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Abstract
Inspired by the study of control scenarios in elections and complementing manipulation and
bribery settings in cooperative games with transferable utility, we introduce the notion of struc-
tural control in weighted voting games. We model two types of influence, adding players to and
deleting players from a game, with goals such as increasing a given player’s Shapley–Shubik or
probabilistic Penrose–Banzhaf index in relation to the original game. We study the computa-
tional complexity of the problems of whether such structural changes can achieve the desired
effect.
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1 Introduction

A major task in computational social choice [42, 12, 13] is the complexity analysis of the
question of whether a certain form of influence is possible in an election under some voting rule
(see, e.g., [42, 13]). Bartholdi et al. [5] introduced and analyzed the notion of manipulation
in elections, where one or more voters strategically change their true preference in order
to make a distinguished candidate a winner. In a bribery scenario, on the other hand, an
external agent tries to pay voters for them to change their votes such that a certain candidate
becomes a winner, and the question is whether the briber can be successful within a given
budget. This idea has been introduced and analyzed by Faliszewski et al. [24, 25]. In a
third model, control, the chair of an election changes the structure of an election by adding,
deleting, or partioning either voters or candidates, with the aim of making a distinguished
candidate a winner [6]. In addition to these constructive types of control, destructive control
– the problem of whether a given candidate can be prevented from being a winner – has also
been introduced and studied by Hemaspaandra et al. [32]. Manipulation, bribery, and control
have been studied for many voting systems, and we refer the reader to the book chapters
by Baumeister and Rothe [10], Conitzer and Walsh [15], and Faliszewski and Rothe [27] for
an overview of numerous related results. In a nutshell, whenever successful manipulative
actions are possible, a high computational complexity may provide some protection against
them, or at least against detecting whether such actions are possible or not for an election.
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† This work was supported in part by DFG grant RO-1202/14-2.

© Anja Rey and Jörg Rothe;
licensed under Creative Commons License CC-BY

41st International Symposium on Mathematical Foundations of Computer Science (MFCS 2016).
Editors: Piotr Faliszewski, Anca Muscholl, and Rolf Niedermeier; Article No. 80; pp. 80:1–80:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.MFCS.2016.80
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


80:2 Structural Control in Weighted Voting Games

Similar ideas have been adapted to other fields, such as manipulation in preference
aggregation [21] and manipulation, bribery, and control in judgement aggregation [23, 8, 7]
(see the book chapters by Endriss [22] and Baumeister et al. [9] for an overview). In
algorithmic game theory, the question of influencing the outcome of a game has also been
studied extensively. In particular, for weighted voting games, manipulation by merging a
coalition of players to a single player, or by splitting a player into several players in order to
increase a player’s power, have been introduced by Elkind et al. [2]. Here, “power” refers to
the notion of power indices, such as the Penrose–Banzhaf [37, 4, 17] and the Shapley–Shubik
index [43], measuring the significance of a player in a game (formal definitions will be given
in Section 2). The complexity of beneficial merging, splitting, and annexation1, e.g., for
the Shapley–Shubik index, have been studied by Aziz et al. [1] who show NP-hardness.
Faliszewski and Hemaspaandra [26] show that the beneficial merging problem is in PP.
Rey and Rothe [40] prove PP-hardness for beneficial merging and splitting. Other forms
of manipulation have been studied in weighted voting games. For example, Zuckerman et
al. [48] study manipulation of the quota. From an algorithmic point of view, this is different
from our model: In their model, the number of players and thus the denominator in a power
index (see Equations (1) and (2) in Section 2) remains the same but the same coalitions can
have different success due to different quotas, whereas with structural control the number of
players varies but all coalitions that remain in the game are equally successful before and
after the change. Relatedly, Zick et al. [46, 47] study algorithmic properties of the quota.
In dynamic weighted voting games, as presented by Elkind et al. [18], the quota is changed
as well, but dynamically over time. The notion of bribery has been adapted from voting
theory to a model in cooperative game theory, so-called path-disruption games [3], where an
external player tries to bribe a coalition of players so as to reach a target node in a graph [41].
Another perspective of persuasion for weighted voting games has been studied by Freixas
and Pons [30].

Inspired by the notion of control in elections, we consider control scenarios in weighted
voting games. We define the problems of whether it is possible to change the structure of a
game by either adding or deleting players in order to achieve certain goals. One could, for
instance, think of a committee that needs a certain quota of votes so as to decide upon an
issue. In order to increase the significance of some participant, an organizer might invite
further participants or might choose a certain meeting schedule to make sure that originally
existing participants are excluded. These structural changes could also be viewed as a change
of the players’ participation over time without malicious intentions. Goals include increasing
and decreasing the power of a distinguished player, in relation to the player’s power in the
original game. Increasing and decreasing power in a game by adding or deleting players
can be seen as analogues of, respectively, constructive and destructive control in elections
by adding or deleting either candidates or voters. Moreover, if an exact number of players
is to be added, it might be desirable to maintain an original player’s power index (or to
keep it upper-bounded or lower-bounded by the original value – we will say the index is
nonincreasing or nondecreasing).

