
A Framework for Transactional Consistency
Models with Atomic Visibility

Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman

IMDEA Software Institute, Madrid, Spain

Abstract
Modern distributed systems often rely on databases that achieve scalability by providing only
weak guarantees about the consistency of distributed transaction processing. The semantics
of programs interacting with such a database depends on its consistency model, defining these
guarantees. Unfortunately, consistency models are usually stated informally or using disparate
formalisms, often tied to the database internals. To deal with this problem, we propose a frame-
work for specifying a variety of consistency models for transactions uniformly and declaratively.
Our specifications are given in the style of weak memory models, using structures of events and
relations on them. The specifications are particularly concise because they exploit the property
of atomic visibility guaranteed by many consistency models: either all or none of the updates
by a transaction can be visible to another one. This allows the specifications to abstract from
individual events inside transactions. We illustrate the use of our framework by specifying several
existing consistency models. To validate our specifications, we prove that they are equivalent to
alternative operational ones, given as algorithms closer to actual implementations. Our work
provides a rigorous foundation for developing the metatheory of the novel form of concurrency
arising in weakly consistent large-scale databases.

1998 ACM Subject Classification C.2.4 Distributed Systems

Keywords and phrases Replication, Consistency models, Transactions

Digital Object Identifier 10.4230/LIPIcs.CONCUR.2015.58

1 Introduction

To achieve availability and scalability, modern distributed systems often rely on replicated
databases, which maintain multiple replicas of shared data. The database clients can
execute transactions on the data at any of the replicas, which communicate changes to
each other using message passing. For example, large-scale Internet services use data
replicas in geographically distinct locations, and applications for mobile devices keep replicas
locally as well as in the cloud to support offline use. Ideally, we want the concurrent and
distributed processing in a replicated database to be transparent, as formalised by the
classical notion of serialisability [20]: the database behaves as if it executed transactions
serially on a non-replicated copy of the data. However, achieving this ideal requires extensive
coordination between replicas, which slows down the database and even makes it unavailable if
network connections between replicas fail [1]. For this reason, nowadays replicated databases
often provide weaker consistency guarantees, which allow non-serialisable behaviours, called
anomalies. For example, consider the following program issuing transactions concurrently:

txn {x.write(post); y.write(empty) } ‖ txn {u = x.read(); y.write(comment) }
‖ txn { v = x.read(); w = y.read() }

(1)

where x, y are database objects and u, v, w local variables. In some databases the above
program can execute so that the last transaction observes the comment, but not the post:

© Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman;
licensed under Creative Commons License CC-BY

26th International Conference on Concurrency Theory (CONCUR 2015).
Editors: Luca Aceto and David de Frutos Escrig; pp. 58–71

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CONCUR.2015.58
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

A. Cerone, G. Bernardi, and A. Gotsman 59

u = post, v = empty, w = comment. This result cannot be obtained by executing the three
transactions in any sequence and, hence, is not serialisable. In an implementation it may
arise if the first two transactions are executed at a replica r, and the third one at another
replica r′, and the messages carrying the updates by the first two transactions arrive to r′
out of order.

The semantics of programs interacting with a replicated database thus depends on its
consistency model, restricting the anomalies it can exhibit and, as a consequence, the possible
performance optimisations in its implementation. Recent years have seen a plethora of
proposals of consistency models for replicated databases [6, 19, 12, 24, 21, 13, 4] that make
different trade-offs between consistency and performance. Unfortunately, these subtle models
are usually specified informally or using disparate formalisms, often tied to database internals.
Whereas some progress in formalising the consistency models has been recently made for
replicated databases without transactions [11, 12], the situation is worse for databases
providing these. The lack of a uniform specification formalism represents a major hurdle
in developing the metatheory of the novel form of concurrency arising in weakly consistent
replicated databases and, in particular, methods for formal reasoning about application
programs using them.

To deal with this problem, we propose a framework to uniformly specify a variety of
modern transactional consistency models. We apply the framework to specify six existing
consistency models for replicated databases; the results are summarised in Figure 1, page 63.
Specifications in our framework are declarative, i.e., they do not refer to the database internals
and thus allow reasoning about the database behaviour at a higher abstraction level. To
achieve this, we take an axiomatic approach similar to the one used to define the semantics of
weak memory models of multiprocessors and shared-memory programming languages [3]: our
specifications model database computations by abstract executions, which are structures of
events and relations on them, reminiscent of event structures [26]. For example, Figure 3(a),
page 63 gives an execution that could arise from the program (1). The boxes named T1,
T2 and T3 depict transactions, which are sequences of events ordered by the program order
po, reflecting the program syntax. The visibility edges T1

VIS−−→ T2 and T2
VIS−−→ T3 mean that

the transaction T2 (T3) is aware of the updates made by T1 (T2). Consistency models are
specified by consistency axioms, constraining abstract executions; e.g., a consistency axiom
may require the visibility relation to be transitive and thereby disallow the execution in
Figure 3(a).

The key observation we exploit in our framework is that modern consistency models for
replicated databases usually guarantee atomic visibility: either all or none of the events in a
transaction can be visible to another transaction; it is the flexibility in when a transaction
becomes visible that leads to anomalies. Thanks to atomic visibility, in abstract executions
we can use relations on whole transactions (such as VIS in Figure 3(a)), rather than on
separate events inside them, thereby achieving particularly concise specifications. We further
illustrate the benefits of this form of the specifications by exploiting it to obtain sufficient
and necessary conditions for observational refinement [16] between transactions. This allows
replacing a transaction in an abstract execution by another one without invalidating the
consistency axioms of a given model. One can think of our conditions as characterising the
optimisations that the database can soundly perform inside a transaction due to its atomic
visibility.

