρF being a final state and ϑF assigning 0 to all counters specified in the set E
of final counters: ϑF (~f)(a) = 0 for every 〈f, a〉 ∈ E. The emptiness problem for high-level
multicounter automata is the question whether a given automaton H has an accepting run.

In the full version of the paper we give formal syntax and semantics to high-level
multicounter automata and we prove that HMCA can be compiled to multicounter automata.
Intuitively, the control structures and finite-domain variables (including tests for zero on
finite-domain variables) can be hidden in states of the constructed MCA. Formally, we have
the following proposition.
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I Proposition 22. Emptiness problem for HMCA is reducible to emptiness problem of
multicounter automata, and is therefore decidable.

Figure 1 shows a high-level multicounter automaton HF that for a given frame F checks
whether there exists a normal structure that fits to F . The automaton guesses one by one
the sequence of elements of the structure as they appear in the order <. The constructed
HMCA keeps track of the set of nodes visited (i. e., guessed) so far; their 1-types are stored in
variable Visited; variable Required stores the set of king types that still must be constructed.
These two variables are updates in lines 4–7.

A crucial notion in the construction of the automaton is the difference type of a node
w.r.t. to another node in a structure. Fig 2 shows an example of a difference type.

I Definition 23 (Difference type of e1 w.r.t. e in a structure A). Let A ∈ O(Σ, <,+1) and
e1, e ∈ A be elements satisfying e1 <

A e. Let σ be the star type of e1 and let {τi}ki=1 be
essential types emitted from e1 and accepted by nodes <A than e. A partial star type
σ \ {τi}ki=1 is called a difference type of e1 w.r.t. e in A.

I Definition 24. Let A ∈ O(Σ, <,+1) and e ∈ A. The cut at point e in A is a vector
−→
Cute

of natural numbers indexed by star types on τ(K,Σ, f̄) such that

−→
Cute[σ] = |{e1 ∈ A | difference type of e1 w.r.t. e in A is σ}|.

Intuitively, the cut vector
−→
Cute informs us, for each 2-type τ , how many edges of type τ

emitted by nodes smaller than e must be accepted by nodes greater or equal to e. Additionally,
it informs which of these edges have common origin, i. e., they belong to a star type of the
same node. This information is used when we define 2-types connecting e with smaller nodes.
When we define a 2-type connecting e with a node e′ smaller than e, we have to subtract
this 2-type from the current cut. At the same time we have to remember that for each pair
of nodes there is only one 2-type connecting them, so when we subtract two 2-types from a
cut, we have to be sure that their origins are different. This is why the cut vector is indexed
by difference types and not by 2-types.

For a star type σ define σ< = {τ ∈ σ | (y < x) ∈ τ} and σ> = {τ ∈ σ | (x < y) ∈ τ}.
Intuitively σ< (resp. σ>) denotes the subset of σ containing essential types emitted to
smaller (resp. larger) nodes. For a partial star type σ from ST define τ+1(σ) as the only
2-type τ such that +1(x, y) ∈ τ , or the special value ⊥ if σ is the star type of last node of a
structure. Similarly, define first(σ) to be an arbitrary 2-type τ such that τ ∈ σ. The value of
−→
Cut is updated in two loops in lines 9–27. During the computation some counters from

−→
Cut

are decremented, and some counters from
−−−−−−→
Processed — incremented. Decrementation of a

counter corresponds to establishing a 2-type between e and some e′ smaller than e (this is
done in the loop in lines 9–19), or between e′ and e (loop in lines 21–27). In order not to
establish multiple 2-types between the same pair of nodes, we remove the difference type of
e′ w.r.t. e from

−→
Cut and store it in

−−−−−−→
Processed. When the second loop (lines 21–27) finishes its

execution the initial value of
−→
Cut vector for next node is the sum of the values of updated

vectors
−→
Cut and

−−−−−−→
Processed in line 27.

In lines 29–34 we guess the star type of the next node, or the special value ⊥ in case
the maximal element of the structure is already guessed. To keep the constructed structure
normal (and to be able to define silent 2-types between non-king nodes) we have to satisfy
condition 2 in Definition 14. Therefore, while guessing a consecutive node, we must check
that it does not violate this condition. Therefore we guess (the star type of) the consecutive
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Type Type(σc) = ST ∪ {⊥}, Type(σ), Type(σu) and Type(σg) is partial(ST), Type(τ) = τ(ST)
and Type(τ+1) = τ(ST) ∪ {⊥}. Type(Required) = 2K and Type(Visited) = 2π(ST ). Type(

−→
Cut)

and Type(
−−−−−−→
Processed) is partial(ST)→ N.

Initial Configuration Initial state is ρI such that ρI(σc) = σfirst, ρI(Required) = K,
ρI(Visited) = ∅ and the value of ρI on remaining variables is arbitrary (but fixed). Initial
counter valuation assigns 0 to all counters.