Note that power indices in weighted voting games can be used to model decision processes
in legislative bodies such as the EU Commission, national parliaments, or the United Nations
Security Council. For a real-world example, suppose there is a discussion on whether a new
member will join the EU, or an old member will leave the EU. What impact does this change

1 While merging is an action of a manipulative coalition, annexation describes one manipulative player
who takes over other players. This goes back to the bloc paradox [28].
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Table 1 Overview of complexity results of control problems in weighted voting games with respect
to the Shapley–Shubik and the probabilistic Penrose–Banzhaf index. Key: k is the number of players
to be added or deleted, respectively; PI stands for power index (either SS or PB); SS (respectively,
PB) indicates that these results are only known to hold for the Shapley–Shubik index (respectively,
for the probabilistic Penrose–Banzhaf index); the other results each hold for both indices.

Control type
Goal Adding players Deleting players

k fixed k given k = 1

Increase PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) NP-hard (SS)
(Thm. 10)

Nondecrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) ?

Decrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) coNP-hard (PB)
(Thm. 11)

Nonincrease PI PP-complete
(Thm. 9)

PP-hard (Thm. 8) coNP-hard (PB)
(Thm. 13)

Maintain PI coNP-hard,
inPP (Thm. 12)

PP-hard (Thm. 8) coNP-hard (Thm. 13)

have on the power of the existing, or remaining, EU members? Will they benefit from adding
or deleting other members? Or, when it has been decided already that some new members
will join the EU, an old member may be interested in maintaining the same power as before
the new members have joined the game. We will show that all control types to be defined
are possible in weighted voting games, and we will therefore analyze the computational
complexity of whether control by structural changes can be exerted successfully in a given
game. The complexity depends on the control type, the goal, and on whether the number of
players that can be added or deleted is fixed or is given in the problem instance. Table 1
gives an overview.

2 Preliminaries

A cooperative game with transferable utility G = (N, v) consists of a set of players N and a
coalitional function v : 2N → R assigning a value to each subset of players, called a coalition.
G is called simple if v it is monotonic (i.e., v(C) ≤ v(D) whenever C ⊆ D ⊆ N) and if a
coalition C is either winning (v(C) = 1) or losing (v(C) = 0).

Power indices are a common concept to measure a player’s significance in a simple
game G = (N, v). Two popular indices are the Penrose–Banzhaf index [37, 4] and the
Shapley–Shubik index [43]. Let n be the number of players in G and i ∈ N . Define i’s raw
Penrose–Banzhaf power index in G by PenroseBanzhaf∗(G, i) =

∑
C⊆Nr{i}(v(C∪{i})−v(C))

and i’s probabilistic Penrose–Banzhaf power index in G (proposed by Dubey and Shapley [17])
by

PenroseBanzhaf(G, i) = PenroseBanzhaf∗(G, i)
2n−1 . (1)

We say that i is critical for a coalition C if the marginal contribution v(C ∪ {i}) − v(C)
of player i to coalition C in the definition above is 1, i.e., if C is losing but, after i has
joined, C ∪ {i} is winning. On the other hand, v(C ∪ {i})− v(C) = 0 means that i is not
critical for C. Player i’s raw Shapley–Shubik power index in G is ShapleyShubik∗(G, i) =

MFCS 2016
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∑
C⊆Nr{i} ‖C‖!(n− 1− ‖C‖)!(v(C ∪ {i})− v(C)), which is then normalized by

ShapleyShubik(G, i) = ShapleyShubik∗(G, i)
n! (2)

to obtain i’s Shapley–Shubik power index in G.
Some simple games G = (N, v) can be compactly represented as weighted voting games

(w1, . . . , wn; q), where wi, 1 ≤ i ≤ n, is player i’s weight and q is a quota, and a coalition
C ⊆ N wins if

∑
i∈C wi ≥ q and otherwise it loses. Note that this representation is not fully

expressive, i.e., there are simple games that cannot be represented by weighted voting games.
For further background on cooperative game theory, see, e.g., the textbooks by Shoam and
Leyton-Brown [44] and Peleg and Sudhölter [36] and, for computational aspects, the book
by Chalkiadakis et al. [14] and the book chapters by Elkind et al. [19, 20].