To ensure that our declarative axiomatic specifications indeed faithfully describe the
database behaviour, we prove that they are equivalent to alternative operational ones, given
as algorithms closer to actual implementations (Theorem 6, §4). This correspondence also
highlights implementation features that motivate the form of the consistency axioms.

CONCUR’15

60 A Framework for Transactional Consistency Models with Atomic Visibility

Our work systematises the knowledge about consistency models of replicated databases
and provides insights into relationships between them (§3). The proposed specification
framework also gives a basis to develop methods for reasoning about application programs
using weakly consistent databases. Finally, our framework is an effective tool for exploring
the space of consistency models, because their concise axiomatic specifications allow easily
experimenting with alternative designs. In particular, our formalisation naturally suggests a
new consistency model (§3).

2 Abstract Executions

We consider a database storing objects Obj = {x, y, . . .}, which for simplicity we assume to be
integer-valued. Clients interact with the database by issuing read and write operations on the
objects, grouped into transactions. We let Op = {read(x, n), write(x, n) | x ∈ Obj, n ∈ Z}
describe the possible operation invocations: reading a value n from an object x or writing n
to x.

To specify a consistency model, we need to define the set of all client-database interactions
that it allows. We start by introducing structures for recording such interactions in a
single database computation, called histories. In these, we denote operation invocations
using history events of the form (ι, o), where ι is an identifier from a countably infinite
set EventId and o ∈ Op. We use e, f, g to range over history events. We let WEventx =
{(ι, write(x, n)) | ι ∈ EventId, n ∈ Z}, define the set REventx of read events similarly, and
let HEventx = REventx ∪WEventx. A relation is a total order if it is transitive, irreflexive,
and relates every two distinct elements one way or another.

I Definition 1. A transaction T, S, . . . is a pair (E, po), where E ⊆ HEvent is a finite,
non-empty set of events with distinct identifiers, and the program order po is a total order
over E. A history H is a (finite or infinite) set of transactions with disjoint sets of event
identifiers.

All transactions in a history are assumed to be committed: to simplify presentation, our
specifications do not constrain values read inside aborted or ongoing transactions.

To define the set of histories allowed by a given consistency model, we introduce abstract
executions, which enrich histories with certain relations on transactions, declaratively describ-
ing how the database processes them. Consistency models are then defined by constraining
these relations. We call a relation prefix-finite, if every element has finitely many predecessors
in the transitive closure of the relation.

I Definition 2. An abstract execution is a triple A = (H,VIS,AR) where:
visibility VIS ⊆ H×H is a prefix-finite, acyclic relation; and
arbitration AR ⊆ H×H is a prefix-finite, total order such that AR ⊇ VIS.

We often write T VIS−−→ S in lieu of (T, S) ∈ VIS, and similarly for AR. Figure 3(a) gives
an execution corresponding to the anomaly explained in §1. Informally, T VIS−−→ S means
that S is aware of T , and thus T ’s effects can influence the results of operations in S. In
implementation terms, this may be the case if the updates performed by T have been delivered
to the replica performing S; the prefix-finiteness requirement ensures that there may only be
finitely many such transactions T . We call transactions unrelated by visibility concurrent.
The relationship T AR−−→ S means that the versions of objects written by S supersede those
written by T ; e.g., comment supersedes empty in Figure 3(a). The constraint AR ⊇ VIS
ensures that writes by a transaction T supersede those that T is aware of; thus AR essentially

A. Cerone, G. Bernardi, and A. Gotsman 61

orders writes only by concurrent transactions. In an implementation, arbitration can be
established by assigning timestamps to transactions.

A consistency model specification is a set of consistency axioms Φ constraining executions.
The model allows those histories for which there exists an execution that satisfies the axioms:

HistΦ = {H | ∃VIS,AR. (H,VIS,AR) |= Φ}. (2)

Our consistency axioms do not restrict the operations done by the database clients. We can
obtain the set of histories produced by a particular program interacting with the database,
such as (1), by restricting the above set, as is standard in weak memory model definitions [7].

3 Specifying Transactional Consistency Models

We now apply the concepts introduced to define several existing consistency models; see
Figures 1–3. For a total order R and a set A, we let maxR(A) be the element u ∈ A such that
∀v ∈ A. v = u ∨ (v, u) ∈ R; if A = ∅, then maxR(A) is undefined. In the following, the use of
maxR(A) in an expression implicitly assumes that it is defined. For a relation R ⊆ A×A and
an element u ∈ A, we let R−1(u) = {v | (v, u) ∈ R}. We denote the sequential composition
of relations R1 and R2 by R1; R2. We write _ for a value that is irrelevant and implicitly
existentially quantified.

Baseline consistency model: Read Atomic. The weakest consistency model we consider,
Read Atomic (Figure 1), is defined by the axioms Int and Ext (Figure 2), which determine
the outcomes of reads in terms of the visibility and arbitration relations. Consistency models
stronger than Read Atomic are defined by adding axioms that constrain these relations. The
internal consistency axiom Int ensures that, within a transaction, the database provides
sequential semantics: a read from an object returns the same value as the last write to or
read from this object in the transaction. In particular, Int guarantees that, if a transaction
writes to an object and then reads the object, then it will observe its last write. The axiom
also disallows so-called unrepeatable reads: if a transaction reads an object twice without
writing to it in-between, it will read the same value in both cases.

