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Abstract
We give a quantum algorithm for finding a marked element on the grid when there are multiple
marked elements. Our algorithm uses quadratically fewer steps than a random walk on the grid,
ignoring logarithmic factors. This is the first known quantum walk that finds a marked element
in a number of steps less than the square-root of the extended hitting time. We also give a new
tighter upper bound on the extended hitting time of a marked subset, expressed in terms of the
hitting times of its members.
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1 Introduction

Searching structured and unstructured data is one of the most fundamental tasks in computer
science. In many search problems in quantum computing, we are given a set of N elements
of which M elements are marked, and our task is to find and output a marked element.

Search problems have been studied intensively and found many applications, both classi-
cally and quantumly. The first result on search within quantum computing was given by
Bennett et al. [9], who showed in 1994 that any quantum algorithm requires Ω(

√
N/M)

steps to find a marked element. Grover [18] showed next that a quantum computer can find
such a marked element in O(

√
N) steps, compared to Ω(N) for a classical computer. This

quadratic speed-up was then generalized to arbitrary unstructured search problems by a
generic amplitude amplification process by Brassard et al. [10].

Grover’s algorithm and amplitude amplification are directly applicable to unstructured
global search problems, but not to search problems relying on a local realization. Consider we
have just inspected one of the N elements and found that it is not marked, and we want next
to inspect another of the N elements. Many search problems have the localized property that
it is less costly to inspect an element that is close to the most recently inspected element, as
opposed to inspecting an arbitrary element. Many probabilistic algorithms for such problems
use random walks, and the quantum analogue of such are called quantum walks.

Quantum walks have proven very successful in quantum computing, with applications in
diverse settings such as communication complexity [1], element distinctness problems [3, 8],

∗ This work was partially supported by NSERC, the Natural Sciences and Engineering Research Council
of Canada and CIFAR, the Canadian Institute for Advanced Research.

© Peter Høyer and Mojtaba Komeili;
licensed under Creative Commons License CC-BY

34th Symposium on Theoretical Aspects of Computer Science (STACS 2017).
Editors: Heribert Vollmer and Brigitte Vallée; Article No. 42; pp. 42:1–42:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.STACS.2017.42
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


42:2 Efficient Quantum Walk on the Grid with Multiple Marked Elements

testing group commutativity [24], and triangle finding [27, 16]. Excellent surveys on quantum
walks, their history and applications, include [2, 19, 32, 36, 31].

The expected number of steps H required to find a marked element by a random walk is
called the hitting time. The hitting time depends on the structure being searched as well as
the number and locations of the marked elements.

Quantum walks have been studied for many structures, and in particular for the torus.
A torus is a graph containing N vertices laid out in a two-dimensional square structure. It is
also called a grid or a two-dimensional lattice. The first work on the torus was by Aaronson
and Ambainis [1], who showed that a torus can be searched in O(

√
N log2 N) steps. Their

breakthrough result is remarkably close to the quadratic speed-up that is attainable for
unstructured search problems, and it raised the question of determining the limitations of
quantum walks in general and on a torus in particular.

For the torus, Ambainis et al. [5] next gave a quantum walk using O(
√
N logN) steps.

The question of whether one could find a marked element any faster was solved Tulsi [34]
who found a quantum algorithm using O(

√
N logN) steps, obtained by attaching an ancilla

qubit and thereby modifying the search space. The above results assume the torus contains
a single marked element. If there are multiple marked elements, one can probabilistically
reduce the number of marked elements, potentially incurring an increased cost, and not what
we would naturally expect and desire, a decreased cost.

For general walks, Szegedy [33] showed in an influential paper how to construct a quantum
walk from any given symmetric random walk. Szegedy’s algorithm detects the presence of
a marked element in a number of steps of order

√
H which is quadratically smaller than

classical hitting time H. Szegedy’s algorithm applies to any number M of marked elements,
but does not necessarily find a marked element. In some cases, it outputs a marked element
with success probability no better than if we simply sampled from the stationary distribution.

Magniez et al. [26] next showed how phase estimation can be applied to the larger class
of reversible random walk, and gave an algorithm that both detects and finds a marked
element. Their algorithm applies to any number of marked elements, but does not guarantee
a quadratic speed-up in the hitting time. Magniez et al. [25] gave a quantum algorithm
that detects the presence of a marked element for any reversible random walk in O(

√
H)

steps. As Szegedy’s algorithm, it applies to any number of marked elements, but it does not
necessarily find a marked element. Magniez et al. [25] also gave a quantum algorithm that
finds a unique marked element in O(

√
H) steps for any state-transitive random walk.