For some background on computational complexity, see, e.g. the textbook by Papadi-
mitriou [35]. We use the standard notions of hardness and completeness for a complexity class
with respect to many-one polynomial-time reducibility. NP is the class of decision problems
that can be solved in nondeterministic polynomial time, and coNP is the class of problems
whose complements are in NP. Partition is the following well-known NP-complete problem:

Partition

Given: A set A = {1, . . . , n} and a function a : A→ N r {0}, i 7→ ai, such that
∑n

i=1 ai is
even.

Question: Does there exist a partition into two subsets of equal weight, that is, does there
exist a subset A′ ⊆ A such that

∑
i∈A′ ai =

∑
i∈ArA′ ai?

SubsetSum is also a well-known NP-complete problem:

SubsetSum

Given: A set A = {1, . . . , n}, a function a : A→ N r {0}, i 7→ ai, and a positive integer q.
Question: Is there a subset A′ ⊆ A such that

∑
i∈A′ ai = q?

Let (a1, . . . , an; q) and (a1, . . . , an) denote SubsetSum and Partition instances, re-
spectively. A third well-known NP-complete problem that we will need is

Exact Cover By 3-Sets (X3C)

Given: A set B = {1, . . . , 3k}, k > 0, and a collection S = {S1, . . . , Sn} of subsets Si ⊆ B

with ‖Si‖ = 3 for 1 ≤ i ≤ n.
Question: Is there an exact cover of B in S, that is, is there a subcollection S′ ⊆ S such that⋃

S∈S′ S = B and Si ∩ Sj = ∅, for each Si, Sj ∈ S′, i 6= j?

We furthermore consider the function class #P, the class of functions that give the
number of solutions of NP problems. A function is #P-many-one-hard if there exists a
polynomial-time reduction from each function in #P; it is #P-parsimonious-hard if there
exists such a reduction from each function in #P that preserves the number of solutions. If
a #P function is #P-many-one-hard (#P-parsimonious-hard) it is said to be #P-many-one-
complete (#P-parsimonious-complete). For instance, #SubsetSum and #X3C are known
to be #P-parsimonious-complete functions. #P is closed under addition, i.e., if f, g ∈ #P
then f + g ∈ #P. From the literature [38, 16, 26] we obtain the following lemma.
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I Lemma 1 ([38, 16, 26]). Computing the raw Penrose–Banzhaf index is #P-parsimonious-
complete. Computing the raw Shapley–Shubik index is #P-many-one-complete.

The complexity class PP (probabilistic polynomial time) was introduced by Gill [31] via
probabilistic Turing machines; equivalently, it can be defined as the class of all decision
problems X for which there exist a function f ∈ #P and a polynomial p such that for all
instances x: x ∈ X ⇐⇒ f(x) ≥ 2p(|x|)−1. PP is considered to be a rather large complexity
class, since it contains both NP and coNP (and even PNP

‖ as shown by Beigel et al. [11])
and since it is known to be at least as hard (in terms of polynomial-time Turing reductions)
as the polynomial hierarchy (i.e., PH ⊆ PPP) by Toda’s theorem [45]. PP is closed under
complement (which is easy to see) and, far from being trivial, it is also closed under union and
intersection [29]. We make use of the following lemma by Faliszewski and Hemaspaandra [26,
Lemma 2.3] in the context of comparing a player’s power in weighted voting games with
respect to the probabilistic Penrose–Banzhaf and the Shapley–Shubik index.

I Lemma 2 ([26]). Let F be a #P-parsimonious-complete function. Then, the problem
Compare-F = {(x, y) | F (x) > F (y)} is PP-complete.

Since #X3C and #SubsetSum are #P-parsimonious-complete, Compare-#SubsetSum
and Compare-#X3C are PP-complete. Moreover, we will use the following lemma due to
Faliszewski and Hemaspaandra [26] that has been slightly adapted by Rey and Rothe [40].

I Lemma 3. Every X3C instance (B′, S′) can be transformed into an X3C instance (B, S)
where ‖B‖ = 3k and ‖S‖ = n, such that k/n = 2/3 without changing the number of solutions
(i.e., #X3C(B, S) = #X3C(B′, S′)). Consequently, we can assume that the size of each
solution in a SubsetSum instance is 2n/3, that is, each subsequence summing up to the given
quota contains the same number of elements.

We consider a restricted variant of the Compare-#SubsetSum problem, namely Com-
pare-#SubsetSum-RR as defined in [40]: Given a set A = {1, . . . , n} and a function
a : A→ Nr {0}, i 7→ ai, is the number of subsets of A with values summing up to (α/2)− 2,
where α =

∑n
i=1 ai, greater than the number of subsets of A with values summing up to

(α/2)− 1, i.e., is it true that

#SubsetSum((a1, . . . , an; (α/2)− 2)) > #SubsetSum((a1, . . . , an; (α/2)− 1))? (3)

Let (a1, . . . , an) denote an instance of Compare-#SubsetSum-RR. From [40, Lemma 4.5]
we obtain the following lemma.