If a read is not preceded in the program order by an operation on the same object,
then its value is determined in terms of writes by other transactions using the external
consistency axiom Ext. The formulation of Ext relies on the following notation, defining
certain attributes of a transaction T = (E, po). We let T `Write x : n if T writes to x and
the last value written is n: maxpo(E ∩WEventx) = (_, write(x, n)). We let T ` Read x : n
if T makes an external read from x, i.e., one before writing to x, and n is the value returned
by the first such read: minpo(E ∩ HEventx) = (_, read(x, n)). In this case, Int ensures that
n will be the result of all external reads from x in T . According to Ext, the value returned
by an external read in T is determined by the transactions VIS-preceding T that write to
x: if there are no such transactions, then T reads the initial value 0; otherwise it reads the
final value written by the last such transaction in AR. (In examples we sometimes use initial
values other than 0.) For example, the execution in Figure 3(a) satisfies Ext; if it included
the edge T1

VIS−−→ T3, then Ext would force the read from x in T3 to return post. The axiom
Ext implies the absence of so-called dirty reads: a committed transaction cannot read a
value written by an aborted or an ongoing transaction (which are not present in abstract
executions), and a transaction cannot read a value that was overwritten by the transaction
that wrote it (ensured by the definition of T `Write x : n). Finally, Ext guarantees atomic
visibility of a transaction: either all or none of its writes can be visible to another transaction.

CONCUR’15

62 A Framework for Transactional Consistency Models with Atomic Visibility

For example, Ext disallows the execution in Figure 3(b) and, in fact, any execution with the
same history. This illustrates a fractured reads anomaly: T1 makes Alice and Bob friends,
but T2 observes only one direction of the friendship relationship. Thus, the consistency
guarantees provided by Read Atomic are useful because they allow maintaining integrity
invariants, such as the symmetry of the friendship relation.

Stronger consistency models. Even though Read Atomic ensures that all writes by a
transaction become visible together, it does not constrain when this happens. This leads
to a number of anomalies, including the causality violation shown in Figure 3(a). We now
consider stronger consistency models that provide additional guarantees about the visibility
of transactions. We specify the first model of causal consistency by requiring VIS to be
transitive (TransVis). This implies that transactions ordered by VIS (such as T1 and T2 in
Figure 3(a)), are observed by others (such as T3) in this order. Hence, the axiom TransVis
disallows the anomaly in Figure 3(a).

Both Read Atomic and causal consistency can be implemented without requiring any
coordination among replicas [6, 19]: a replica can decide to commit a transaction without
consulting other replicas. This allows the database to stay available even during network
failures. However, the above consistency models allow the lost update anomaly illustrated by
the execution in Figure 3(c), which satisfies the axioms of causal consistency. This execution
could arise from the code, also shown in the figure, that uses transactions T1 and T2 to make
deposits into an account. The two transactions read the initial balance of the account and
concurrently modify it, resulting in one deposit getting lost. The next consistency model
we consider, parallel snapshot isolation, prohibits such anomalies in exchange for requiring
replica coordination in its implementations [24]. We specify it by strengthening causal
consistency with the axiom NoConflict, which does not allow transactions writing to the
same object to be concurrent. This rules out any execution with the history in Figure 3(c):
it forces T1 and T2 to be ordered by VIS, so that they cannot both read 0 from acct.

The axiom TransVis in causal consistency and parallel snapshot isolation guarantees
that VIS-ordered transactions are observed by others in this order (cf. Figure 3(a)). However,
the axiom allows two concurrent transactions to be observed in different orders, as illustrated
by the long fork anomaly in Figure 3(d), allowed by both models. Concurrent transactions
T1 and T2 write to x and y, respectively. A transaction T3 observes the write to x, but not
y, and a transaction T4 observes the write to y, but not x. Thus, from the perspectives of T3
and T4, the writes of T1 and T2 happen in different orders.

The next pair of consistency models that we consider disallow this anomaly. We specify
prefix consistency and snapshot isolation by strengthening causal consistency, respectively,
parallel snapshot isolation, with the requirement that all transactions become visible through-
out the system in the same order given by AR. This is formalised by the axiom Prefix: if T
observes S, then it also observes all AR-predecessors of S. Since AR ⊇ VIS, Prefix implies
TransVis. The axiom Prefix disallows any execution with the history in Figure 3(d): T1
and T2 have to be related by AR one way or another; but then by Prefix, either T4 has to
observe post1 or T3 has to observe post2 .

Even though consistent prefix and snapshot isolation ensure that transactions become
visible to others in the same order, they allow this to happen with a delay, caused by
asynchronous propagation of updates in implementations. This leads to the write skew
anomaly shown in Figure 3(e). Here each of T1 and T2 checks that the combined balance of
two accounts exceeds 100 and, if so, withdraws 100 from one of them. Both transactions
pass the checks and make the withdrawals from different accounts, resulting in the combined

A. Cerone, G. Bernardi, and A. Gotsman 63

Φ Consistency model Axioms (Figure 2) Fractured Causality Lost Long Write
reads violation update fork skew

RA Read Atomic [6] Int, Ext 8 X X X X RA

CC

PSIPC

SI

SER

⊂
⊂⊂

⊂ ⊂

⊂
CC Causal Int, Ext, TransVis 8 8 X X X

consistency [19, 12]
PSI Parallel snapshot Int, Ext, TransVis, 8 8 8 X X

isolation [24, 21] NoConflict
PC Prefix consistency [13] Int, Ext, Prefix 8 8 X 8 X

SI Snapshot isolation [8] Int, Ext, Prefix, 8 8 8 8 X

NoConflict
SER Serialisability [20] Int, Ext, TotalVis 8 8 8 8 8

Figure 1 Consistency model definitions, anomalies and relationships.

∀(E, po) ∈ H.∀e ∈ E.∀x, n. (e = (_, read(x, n)) ∧ (po−1(e) ∩ HEventx 6= ∅))
=⇒ maxpo(po−1(e) ∩ HEventx) = (_,_(x, n)) (Int)

∀T ∈ H. ∀x, n. T ` Read x : n =⇒
((VIS−1(T) ∩ {S | S `Write x : _} = ∅ ∧ n = 0) ∨

maxAR(VIS−1(T) ∩ {S | S `Write x : _}) `Write x : n) (Ext)

VIS is transitive (TransVis) AR; VIS ⊆ VIS (Prefix) VIS is total (TotalVis)

∀T, S ∈ H. (T 6= S ∧ T `Write x : _ ∧ S `Write x : _) =⇒ (T VIS−−→ S ∨ S VIS−−→ T) (NoConflict)

Figure 2 Consistency axioms, constraining an execution (H,VIS,AR).