Accepting Configurations The set of accepting states PF consists of all states ρF satisfy-
ing K ⊆ ρF (Visited). Accepting counter valuations are defined by the set E = {〈

−→
Cut, σ〉 |

σ ∈ partial(ST) is non-empty}.
Transition ∆
1: if σc = ⊥ then
2: Reject
3: endif
4: if π(σc) ∈ Required then
5: Required := Required \ {π(σc)}
6: endif
7: Visited := Visited ∪ {π(σc)}
8: σ := σc

<

9: while σ 6= ∅ do
10: τ := first(σ)
11: σ := σ − τ
12: if τ is an invertible essential type then
13: guess σu ∈ partial(ST) with τ−1 ∈ σu>
14: else
15: guess σu ∈ partial(ST) with π(σu) = tp2(τ)
16: endif
17: dec(

−→
Cut[σu>])

18: inc(
−−−−−−→
Processed[σu> − τ−1])

19: endwhile
20: guess anotherIteration ∈ {true, false}
21: while anotherIteration do
22: guess σg ∈ partial(ST)
23: guess τ ∈ σg> with tp2(τ) = π(σc) and (τ is non-invertible essential type)
24: dec(

−→
Cut[σg>])

25: inc(
−−−−−−→
Processed[σg> − τ ])

26: guess anotherIteration ∈ {true, false}
27: endwhile
28: inc(

−→
Cut[σc>])

29: τ+1 := τ+1(σc>)
30: if τ+1 = ⊥ then
31: σc := ⊥
32: else
33: guess σc ∈ Allowed(Visited) with (τ+1)−1 ∈ σc
34: endif
35: guess anotherIteration ∈ {true, false}
36: while anotherIteration do
37: guess σg ∈ partial(ST)
38: dec(

−−−−−−→
Processed[σg>])

39: inc(
−→
Cut[σg>])

40: guess anotherIteration ∈ {true, false}
41: endwhile

Figure 1 A high-level multicounter automaton HF corresponding to a frame F . Here the set
of finite-domain variables is {σc,Visited,Required, σ, τ, σu, σg, τ+1, anotherIteration}, and there are
two arrays of counters

−→
Cut and

−−−−−−→
Processed.
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e1 e

Figure 2 Difference type of e1 w.r.t. e contains the arrows that cross the dotted line.

node from the set

Allowed(Visited) = {σ ∈ ST | π(σ) ∈ K \Visited} ∪
{σ ∈ ST | ∀π ∈ Visited (π 6∈ K ⇒ ∃τ ∈ Ξ.tp1(τ) = π ∧ (x < y) ∈ τ ∧ tp2(τ) = π(σ))}.

Finally, loop in lines 35–41 may move the content of vector
−−−−−−→
Processed to

−→
Cut. We may assume

that the entire content is actually moved. Formally, the correspondence between a frame F
and HMCA HF is captured by the following proposition, which directly leads to the main
theorem of this section.

I Proposition 25. Let F = 〈K,ST,Ξ,Σ, f̄〉 be a frame. The automaton HF is non-empty
if and only if there exists a structureM∈ O(Σ, <,+1) that fits to F .

I Theorem 26. The finite satisfiability problem for C2[Σu,Σb, {<,+1}] is decidable.

Proof. We may assume that the input C2[Σu,Σb, {<,+1}] formula ϕ is in normal form
(otherwise it can be brought to the normal form). A non-deterministic decision procedure for
the finite satisfiability problem guesses a frame F such that F |= ϕ and checks if HMCA
HF is non-empty. If so, then by Proposition 25 we obtain a structureM∈ O(Σ, <,+1) that
fits to F . Because M fits to F and F |= ϕ, by Proposition 21 we conclude that M |= ϕ.
This shows that ϕ is finitely satisfiable, so our procedure is sound. On the other hand, if
ϕ is finitely satisfiable then, by Lemma 15, it has a modelM which is a normal structure.
Again, by Proposition 21 there exists a frame F such that M fits to F and F |= ϕ. By
Proposition 25 we conclude that HF is non-empty, so the procedure is complete.

Note that the size of F is at most doubly exponential in the size of formula’s vocabulary
〈Σ, f̄〉, so there are finitely many frames that can be guessed, and that the emptiness problem
of HMCA HF is decidable, as stated in Proposition 22. J

7 Conclusion

We have shown several complexity results for finite satisfiability of two-variable logics with
counting quantifiers and linear orders. In particular we proved NExpTime-completeness of
the problem for C2[Σu, {<,+1}, {<,+1}], VAS-completeness for C2[Σu,Σb, {<}] and undecid-
ability for C2[Σu, {<1, s1, <2, s2}, {<1, <2}]. There are still some unsolved cases, including
C2[Σu, {<1, <2}, {<1, <2}] and C2[Σu, {<1, s1, <2}, {<1, <2}].

There are lots of open problems in the area. One of them is general satisfiability. None
of the logics considered here has finite model property. Our techniques rely on finiteness
of the underlying structure, so they cannot be directly applied to general satisfiability on
possibly infinite structures. Among possible directions for future work one can choose
combination of C2 with other interpreted binary relations like preorders [21] or transitive
relations [33]. Another possibility is to consider C2 with closure operations on some relations,
like equivalence closure [14] or deterministic transitive closure [3].
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