I Lemma 4 ([40]). Compare-#SubsetSum-RR is PP-hard.

Likewise, the analogous problem of whether < holds in (3), denoted by Compare-
#SubsetSum- RR, is PP-hard [40]. The following lemma differentiates between players that
are not part of a weighted voting game and those who are but do not have any weight.

I Lemma 5. For both the probabilistic Penrose–Banzhaf index and the Shapley–Shubik index,
given a weighted voting game, adding a player with weight zero does not change the original
players’ power indices, and the new player’s power index is zero.

3 Control Types and Goals

We define control by adding and by deleting players in weighted voting games. For each
control type, we consider goals, such as increasing or decreasing a distinguished player’s

MFCS 2016
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power, in relation to the original game. We first define how adding and deleting a player
affects the coalitional function for weighted voting games: For control by adding players,
from a given weighted voting game G = (w1, . . . , wn; q) with N = {1, . . . , n} and a set
M = {n+ 1, . . . , n+m} of m unregistered players with weights wn+1, . . . , wn+m, we obtain
a new game G∪M = (w1, . . . , wn+m; q).

For example, we consider the following decision problem for a power index PI:

Control by Adding Players to Increase PI

Given: A weighted voting game G with players N = {1, . . . , n}, a set M of unregistered
players with weights wn+1, . . . , wn+m, a distinguished player p ∈ N , and a positive
integer k.

Question: Can at most k players M ′ ⊆M be added to G such that for the new game G∪M′ it
holds that PI(G∪M′ , p) > PI(G, p)?

Analogously, we can ask whether the game can be controlled so as to gain the opposite
effect, and decrease a certain player’s index. In these cases, hardness in terms of complexity
can be seen as a shield to prevent a game from being controlled to improve a player’s
significance or to worsen a player’s significance. On the other hand, we also consider the
following control question: Is it possible to add players to a game without changing the
distribution of power among the original players?

We can ask analogous questions with the same aims for removing players from the game.
Deleting a subset M ⊆ N of m players from a weighted voting game G = (w1, . . . , wn; q)
yields a weighted voting game GrM = (wj1 , . . . , wjn−m ; q) with {j1, . . . , jn−m} = N rM .2

For instance, we define the following decision problem for a power index PI:

Control by Deleting Players to Increase PI

Given: A weighted voting game G with players N = {1, . . . , n}, a distinguished player
p ∈ N , and a positive integer k < ‖N‖.

Question: Can at most k players M ′ ⊆ N r {p} be deleted from G such that in the new game
GrM′ it holds that PI(GrM′ , p) > PI(G, p)?

Again, we can analogously define the variations of this problem where the goal is not to
increase some player’s power index but to decrease or to maintain it.

I Example 6. Let G = (N, v) be a weighted voting game with six players in N =
{1, 2, 3, 4, 5, 6} represented by (1, 2, 2, 3, 4, 5; 10). Let k = 1, that is, one player can be
removed from the game. Table 2 lists the players’ probabilistic Penrose–Banzhaf and Shapley–
Shubik power indices for the resulting games. Note that fractions are sometimes expanded
or reduced to a comparable denominator.

Consider the Penrose–Banzhaf index. Player 1, 4, 5 and 6 with indices of 1/8, 5/16, 3/8,
and 9/16, respectively, cannot improve from any other player being deleted. However, e.g.,
player 1’s index can be decreased to 1/16 when removing player 5 and is maintained in the
other cases. Players 2 and 3 can benefit from the other one being removed, as the index
increases from 3/16 to 1/4.

2 One might also think of different ways to reasonably model the new game, and we will eloborate on
that in Section 6. Here, we focus on the notion just presented.
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Table 2 Power distribution in the games of Example 6.

Player i 1 2 3 4 5 6

PenroseBanzhaf(G, i) · 32 4 6 6 10 12 18

PenroseBanzhaf(Gr{1}, i) · 32 6 6 10 10 18
PenroseBanzhaf(Gr{2}, i) · 32 4 8 8 12 16
PenroseBanzhaf(Gr{3}, i) · 32 4 8 8 12 16
PenroseBanzhaf(Gr{4}, i) · 32 4 4 4 12 16
PenroseBanzhaf(Gr{5}, i) · 32 2 6 6 10 14
PenroseBanzhaf(Gr{6}, i) · 32 4 4 4 8 8

PenroseBanzhaf(Gr{1,2}, i) · 32 8 8 8 16

ShapleyShubik(G, i) · 60 4 6 6 11 13 20

ShapleyShubik(Gr{1}, i) · 60 7 7 12 12 22
ShapleyShubik(Gr{2}, i) · 60 5 10 10 15 20
ShapleyShubik(Gr{3}, i) · 60 5 10 10 15 20
ShapleyShubik(Gr{4}, i) · 60 5 5 5 15 30
ShapleyShubik(Gr{5}, i) · 60 3 8 8 13 28
ShapleyShubik(Gr{6}, i) · 60 6 6 6 21 21