(a) Causality violation

T1 T2 T3VIS

AR

VIS

AR

AR

write(x, post) write(y, empty) read(x, post) write(y, comment) read(x, empty) read(y, comment)
po po po

(b) Fractured reads

write(,Bob)xAlice write(,Alice)xBob read(,Bob)xAlice read(, empty)xBob

T1 T2
po poVIS

(c) Lost update (d) Long fork

AR

VIS

VIS

acct := acct + 50

acct := acct + 25

T1

T2

T3read(acct, 0) write(acct, 50)

read(acct, 0) write(acct, 25)

read(acct, 25)

po

po

T1

T2

T3

T4

VIS

VIS

write(x, post1) read(x, post1) read(y, empty)
po

write(y, post2) read(x, empty) read(y, post2)
po

(e) Write skew. Initially acct1 = acct2 = 60.

if (acct1 + acct2 > 100)
acct1 := acct1 - 100

if (acct1 + acct2 > 100)
acct2 := acct2 - 100

T1

T2

read(acct1, 60) read(acct2, 60) write(acct1,−40)

read(acct1, 60) read(acct2, 60) write(acct2,−40)

po po

po po

Figure 3 Executions illustrating anomalies allowed by different consistency models. The boxes
group events into transactions. We sometimes omit irrelevant AR edges.

CONCUR’15

64 A Framework for Transactional Consistency Models with Atomic Visibility

balance going negative. NoConflict allows the transactions to be concurrent, because they
write to different objects.

Write skew and all the other anomalies mentioned above are disallowed by the classical
consistency model of serialisability. Informally, a history is serialisable if the results of
operations in it could be obtained by executing its (committed) transactions in some total
order according to the usual sequential semantics. We formalise this in our framework by
the axiom TotalVis, which requires the visibility relation VIS to be total. Since we always
have AR ⊇ VIS, it is easy to see that there is no execution with the history in Figure 3(e)
and a total VIS that would satisfy Ext.

Ramifications. The above specifications demonstrate the benefits of using our framework.
First, the specifications are declarative, since they state constraints on database processing
in terms of VIS and AR relations, rather than the database internals. The specifications thus
allow checking whether a consistency model admits a given history solely in terms of these
relations, as per (2).

The declarative nature of our specifications also provides a better understanding of
consistency models. In particular, it makes apparent the relationships between different
models and highlights the main mechanism of strengthening consistency—mandating that
more edges be included into visibility.

I Proposition 3. The strict inclusions between the consistency models in Figure 1 hold.

The strictness of the inclusions in Figure 1 follows from the examples of histories in Figure 3.
Axiomatic specifications also provide an effective tool for designing new consistency

models. For example, the existing consistency models do not include a counterpart of Read
Atomic obtained by adding the NoConflict axiom. Such an “Update Atomic” consistency
model would prevent lost update anomalies without having to enforce causal consistency
(as in parallel snapshot isolation), which incurs performance overheads [5]. Update Atomic
could be particularly useful when mixed with Read Atomic, so that the NoConflict axiom
apply only to some transactions specified by the programmer. This provides a lightweight
way of strengthening consistency where necessary.

Atomic visibility and observational refinement. Our specifications are particularly concise
because they are tailored to consistency models providing atomic visibility. With axioms Int
and Ext establishing this property, additional guarantees can be specified while abstracting
from the internal events in transactions: solely in terms of VIS and AR relations on whole
transactions and transaction attributes given by the `-judgements. To further illustrate the
benefits of this way of specification, we now exploit it to establish sufficient and necessary
conditions for when one transaction observationally refines another, i.e., we can replace
it in an execution without invalidating the consistency axioms. This notion is inspired
by that of testing preorders in process algebras [16]. We can think of it as characterising
the optimisations that the database can soundly perform inside the transaction due to its
atomic visibility. As it happens, the conditions we establish differ subtly depending on the
consistency model.

To formulate observational refinement, we introduce contexts X—abstract executions
with a hole [] that represents a transaction with an unspecified behaviour: X = (H ∪
{[]},VIS,AR), where VIS,AR ⊆ (H∪ {[]})× (H∪ {[]}) satisfy the conditions in Definition 2.
We can fill in the hole in the above context X by a transaction T , provided that the sets
of event identifiers appearing in T and H are disjoint. This yields the abstract execution

A. Cerone, G. Bernardi, and A. Gotsman 65

X [T] = (H ∪ {T},VIS[[] 7→ T],AR[[] 7→ T]), where VIS[[] 7→ T] treats T in the same way as
VIS treats [] and similarly for AR[[] 7→ T] (we omit the formal definition to conserve space).
We say that a transaction T1 observationally refines a transaction T2 on the consistency
model Φ, written T1 vΦ T2, if ∀X .X [T1] |= Φ =⇒ X [T2] |= Φ.

I Theorem 4. Let T1, T2 be such that ({T1, T2}, ∅, ∅) |= Int. We have T1 vRA T2 if and
only if for all x, n:(
¬(T1 ` Read x : n) =⇒ ¬(T2 ` Read x : n)

)
∧
(
T1 `Write x : n ⇐⇒ T2 `Write x : n

)
.