Krovi et al. [23] next introduced the novel idea of interpolating walks. Krovi et al. [22]
show that interpolated walks can find a marked element for any reversible random walk, even
with multiple marked elements. The algorithm does not guarantee a quadratic speed-up
when there are multiple marked elements. Dohotaru and Høyer [15] introduced controlled
quantum walks and showed that such walks also find a marked element for any reversible
random walk, even with multiple marked elements, but again, not quadratically faster when
there are multiple marked elements. The quantum algorithms given in both papers [22]
and [15] use a number of steps in the order of a quantity called the extended hitting time.

The question of finding a marked element in quadratically fewer steps than by a random
walk when there are multiple marked elements, has thus remained the main open question.

The torus has continued to be a canonical graph of study. Ambainis and Kokainis [6] show
that for the torus, the extended hitting time can be Θ(N) while the hitting time is O(1) when
there are multiple marked elements. On the torus, we can find a unique marked element in
O(
√
N logN) steps with success probability of order 1/ logN by a continuous-time quantum

walk [13] and by a coin-less quantum walk [7]. Ambainis et al. [4] show that the algorithm for
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the torus in [5] can be modified, yielding a quantum algorithm that uses O(
√
N logN) steps

and finds a unique marked element with constant probability. Nahimovs and Santos [30]
show that the probability the algorithm of [5] finds a marked element can be as small as
O(1/N) when there are two marked elements. Nahimovs and Rivosh [29] show that the
locations of multiple marked elements on the torus can significantly impact the hitting time.

In this work, we give a quantum algorithm that finds a marked element quadratically
faster than classically, up to a logarithmic factor, on the torus, no matter the number of
marked elements. This is the first known quantum algorithm that finds a marked element
faster than the square-root of the extended hitting time. For some instances, the extended
hitting time is a factor of N larger than the hitting time.

We also analyze the extended hitting time. We give a new upper bound on the extended
hitting time and prove that it is convex in the marked subset, with respect to the stationary
distribution. These results are stated as Theorem 2 and Corollary 3 in Section 2. These
two results yield in themselves a simplification of known quantum walks that are based on
pruning the number of marked elements.

We next define and discuss the torus graph in Section 3. A major obstacle in finding a
better quantum algorithm for the torus has been its locality properties. In Section 4, we
investigate the locality properties of a random walk on the torus, and we turn these into our
advantage, instead of being a disadvantage. We are sculpturing the connectivity. As argued
by Meyer and Wong in [28], connectivity in itself is a poor indicator of fast quantum search.
The idea of using properties of the underlying graph to direct the quantum walk to specific
parts of the search space has been used elsewhere, e.g. by Le Gall in [16] to obtain the best
known quantum algorithm for triangle finding.

In Section 5, we give our new quantum algorithm for finding a marked element on the
torus when there are multiple marked elements. Our algorithm uses quadratically fewer steps
than a random walk, ignoring logarithmic factors.

2 Bounds on the extended hitting time

Consider a Markov chain on a discrete finite state space X of size N . We represent its
transition function as an N ×N matrix P. The entries of P are real and non-negative. Entry
Pyx denotes the probability of transitioning from state x to state y in one step. The entries in
each column sum to one, implying that P is column-stochastic. We can consider the matrix
P as the adjacency matrix of an underlying directed weighted graph.

We assume that the chain P is ergodic, which implies that it has a unique stationary
distribution π satisfying that Pπ = π. It follows from the Perron–Frobenius theorem that
the stationary distribution π has real and positive entries. A Markov chain is ergodic if its
underlying graph is strongly connected and acyclic.

We also assume that P is reversible. A Markov chain is reversible if Pyxπx = Pxyπy for
all states x, y ∈ X in the state space. This condition expresses that the same amount of
probability transition in either direction between any two states x and y in the stationary
distribution. From now on, we will only consider Markov chains that are both ergodic and
reversible, and we will also refer to such chains as random walks. Reversibility permits us to
apply spectral analysis, following the seminal work of Szegedy [33].

LetM⊂ X be the subset of marked states, and let U = X \M be the remaining states
which are unmarked. We form the absorbing walk P′ from P by modifying all outgoing edges
from marked states into self-loops. That is, if x ∈M is marked, we set P′xx = 1 and P′yx = 0
for all other states y ∈ X \ {x}. We set P ′yx = Pyx for all unmarked states x ∈ U and all
states y ∈ X. We will interchangeably refer to states as “elements.”

STACS 2017



42:4 Efficient Quantum Walk on the Grid with Multiple Marked Elements

The main goal of the random walk P is to find a marked state. The walk starts in a state
drawn from the stationary distribution π. We keep applying the transition function until we
reach a marked state, at which point the walk halts. The hitting time is the expected number
of steps it takes for the random walk to find a marked state, and it is denoted by HT(P,M).