ShapleyShubik(Gr{1,2}, i) · 60 10 10 10 30

For the Shapley–Shubik index, due to normalization over the permutations of participating
players, an increase of power is expected when deleting a player. As an example, player 5 has
an index of 13/60 in G which increases to 1/4 if either one of the players 2, 3, or 4 is deleted,
and even to 7/20 if 6 is deleted. However, players can also have a disadvantage, if a player
leaves the game. For instance, player 1 loses power if 5 is deleted, 2 and 3 lose power if 4 is
deleted, 4 loses power if 2 or 3 are deleted, and 5 loses power if 1 is deleted. This suggests a
symmetric dependence of the players. In the same way, the power of players 2 and 3 remains
the same if 6 is removed, and the other way around.

From the opposite view, consider the weighted voting game represented by (2, 3, 4, 5; 10),
two unregistered players with weights 1 and 2, and k = 2 (see the bottom rows for the two
indices). Note that adding them both ends up in G. Here, the four players have probabilistic
Penrose–Banzhaf indices of 1/4, 1/4, 1/4, and 1/2. The first player (with weight 2) can only
be worse off when adding any of the two players. The player with weight 3 as well as the
player with weight 5 can benefit from adding both players or only the one with weight 2.
The former keeps the same index, while the latter loses power if the player with weight 1
is added. Finally, the player with weight 4 improves in every situation when adding one
or two players. The first and the fourth player (with weight 2 and 5, respectively) cannot
benefit from adding players with respect to the Shapley–Shubik index. The other two can
take advantage in the same cases as for the probabilistic Penrose–Banzhaf index.

In particular, the example shows that these types of control are each possible. We
therefore turn to the question of how hard it is to find out whether they can be exerted
successfully in a given game. Next to goals in relation to the old game, we can also compare an
index either in relation to the other players’ power, or in relation to a constant number. See
Section 6 for initial results for this idea. If a player i is deleted from a weighted voting game,
any other player j gains the same amount of power that i would gain if j were deleted [33].

MFCS 2016
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The changes of power indices by deletion of players are bounded as follows.

I Theorem 7. After deleting the players of a subset M ⊆ N r {i} of size m ≥ 1 from a
weighted voting game G = (N, v), the difference between player i’s old and new
1. Penrose–Banzhaf index is at most 1− 2−m and is at least −1 + 2−m;
2. Shapley–Shubik index is at most 1− (n−m+1)!/2n! and is at least −1 + (n−m−1)!/2(n−2)!.

In particular, if m = 1 player is deleted, both the Penrose–Banzhaf index and the
Shapley–Shubik index of any other player can increase by at most 1/2 and will decrease by at
most −1/2. These bounds are tight.

4 Increasing or Decreasing an Index

Similarly to control by adding or deleting voters or candidates in elections, adding and
deleting players are not merely inverse operations. This is due to the fact that when adding
players all original players are guaranteed to be part of the game before and after the
structural change, whereas when deleting players each player except the distinguished one
can be removed from the game. Hardness in terms of complexity can be seen as a shield to
prevent a game from being controlled to improve or worsen a player’s significance.

4.1 Control by Adding Players
From a computational complexity point of view, we distinguish the cases where an upper
bound of new players is given as defined above and where the number of new players is fixed.

I Theorem 8. Control by adding a given number of players in order to increase (decrease)
a distinguished player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted
voting game is PP-hard.

Proof. We show PP-hardness via the techniques used by Rey and Rothe [40], Faliszewski and
Hemaspaandra [26], and Zuckerman et al. [48]. By Lemma 4, Compare-#SubsetSum-RR
is PP-hard. Reducing from this problem, we map an instance (a1, . . . , an) with α =

∑n
i=1 ai

to a weighted voting game G represented by (1, a1, . . . , an; α/2), an unregistered player with
weight wn+2 = 1, k = 1, and distinguished player p = 1. There is only one possible new
game obtained by adding the unregistered player to the game G∪{n+1}. We show that

PenroseBanzhaf(G∪{n+2}, 1)− PenroseBanzhaf(G, 1) > 0
⇐⇒ #SubsetSum((a1, . . . , an; α/2− 2)) > #SubsetSum((a1, . . . , an; α/2− 1)).