For Φ ∈ {CC,PC,SER} we have T1 vΦ T2 if and only if for all x, n,m, l:(
¬(T1 ` Read x : n) =⇒ (¬(T2 ` Read x : n) ∧ (T1 `Write x : n ⇐⇒ T2 `Write x : n))

)
∧(

(T1 ` Read x : n ∧ (T1 `Write x : m =⇒ m = n)) =⇒ (T2 `Write x : l =⇒ l = n)
)
.

For Φ ∈ {SI,PSI} we have T1 vΦ T2 if and only if T1 vCC T2 and for all x, n:

¬(T1 `Write x : n) =⇒ ¬(T2 `Write x : n).

We prove the theorem in [14, §A]. In the case of Φ = RA, we prohibit T2 from reading
more objects than T1 or changing the values read by T1; however, it is safe for T2 to read
less than T1. We also require T1 and T2 to have the same sets of final writes. The case of
Φ ∈ {CC,PC} introduces two exception to the latter requirement. One exception is when T1
reads an object and writes the same value to it. Then T2 may not change the value written,
but may omit the write. Another exception is when T1 reads an object, but does not write
to it. Then T2 can write the value read without invalidating the reads in the context. This is
disallowed when Φ ∈ {SI,PSI}.

4 Operational Specifications

To justify that our axiomatic specifications of weak consistency models indeed faithfully
describe the intended database behaviour, we now prove that they are equivalent to alternative
operational ones. These are given as algorithms that are close to actual implementations [6,
19, 13, 24], yet abstract from some of the more low-level features that such implementations
have. We start by giving an operational specification of the weakest consistency model we
consider, Read Atomic. We then specify other models weaker than serialisability by assuming
additional guarantees about the communication between replicas in this algorithm.

4.1 Operational Specification of Read Atomic

Informally, the idealised algorithm for Read Atomic operates as follows. The database consists
of a set of replicas, identified by RId = {r0, r1, . . .}, each maintaining a copy of all objects.
The set RId is infinite, to model dynamic replica creation. We assume that the system is
fully connected: each replica can broadcast messages to all others. All client operations
within a given transaction are initially executed at a single replica (though operations in
different transactions can be executed at different replicas). For simplicity, we assume that
every transaction eventually terminates. When this happens, the replica decides whether
to commit or abort it. In the former case, the replica sends a message to all other replicas
containing the transaction log, which describes the updates done by the transaction. The
replicas incorporate the updates into their state upon receiving the message. A transaction
log has the form t : ρ, where ρ ∈ {write(x, n) | x ∈ Obj, n ∈ N}∗ , UpdateList. This gives

CONCUR’15

66 A Framework for Transactional Consistency Models with Atomic Visibility

the sequence of values written to objects and the unique timestamp t ∈ N of the transaction,
which is used to determine the precedence of different object versions (and thus implements
the AR relation in abstract executions). We denote the set of all sets of logs with distinct
timestamps by LogSet.

Every replica processes transactions locally without interleaving. This idealisation does
not limit generality, since all anomalies that would result from concurrent execution of
transactions at a single replica arise anyway because of the asynchronous propagation of
updates between replicas. The above assumption allows us to maintain the state of a replica
r in the algorithm by a pair (D, l) ∈ RState , LogSet× (UpdateList] {idle}), where:

l is either the sequence of updates done so far by the (single) transaction currently
executing at r, or idle, signifying that no transaction is currently executing; and
D is the database copy of r, represented by the set of logs of transactions that have
committed at r or have been received from other replicas.

Then a configuration of the whole system (R,M) ∈ Config , (RId → RState) × LogSet is
described by the state R(r) of every replica r and the pool of messages M in transit among
replicas.

Formally, our algorithm is defined using the transition relation _: Config×LEvent×Config
in Figure 4, which describes how system configurations change in response to low-level events
from a set LEvent, describing actions by clients and message receipts by replicas. The set
LEvent consists of triples of the form (ι, r,o), where ι ∈ EventId is the event identifier, r ∈ RId
is the replica the event occurs at, and o is a low-level operation from the set

COp = {start, read(x, n), write(x, n), commit(t), abort, receive(t : ρ) |
x ∈ Obj, n ∈ Z, t ∈ N, ρ ∈ UpdateList}.

We use e, f ,g to range over low-level events.
According to _, when a client starts a transaction at a replica r (Start), the database

initialises the current sequence of updates to signify that a transaction is in progress. Since
a replica processes transactions serially, a transaction can start only if r is not already
executing a transaction. When a client writes n to an object x at a replica r (Write), the
corresponding record write(x, n) is appended to the current sequence of updates. This rule
can be applied only when r is not executing a transaction. A read of an object x at r (Read)
returns the value determined by a lastval function based on the transactions in r’s database
copy and the current transaction. For D′ ∈ LogSet we define lastval(x,D′) as the last value
written to x by the transaction with the highest timestamp among those in D′, or 0 if x is
not mentioned in D′. Since the timestamps of transactions in D′ are distinct, this defines
lastval(x,D′) uniquely. For brevity, we omit its formal definition. Note that (Read) implies
that a transaction always reads from its own writes and a snapshot of the database the
replica had at its start; the transaction is not affected by writes concurrently executing at
other replicas, thus ensuring the absence of unrepeatable reads (§3).