We use spectral analysis to study the hitting time of random walks, as in Szegedy [33].
The discriminant of any given random walk P is the matrix D(P ) =

√
P ◦ PT , where T

denotes matrix transposition, and where the Hadamard product ◦ denotes entry-wise product
and the square-root is taken entry-wise. The discriminant is a symmetric real matrix by
definition and thus has real eigenvalues.

We use both the discriminant of the walk P and its absorbing walk P′. The discriminant
D(P) of P has real eigenvalues 1 = λ1 > λ2 ≥ · · · ≥ λN > −1 with corresponding eigenvectors
|λ1〉, |λ2〉, . . . , |λN 〉. The spectral gap of P is δ = 1− λ2.

The discriminant D(P′) of the absorbing walk P′ has |M| eigenvectors |x〉 with eigen-
value +1, one for each marked state x ∈ M. The remaining N − |M| eigenvectors
|λ′1〉, |λ′2〉, . . . , |λ′N−|M|〉 have eigenvalues 1 > λ′1 ≥ λ′2 ≥ · · · ≥ λ′N−|M| > −1 that are
strictly less than one in absolute value and they span the unmarked subspace.

The hitting time of P can then be expressed in terms of the spectra of the discriminant D(P′)
for the absorbing walk. Let |π〉 =

∑
x∈X
√
πx|x〉 denote the column vector corresponding to

the stationary distribution, normalized entry-wise. For any subset S ⊆ X of elements, let
εS =

∑
x∈S πx denote the probability that the stationary distribution is in a state in S. Let

|Sπ〉 = 1√
εS

∑
x∈S
√
πx|x〉 denote the normalized projection of the stationary distribution |π〉

onto the subspace spanned by elements in a non-empty subset S. Let |Sπ〉 be the vector of
length zero if subset S is empty. In particular, we use εM and εU , as well as |Mπ〉 and |Uπ〉,
to denote the quantities for the marked and unmarked subsets, respectively.

I Lemma 1 (see e.g. [33, 31, 22]). The hitting time of a reversible ergodic Markov chain P
with marked elementsM is

HT(P,M) =
N−|M|∑
k=1

|〈λ′k|Uπ〉|2

1− λ′k
. (1)

The hitting time is the expected number of steps of P′ required to reach a marked vertex,
starting from a random unmarked vertex, picked according to the stationary distribution π.
We define the effective hitting time HTeff(P,M) as the number of steps of P′ required to reach
a marked vertex with probability at least 2/3, again starting from a random unmarked vertex,
picked according to the stationary distribution π. By Markov’s inequality, the effective
hitting time is at most three times larger than the hitting time.

In his seminal paper, Szegedy [33] proved that we can detect whether a marked element
exists or not quadratically faster by a quantum algorithm. If there are |M| > 0 marked
elementsM, it suffices to run Szegedy’s quantum algorithm for O

(√
HTeff(P,M)

)
steps to

determine the existence of a marked element with bounded one-sided error [33, 25].
A breakthrough for quantum walks with multiple marked elements was achieved by Krovi

et al. [23, 21, 22]. They introduced a walk P(s) = (1− s)P + sP′ which is an interpolation
between the non-absorbing walk P and the absorbing walk P′. The walk is parameterized by
a quantity 0 < s < 1, which is chosen to be very close to 1, implying that the walk is almost
absorbing. They prove that their algorithm both detects and finds a marked element, even
when there are multiple marked elements. The limitation is that their quantum walk does
not necessarily guarantee a quadratic speedup over a classical walk. To measure the number
of steps of their algorithm, they introduce a quantity HT+(P,M) called the extended hitting
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time. Their algorithm takes a number of steps that is of order
√

HT+(P,M), the square-root
of the extended hitting time, ignoring logarithmic factors.

Their work raises two main questions. The first question is to determine the extent to
which the extended hitting time can exceed the hitting time. The second question is to
continue the quest for the discovery of a quantum algorithm that finds a marked element
quadratically faster than a random walk when there are multiple marked elements.

Ambainis and Kokainis [6] considered the question of determining the largest possible
ratio between the extended hitting time and the hitting time for a natural search space.
They show that especially for the torus, the ratio can be exceptionally large by providing
an example of a set of marked elementsM on the torus for which HT(P,M) ∈ O(1), yet
HT+(P,M) ∈ Θ(N). That is, the hitting time is a constant, yet the extended hitting time is
linear in the size of the torus. Searching with multiple marked elements on the torus in the
square-root of the extended hitting time can be remarkably slow.