It holds that

PenroseBanzhaf(G∪{n+1}, 1)− PenroseBanzhaf(G, 1) (4)
= 1/2n(‖{C ⊆ {2, . . . , n+ 1} | 2 +

∑
i∈C ai−1 ≥ α/2, 1 +

∑
i∈C ai−1 < α/2}‖ (5)

− ‖{C ⊆ {2, . . . , n+ 1} | 1 +
∑
i∈C ai−1 ≥ α/2,

∑
i∈C ai−1 < α/2}‖). (6)

If for some C ⊆ {2, . . . , n+1} the conditions of the set in (6) are satisfied (i.e.,
∑
i∈C ai−1 < α/2

but 1 +
∑
i∈C ai−1 ≥ α/2), then α/2 − 1 =

∑
i∈C ai−1, since the weights and the quota are

integers. If for some C ⊆ {2, . . . , n+ 1} the conditions of the set in (5) are satisfied, then
α/2 − 2 =

∑
i∈C ai−1. Therefore, the term in (4) is positive if and only if the number of

solutions that sum up to α/2− 2 is greater than α/2− 1. Thus it is PP-hard to verify whether
the Penrose–Banzhaf index of a player can be increased by adding players.
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Analogously, for the goal of decreasing an index we can reduce from the PP-hard problem
Compare-#SubsetSum- RR, which is defined in [40] by switching α/2− 2 and α/2− 1 in
the definition of Compare-#SubsetSum-RR.

Likewise, with Lemma 3 these results can be adapted to the Shapley–Shubik index. J

I Remark. An upper bound of NPPP can be established whenever the number of players to
be added is given. We can guess the subset of new players to be added nondeterministically.
Verifying whether the different goals are satisfied is encoded in the PP-oracle. We conjecture
that this problem is complete for this class.

I Theorem 9. Control by adding a fixed number of players in order to increase (decrease) a
distinguished player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted
voting game is PP-complete.

Proof. Since the number of players to be added is fixed, there are polynomially many
combinations to be added. Therefore, we have polynomially many comparisons of power
indices. No matter which goal we consider, the comparison can be done in PP by Lemmas 1
and 2 and by the facts that #P is closed under addition and PP is closed under complement.
The problem belongs to PP, since PP is closed under union.

Hardness is implied by the case of k = 1 player to be added in the proof of Theorem 8.
By Lemma 5, this also holds for any other fixed number of players to be added. J

4.2 Control by Deleting Players
Recall that although deleting a previously added player results in the same game, the
possibility to fulfill a certain goal by adding a player is not the complement of the possiblity
to fulfill the complement goal by deleting a player. Initially, we obtain the following.

I Theorem 10. Control by deleting players to increase a distinguished player’s Shapley–
Shubik index in a weighted voting game is NP-hard (even if only one player is deleted).

Proof. We show NP-hardness by means of a reduction from SubsetSum. By Lemma 3 we
can assume that the satisfying solutions all have the same size `. Let (a1, . . . , an; q) be a
SubsetSum instance, consider the weighted voting game G represented by (1, a1, . . . , an, q +
1; q + 1), and consider player 1 as our distiguished player. Let k = 1 and let ξ =
#SubsetSum((a1, . . . , an; q)) denote the number of solutions for the SubsetSum instance.
Then, for the raw Shapley–Shubik index it holds that ξ ≥ 1 if and only if deleting some
player but 1 can lead to an increase of 1’s index.

If: If ξ = 0, ShapleyShubik∗(G, 1) is and remains 0 no matter which player is deleted.
Only if: Assume that ξ ≥ 1. Then ShapleyShubik∗(G, 1) = ξ/2 · `!(n+ 1− `)! + ξ/2 · (n−

`)!(`+1)!. If player n+2 is deleted, player 1’s new raw index is ShapleyShubik∗(Gr{n+2}, 1) =
ξ · `!(n− `)!. This leads to

ShapleyShubik(Gr{n+2}, 1)− ShapleyShubik(G, 1)

= 1
(n+ 1)! · ξ · `!(n− `)! ·

2
2 −

1
(n+ 2)! ·

ξ

2 · `!(n− `)!(n+ 1− `+ `+ 1)

= 1
(n+ 1)! ·

ξ

2(2− 1)`!(n− `)!,

which is greater than 0 because `! and (m− `)! are positve. J
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I Theorem 11. Control by deleting players to decrease a distinguished player’s Penrose–
Banzhaf index in a weighted voting game is coNP-hard (even if only one player can be
deleted).

Proof. We show coNP-hardness by means of a reduction from the complement of Partition,
denoted by Partition. Letting (a1, . . . , an) be a Partition instance with α =

∑n
i=1 ai

and ξ = #Partition((a1, . . . , an)), we construct the control instance consisting of G =
(1, a1, . . . , an, α/2; α/2 + 1), p = 1, and k = 1. We show that ξ = 0 if and only if there exists a
player whose removal from the game causes player 1’s Penrose–Banzhaf power to decrease.