If a transaction aborts at a replica r (Abort), the current sequence of updates of r is
cleared. If the transaction commits (Commit), it gets assigned a timestamp t, and its log is
added to the message pool, as well as to r’s database copy. The timestamp t is chosen to
be greater than the timestamps of all the transactions in r’s database copy, which validates
the condition AR ⊇ VIS in Definition 2. The timestamp t also has to be distinct from any
timestamp assigned previously in the execution. The fact that (Commit) sends all updates
by a transaction in a single message ensures atomic visibility. Note that, in Read Atomic, a
transaction can always commit; as we explain in the following, this is not the case for some

A. Cerone, G. Bernardi, and A. Gotsman 67

(Start)
e = (_, r, start)

(R[r 7→ (D, idle)],M)
e
_ (R[r 7→ (D, ε)],M)

(Write)
e = (_, r, write(x, n))

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ · write(x, n))],M)

(Read)
e = (_, r, read(x, n)) n = lastval(x,D ∪ {∞ : ρ})

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, ρ)],M)

(Abort)
e = (_, r, abort)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D, idle)],M)

(Commit)

e = (_, r, commit(t))
(∀r′, D′. R(r′) = (D′,_) =⇒ (t : _) /∈ D′) (∀t′. (t′ : _) ∈ D =⇒ t > t′)

(R[r 7→ (D, ρ)],M)
e
_ (R[r 7→ (D ∪ {t : ρ}, idle)],M ∪ {t : ρ})

(Receive)
e = (_, r, receive(t : ρ))

(R[r 7→ (D, idle)],M ∪ {(t : ρ)})
e
_ (R[r 7→ (D ∪ {(t : ρ)}, idle)],M ∪ {t : ρ})

Figure 4 Transition relation _: Config×LEvent×Config for defining the operational specification.
We let R[r 7→ u] be the function that has the same value as R everywhere except r, where it has the
value u; · denotes sequence concatenation, and ε the empty sequence.

(
e1 ∈ {(_, r, receive(t1 : _)), (_, r, commit(t1))} ∧ e2 = (_, r, commit(t2)) ∧ e1 ≺ e2 ∧ r 6= r′ ∧

f2 = (_, r′, receive(t2 : _))
)

=⇒
(
∃f1 ∈ {(_, r′, receive(t1 : _)), (_, r′, commit(t1))}. f1 ≺ f2

)
(CausalDeliv)(

e1 = (_,_, commit(t1)) ∧ e2 = (_,_, commit(t2)) ∧ e1 ≺ e2
)

=⇒ t1 < t2 (MonTS)(
g = (_, r, start) ∧ e2 ∈ {(_, r, commit(t2)), (_, r, receive(t2 : _))} ∧ f = (_,_, commit(t1))

∧ t1 < t2 ∧ e2 ≺ g
)

=⇒
(
∃e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))}. e1 ≺ g

)
(TotalDeliv)(

e1 = (_, r, write(x,_)) ∧ f1 = (_, r, commit(t1)) ∧ TSC(e1) = t1 ∧

e2 = (_, r′, write(x,_)) ∧ f2 = (_, r′, commit(t2)) ∧ TSC(e2) = t2 ∧ f2 ≺ f1 ∧ r 6= r′
)

=⇒
(
∃g ∈ E.g = (_, r, receive(t2 : _)) ∧ g ≺ f1

)
, (ConflictCheck)

where for e ∈ E we let

TSC(e) =


t, if ∃r. e ∈ {(_, r, read(_,_)), (_, r, write(_,_))} ∧

∃g ∈ E.g = (_, r, commit(t)) ∧
¬(∃f ∈ {(_, r, commit(_)), (_, r, abort)}. (e ≺ f ≺ g))

undefined, otherwise

Φ Constraints Φ Constraints Φ Constraints

RA None PSI (CausalDeliv), (ConflictCheck)
SI

(MonTS), (TotalDeliv),
CC (CausalDeliv) PC (MonTS), (TotalDeliv) (ConflictCheck)

Figure 5 Constraints on concrete executions C = (E,≺) required by various consistency models.
Free variables are universally quantified and range over the following domains: ei, f , fi,g ∈ E for
i = 1, 2; t1, t2 ∈ N; r, r′ ∈ RId.

CONCUR’15

68 A Framework for Transactional Consistency Models with Atomic Visibility

of the other consistency models. Finally, a replica r that is not executing a transaction can
receive a transaction log from the message pool (Receive), adding it to the database copy.

We define the semantics of Read Atomic by considering all sequences of transitions
generated by _ from an initial configuration where the log sets of all replicas and the
message pool are empty. We thereby consider all possible operations that clients could issue
to the database.

I Definition 5. Let (R0,M0) = (λr. (∅, idle), ∅). A concrete execution is a pair C = (E,≺),
where: E ⊆ LEvent; ≺ is a prefix-finite, total order on E; and if e1, e2, e3, . . . is the enumera-
tion of the events in E defined by ≺, then for some configurations (R1,M1), (R2,M2), . . . ∈
Config we have (R0,M0) e1_ (R1,M1) e2_ (R2,M2) e3_ . . .

4.2 Correspondence to Axiomatic Specifications and Other Models

We next show that the above operational specification indeed defines the semantics of Read
Atomic, and that stronger models can be defined by assuming additional guarantees about
communication between replicas. These guarantees are formalised by the constraints on
concrete executions in Figure 5; in implementations they would be ensured by distributed
protocols that our specifications abstract from.

We first map each concrete execution into a history, which includes only reads and writes
in its committed transactions. The history of C = (E,≺) is defined as follows:

history(C) =
{
Tt | {e ∈ E | TSC(e) = t} 6= ∅

}
, where Tt = (Et, pot) for

Et = {(ι,o) | ∃e ∈ E. e = (ι,_,o) ∧ TSC(e) = t};
pot = {(ι1,o1), (ι2,o2) | (ι1,o1), (ι2,o2) ∈ Et ∧ (ι1,_,o1) ≺ (ι2,_,o2)},

where TSC is defined in Figure 5. We lift the function history to sets of concrete executions
as expected.

I Theorem 6. For a consistency model Φ let ConcExecΦ be the set of concrete executions
satisfying the model-specific constraints in Figure 5. Then history(ConcExecΦ) = HistΦ.