Only if: Assume that ξ = 0. Then PenroseBanzhaf∗(G, 1) = 1. However, if player n+ 2
with weight α/2 is removed, there is no coalition left player 1 is critical for. Therefore, control
in order to decrease player 1’s Penrose–Banzhaf index is possible.

If: Assume that ξ ≥ 0. Then PenroseBanzhaf∗(G, 1) = ξ + 1. If player n+ 2 is deleted,
PenroseBanzhaf∗(Gr{n+2}, 1) = ξ and

PenroseBanzhaf(Gr{n+2}, 1)− PenroseBanzhaf(G, 1) = ξ

2n −
ξ + 1
2n+1 = ξ − 1

2n+1 ≥ 0.

Note that this difference is even greater than 0, since ξ is even. If a player j, 2 ≤ j ≤ n+ 1,
is deleted, PenroseBanzhaf∗(Gr{j}, 1) = 1 + ξ/2 and

PenroseBanzhaf(Gr{n+2}, 1)− PenroseBanzhaf(G, 1) =
1 + ξ

2
2n − ξ + 1

2n+1 = 1
2n+1 > 0.

Consequently, a decrease of player 1’s Penrose–Banzhaf index is not possible by deleting any
other player than 1. J

5 Maintaining an Index

In addition to constructive or destructive goals, we now consider situations in which an exact
number of players is to be added and the goal is to either maintain a distinguished player’s
power index in this new game, or at least to ensure that this player’s power does not increase
or decrease, compared with this player’s power in the old game.

For instance, control by adding players with the goal to maintain a given player’s power
index PI is defined as follows. The other goals of nonincreasing or nondecreasing a given
player’s power by adding or deleting players can be defined analogously.

Control by Adding Players to Maintain PI

Given: A weighted voting game G with players N = {1, . . . , n}, a set M of unregistered
players with weights wn+1, . . . , wn+m, a distinguished player p ∈ N , and a positive
integer k.

Question: Can exactly k players M ′ ⊆M be added to G such that for the new game G∪M′ it
holds that PI(G∪M′ , p) = PI(G, p)?

5.1 Control by Adding Players
Analogously to Theorem 8, since PP is closed under complement and by an alternative
reduction from the complement of Compare-#SubsetSum- RR, control by adding a given
number of players in order to maintain a distinguished player’s probabilistic Penrose–Banzhaf
or Shapley–Shubik index in a weighted voting game is PP-hard. Similarly, whenever the
number of players to be added is given in unary, these problems are in NPPP.
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I Theorem 12. Control by adding a fixed number of players to maintain a distinguished
player’s probabilistic Penrose–Banzhaf or Shapley–Shubik index in a weighted voting game is
coNP-hard and in PP.

Proof. The upper bound holds by the same argument as in Theorem 9. We can show
coNP-hardness by reducing from Partition. By Lemma 5, the arguments also hold for any
other fixed number of players to be added. J

5.2 Control by Deleting Players
Note again that deleting players in order to increase a power index is not the inverse of
adding players in order to nonincrease the same index.

I Theorem 13. Control by deleting a player in order to maintain a distinguished player’s
probabilistic Penrose–Banzhaf index in a weighted voting game is coNP-hard (even if only
one player can be deleted).

Proof. Again, we show coNP-hardness by means of a reduction from Partition. Letting
(a1, . . . , an) be a Partition instance with α =

∑n
i=1 ai, we construct the game G represented

by (1, a1, . . . , an, α/2, α/2; α/2 + 1) and consider player 1 as our distiguished player. Let k = 1
and let ξ = #Partition((a1, . . . , an)) denote the number of solutions to the Partition
instance. Then, for the raw Penrose–Banzhaf, it holds that ξ ≥ 1 if and only if deleting any
player but 1 does not maintain the index of player 1.

If: Assume that ξ = 0. Then PenroseBanzhaf∗(G, 1) = 2. If player n+ 2 with weight
α/2 is deleted, the raw index of player 1 is PenroseBanzhaf∗(Gr{n+2}, 1) = 1, which results
in the same probabilistic Penrose–Banzhaf index. The factor of 2 is due to the fact that the
raw index is twice as significant in the new game with one player less than in the old game.

Only if: Assume that ξ ≥ 1. Then PenroseBanzhaf∗(G, 1) = ξ + 2. If player n + 2
or n + 3 is deleted, player 1’s new raw index is ξ + 1. This leads to a higher index since
ξ+2 < 2(ξ+1). Deleting player j, 2 ≤ j ≤ n+1, leads to a raw index of ξ/2 +2, which means
that in comparison to the old game, player 1’s index is increased: ξ + 2 < 2(ξ/2 + 2) = ξ + 4.