Proof outline. We defer the full proof to [14, §B]. Here we sketch the argument for one
set inclusion (⊆) and, on the way, explain the constraints in Figure 5. Fix a Φ and let
C = (E,≺) ∈ ConcExecΦ. To show history(C) ∈ HistΦ we let A = (history(C),VIS,AR), where
AR = {(Tt1 , Tt2) | t1 < t2} and

VIS =
{

(Tt1 , Tt2) | ∃e1, e2 ∈ E.∃r. e1 ∈ {(_, r, commit(t1)), (_, r, receive(t1 : _))} ∧
e2 = (_, r, commit(t2)) ∧ e1 ≺ e2

}
.

While AR merely lifts the order on timestamps to transactions, VIS reflects message delivery:
Tt1

VIS−−→ Tt2 if the effects of Tt1 have been incorporated into the state of the replica where
Tt2 is executed. We can show that any abstraction execution A constructed from a concrete
execution C as above satisfies Int and Ext, and hence, its history belongs to HistRA. The
constraints on a concrete execution C in Figure 5 ensure that the abstract execution A
constructed from it satisfies other axioms in Figure 2.

Constraint (CausalDeliv) implies the axiom TransVis, because it ensures that the
message delivery is causal [9]: if a replica r sends the log of a transaction t2 (event e2) after
it sends or receives the log of t1 (event e1), then every other replica r′ will receive the log of
t2 (event f2) only after it receives or sends the log of t1 (event f1).

A. Cerone, G. Bernardi, and A. Gotsman 69

The axiom Prefix follows from constraints (MonTS) and (TotalDeliv). The constraint
(MonTS) requires that timestamps agree with the order in which transactions commit. The
constraint (TotalDeliv) requires that each transaction access a database snapshot that is
closed under adding transactions with timestamps (t1) smaller than the ones already present
in the snapshot (t2). In an implementation, the above constraints can be satisfied if replicas
communicate via a central server, which assigns timestamps to transactions when they
commit, and propagates their logs to replicas in the order of their timestamps [13].

The axiom NoConflict follows from the constraint (ConflictCheck), similar to that in
the original definitions of SI [8] and PSI [24]. The constraint allows a transaction t1 to
commit at a replica r (event f1) only if it passes a conflict detection check: if t1 updates
an object x (event e1) that is also updated by a transaction t2 (event e2) committed at
another replica r′ (event f2), then the replica r must have received the log of t2 (event g).
If this check fails, the only option left for the database is to abort t using the rule (Abort).
Implementing the check in a realistic system would require the replica r to coordinate with
others on commit [24]. J

The above operational specifications are closer to the intuition of practitioners [6, 19, 13,
24] and thus serve to validate our axiomatic specifications. However, they are more verbose
and reasoning about database behaviour using them may get unwieldy. It requires us to
keep track of low-level information about the system state, such as the logs at all replicas
and the set of messages in transit. We then need to reason about how the system state is
affected by a large number of possible interleavings of operations at different replicas. In
contrast, our axiomatic specifications (§3) are more declarative and, in particular, do not
refer to implementation-level details, such as message exchanges between replicas. These
specifications thereby facilitate reasoning about the database behaviour.

5 Related Work

Our specification framework builds on the axiomatic approach to specifying consistency
models, previously applied to weak shared-memory models [3] and eventual consistency [11,
12]. In particular, the visibility and arbitration relations were first introduced for specifying
eventual consistency and causally consistent transactions [12]. In comparison to prior work,
we handle more sophisticated transactional consistency models. Furthermore, our framework
is specifically tailored to transactional models with atomic visibility, by defining visibility
and arbitration relations on whole transactions as opposed to events. This avoids the need
to enforce atomic visibility explicitly in all axioms [12], thus simplifying specifications.

Adya [2] has previously proposed specifications for weak consistency models of transactions
in classical databases. His framework also broadly follows the axiomatic specification approach,
but uses relations different from visibility and arbitration. Adya’s work did not address the
variety of consistency models for large-scale databases proposed recently, while our framework
is particularly appropriate for these. On the other hand, Adya handled transactional
consistency models that do not guarantee atomic visibility, such as Read Committed, which
we do not address. Adya also specified snapshot isolation (SI), which is a weak consistency
model older than the others we consider. However, his specification is low-level, since it
introduces additional events to denote the times at which a transaction takes a snapshot of
the database state. Saeida Ardekani et al. [22] have since proposed a higher-level specification
for snapshot isolation; this specification still uses relations on individual events and thus
does not exploit atomic visibility.

CONCUR’15

70 A Framework for Transactional Consistency Models with Atomic Visibility

Partial orders have been used to define semantics of concurrent and distributed programs,
e.g., by event structures [26]. Our results extend this research line by considering new kinds of
relations among events, appropriate to describe computations of weakly consistent databases,
and by relating the resulting abstract specifications to lower-level algorithms.

Prior work has investigated calculi with transactions communicating via message passing:
cJoin [10], TCCSm [17] and RCCS [15]. Even though replicated database implementations
and our operational specifications are also based on message passing, the database interface
that we consider allows client programs only to read and write objects. Thereby, it provides
the programs with an (imperfect) illusion of shared memory, and our goal was to provide
specifications for this interface that abstract from its message passing-based implementation.

6 Conclusion

We have proposed a framework for uniformly specifying transactional consistency models of
modern replicated databases. The axiomatic nature of our framework makes specifications
declarative and concise, with further simplicity brought by exploiting atomic visibility. We
have illustrated the use of the framework by specifying several existing consistency models
and thereby systematising the knowledge about them. We have also validated our axiomatic
specifications by proving their equivalence to operational specifications that are closer to
implementations.

We hope that our work will promote an exchange of ideas between the research communit-
ies of large-scale databases and concurrency theory. In particular, our framework provides
a basis to develop techniques for reasoning about the correctness of application programs
using modern databases; this is the subject of our ongoing work.

Finally, axiomatic specifications are well-suited for systematically exploring the design
space of consistency models. In particular, insights provided by the specifications may suggest
new models, as we illustrated by the Update Atomic model in §3. This is likely to help in the
design of the sophisticated programming interfaces that replicated databases are starting to
provide to compensate for the weakness of their consistency models. For example, so-called
replicated data types [23] avoid lost updates by eventually merging concurrent updates
without coordination between replicas, and sessions [25] provide additional consistency
guarantees for transactions issued by the same client. Finally, there are also interfaces that
allow the programmer to request different consistency models for different transactions [18],
analogous to fences in weak memory models [3]. In the future we plan to generalise our
techniques to handle the above features. We expect to handle replicated data types by
integrating our framework with their specifications proposed in [11], and to handle sessions
and mixed consistency models by studying additional constraints on the visibility and
arbitration relations. We believe that the complexity of database consistency models and
the above programming interfaces makes it indispensable to specify them formally and
declaratively. Our work provides the necessary foundation for achieving this.

Acknowledgements. We thank Artem Khyzha, Vasileios Koutavas, Hongseok Yang and the
anonymous reviewers for comments that helped improve the paper. This work was supported
by the EU FET project ADVENT.

References

1 Daniel Abadi. Consistency tradeoffs in modern distributed database system design: CAP
is only part of the story. IEEE Computer, 45(2), 2012.

A. Cerone, G. Bernardi, and A. Gotsman 71

2 Atul Adya. Weak consistency: A generalized theory and optimistic implementations for
distributed transactions. PhD thesis, MIT, 1999.

3 Jade Alglave. A formal hierarchy of weak memory models. FMSD, 41(2), 2012.
4 Peter Bailis, Aaron Davidson, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion

Stoica. Highly Available Transactions: virtues and limitations. In VLDB, 2014.
5 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. The potential

dangers of causal consistency and an explicit solution. In SOCC, 2012.
6 Peter Bailis, Alan Fekete, Ali Ghodsi, Joseph M. Hellerstein, and Ion Stoica. Scalable

atomic visibility with RAMP transactions. In SIGMOD, 2014.
7 Mark Batty, Mike Dodds, and Alexey Gotsman. Library abstraction for C/C++ concur-

rency. In POPL, 2013.
8 Hal Berenson, Phil Bernstein, Jim Gray, Jim Melton, Elizabeth O’Neil, and Patrick O’Neil.

A critique of ANSI SQL isolation levels. In SIGMOD, 1995.
9 Kenneth P. Birman and Thomas A. Joseph. Reliable communication in the presence of

failures. ACM Trans. Comput. Syst., 5(1), 1987.
10 Roberto Bruni, Hernán C. Melgratti, and Ugo Montanari. cJoin: Join with communicating

transactions. Mathematical Structures in Computer Science, 25(3), 2015.
11 Sebastian Burckhardt, Alexey Gotsman, Hongseok Yang, and Marek Zawirski. Replicated

data types: specification, verification, optimality. In POPL, 2014.
12 Sebastian Burckhardt, Daan Leijen, Manuel Fähndrich, and Mooly Sagiv. Eventually con-

sistent transactions. In ESOP, 2012.
13 Sebastian Burckhardt, Daan Leijen, Jonathan Protzenko, and Manuel Fähndrich. Global

sequence protocol: A robust abstraction for replicated shared state. In ECOOP, 2015.
14 Andrea Cerone, Giovanni Bernardi, and Alexey Gotsman. A framework for transac-

tional consistency models with atomic visibility (extended version). Available from http:
//software.imdea.org/~gotsman/.

15 Vincent Danos and Jean Krivine. Transactions in RCCS. In CONCUR, 2005.
16 Rocco De Nicola and Matthew Hennessy. Testing equivalence for processes. In ICALP,

1983.
17 Vasileios Koutavas, Carlo Spaccasassi, and Matthew Hennessy. Bisimulations for commu-

nicating transactions (extended abstract). In FOSSACS, 2014.
18 Cheng Li, Daniel Porto, Allen Clement, Rodrigo Rodrigues, Nuno Preguiça, and Johannes

Gehrke. Making geo-replicated systems fast if possible, consistent when necessary. In OSDI,
2012.

19 Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen. Don’t
settle for eventual: scalable causal consistency for wide-area storage with COPS. In SOSP,
2011.

20 Christos H. Papadimitriou. The serializability of concurrent database updates. J. ACM,
26(4), 1979.

21 M. Saeida Ardekani, P. Sutra, and M. Shapiro. Non-monotonic snapshot isolation: Scalable
and strong consistency for geo-replicated transactional systems. In SRDS, 2013.

22 M. Saeida Ardekani, P. Sutra, M. Shapiro, and N. Preguiça. On the scalability of snapshot
isolation. In Euro-Par, 2013.

23 Marc Shapiro, Nuno M. Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-free
replicated data types. In SSS, 2011.

24 Y. Sovran, R. Power, M. K. Aguilera, and J. Li. Transactional storage for geo-replicated
systems. In SOSP, 2011.

25 Douglas B. Terry, Alan J. Demers, Karin Petersen, Mike Spreitzer, Marvin Theimer, and
Brent W. Welch. Session guarantees for weakly consistent replicated data. In PDIS, 1994.

26 Glynn Winskel. Event structure semantics for CCS and related languages. In ICALP, 1982.

CONCUR’15

http://software.imdea.org/~gotsman/
http://software.imdea.org/~gotsman/

	Introduction
	Abstract Executions
	Specifying Transactional Consistency Models
	Operational Specifications
	Operational Specification of Read Atomic
	Correspondence to Axiomatic Specifications and Other Models

	Related Work
	Conclusion