Hence, the problem of whether it is possible to maintain a player’s probabilistic Penrose–
Banzhaf index is coNP-hard. J

In particular, if ξ ≥ 1 in the above proof, then deleting any player cannot lead to a nonincrease.
Therefore, it also holds that ξ ≥ 1 if and only if deleting any player but 1 does not nonincrease
the probabilistic Penrose–Banzhaf index of player 1. Therefore, we get coNP-hardness for
the problem where the goal is to nonincrease the probabilistic Penrose–Banzhaf by essentially
the same proof. Observe that from these constructions we cannot draw further conclusion
about the complexity of structural control by deleting players for neither the Shapley–Shubik
nor the probabilistic Penrose–Banzhaf index.

6 Conclusions and Future Work

For weighted voting games, we have studied two types of control, combined with the following
variants of goals: Strictly increasing or strictly decreasing a player’s power index by adding
or deleting at most a given number of players as well as maintaining, nondecreasing, and
nonincreasing a player’s power index by adding or deleting an exact number of players. As a
measure of a player’s power we have analyzed the well-known Shapley–Shubik power index
and the probabilistic Penrose–Banzhaf power index. If the number of players to be added is
given, the problems of adding players in order to obtain a change in a player’s index (or at
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least allow a change in one direction) is PP-hard. And if the number of players to be added
is fixed, a corresponding PP upper bound is valid, so we have PP-completeness. In the case
of deleting players, we have established NP- and coNP-hardness lower bounds, even for the
case of deleting exactly one player. The complexity results are summed up in Table 1.

The complexity of some control problems is left open; for instance, interesting gaps
remain, e.g., between NP-hardness and PP membership as well as PP-hardness and NPPP

membership, and we do not know the complexity of control by deleting players in order to
nondecrease a player’s index. Also, considering other measures of voter power may provide
further insights into the problem of structurally controlling a game. Next to classic worst-case
complexity results, it would be interesting to study approximations and average cases to
understand the occurrence of computationally hard instances. Especially, it is interesting to
find out how frequent the occurrence of a player gaining power by adding other players (or,
likewise decreasing and deleting) is. This case would not to be expected intuitively but, as
we have seen in Example 6, it is possible.

So far we have only obtained results for goals in relation to the original game. Alternatively,
one might think of a situation where the goal is to increase a player’s significance in
comparison to the other players, which can also be achieved if players are added or deleted;
the distinguished player’s power index remains the same, but all remaining players’ indices
are distributed so that they are below this value. Besides this, we can also model a scenario
where a player is required to exceed a certain constant power index, and we ask whether it is
possible to control a game by adding or deleting players in order to reach this index. So far,
we can tell that if the number of players to be added or deleted is k = 0, our value is 1/2, and
the considered power index is the Penrose–Banzhaf index, the problem is PP-complete. This
might change if k > 0 is required. We might also study the variant of obtaining an exact
value. Further, there seems to be a close connection to the notion of synergies in cooperative
games (see, e.g., [39]), and it will be interesting to have a closer look at related results here.

In addition to weighted voting games, other classes of cooperative games with transferable
utility might of course be affected by control scenarios as well. In each case, adding
and deleting players has to be well-defined. As an example, consider general (weighted)
majority games. Let G = (w1, w2, . . . , wn; α(n)) be a majority game, that is, v(C) = 1
if

∑
i∈C wi ≥ bα(n)c + 1, and v(C) = 0 otherwise, for each C ⊆ N . Now, if a player is

deleted, the number of players n is decremented, which changes the threshold α(n). The new
coalitional function is computed as above. Adding a player requires a set of unregistered
players given by their weights, and n is increased. For (weighted) threshold games, the new
coalitional function is determined similarly, with the difference that the threshold does not
change. One could alternatively think of weights as a percentage, and change the weights
of the remaining players proportionally. Thus the new game G∪M is defined differently, by
normalizing the sum of weights to the original value. Similarly to majority games, players
now do not make an absolute but a relative contribution to the game.

Adding and deleting players can be viewed as a change over time and analyzing to what
extent this influences power indices is an interesting task for future work (previously, only
changing the quota over time has been studied [18]). Other games that will be interesting to
study in this context include games in which the Shapley–Shubik index is easy to compute,
such as weighted graph games [16]. In such games, two indices in two games can be compared
in polynomial time and, therefore, if the coalition that is added to or removed from a game
is known, the possibility of control is easy to detect, rendering the problems trivial. If, on
the other hand, there are several possible coalitions to be added, this problem might become
interesting again. Eventually, if players correspond to an edge in a game, deleting an edge may
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be interesting in the context of Braess’s paradox for noncooperative congestion games (see,
e.g., [34, pp. 464–465]) where, informally, an extra fast lane might lead to congestion, whereas
without this lane traffic may split up to equally slower paths. Can we find a connection to
control by deleting a player in a cooperative game with transferable utility?
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