In the case there is a single marked element (M = {m}), the extended hitting time is
identical to the hitting time, and thus HT+(P, {m}) = HT(P, {m}). For multiple marked
elements, Ambainis and Kokainis [6] proved a general upper bound on the extended hitting
time of HT+(P,M) ≤ 1

ε
1
δ , which implies that the extended hitting time can be at most a

factor of 1
δ larger than the hitting time HT(P,M). For the torus, the spectral gap δ is of

order 1
N , which is so small that it permits the above ratio of order N of the extended hitting

time over the hitting time.
To derive an efficient quantum algorithm for the torus for multiple marked elements, we

first provide a new upper bound on the extended hitting time. We show that the extended
hitting time on a marked setM is never more than the weighted average of the hitting times
of any its constituents.

I Theorem 2. Let P be a reversible ergodic random walk with stationary distribution π.
Let M = ∪iMi be the disjoint union of non-empty subsets Mi of marked elements. The
extended hitting time onM is at most the weighted average of the extended hitting times of
its subsets,

HT+(P,M) ∈ O
(∑

i

εi
εM

HT+(P,Mi)
)
.

Here εi =
∑
x∈Mi

πx is the probability that π is in marked subsetMi, and εM =
∑
i∈M εi is

the total probability that π is in a marked state.

As a corollary, by letting each subsetMi be a singleton set, we obtain that the extended
hitting time of a set is never more than the worst-case hitting time of its members.

I Corollary 3. The extended hitting time HT+(P,M) on a marked subsetM is in the order
of the maximum of the hitting times HT(P, {m}) of its members m ∈M.

There are two technical obstacles in analyzing and understanding the extended hitting
time. Firstly, it is defined as a limit of the hitting time of the interpolated walk P(s) as the
parameter s approaches 1. Secondly, it is expressed in terms of the spectra of the absorbing
walk P′, and that spectra changes as we change the set of marked elements. Fortunately, we
can circumvent both obstacles by applying the following theorem from [15].

I Theorem 4 ([15]). For any reversible ergodic random walk P with marked elementsM,

HT+(P,M) ∈ Θ
(

1
εM

E(P,Mπ)
)
. (2)

STACS 2017
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The theorem expresses the extended hitting time as a product of two factors. The first
factor is 1

εM
, the inverse of the probability that the stationary distribution is in a marked

state. The second factor is defined below and is a quantity that is expressed in terms of
the spectra of P, the original walk and not the absorbing walk P′. Theorem 4 permits us
to analyze the extended hitting time by analyzing the original walk P, a task that is often
simpler than analyzing the absorbing walk P′.

I Definition 5. For any normalized vector |g〉 over the state space of the walk P, the escape
time of |g〉 is

E(P, |g〉) =
N∑
k=2

|〈λk|g〉|2

1− λk
. (3)

For any non-trivial subset S ⊆ X of elements, define the escape time of S with respect to π
as E(P, Sπ) = E(P, |Sπ〉).

We will often omit the subscript π and simply write E(P, S) for E(P, Sπ). By definition,
the escape time is a weighted average over the reciprocals of all of the spectral gaps 1− λk
of the original walk P. It follows the escape time is at most the inverse of the (smallest) gap
δ = 1 − λ2. Equation 2 then permits us to re-derive that the extended hitting time is at
most 1

εM
1
δ , as shown by Ambainis and Kokainis [6]. The escape time is at least 1/2 for any

normalized vector |g〉 orthogonal to the principal eigenvector |λ1〉, since the denominator in
Eq. 3 is upper bounded by 2. We next show that the escape time is at most additive.

I Lemma 6. For any two disjoint subsets of elements S1 and S2,

E(P, S1 ∪ S2) ≤ E(P, S1) + E(P, S2).

Proof. Fix a distribution over the vertex set V , e.g. the stationary distribution π. The lemma
holds trivially if S1 or S2 is the empty set, and thus assume that both sets are non-empty.
Write the normalized state |S1 ∪ S2〉 = a|S1〉+b|S2〉 as a linear combination of the normalized
and orthogonal elements |S1〉 and |S2〉. Noting that a2 + b2 = 1, by the Cauchy–Schwarz
inequality, |〈λk|S1 ∪ S2〉|2 is then at most the sum of |〈λk|S1〉|2 and |〈λk|S2〉|2. We can thus
upper bound the sum of the terms |〈λk|S1∪S2〉|2

1−λk
by one sum over terms of the form |〈λk|S1〉|2

1−λk
,

plus another sum over terms of the form |〈λk|S2〉|2
1−λk

. The former sum is the escape time of S1,
the latter the escape time of S2. J

We next use the sub-additivity of the escape time to prove that the extended hitting time
on a marked subsetM is never more than the extended hitting time of any of constituents.

Proof of Theorem 2. LetM =M1 ∪M2 be a disjoint union of two non-empty subsets of
marked elements. Let ε1 = εM1 be the probability that the stationary distribution π is in a
marked state inM1, and let ε2 = εM2 be defined similarly. Let εM = ε1 + ε2.

Using Equation 2 and Lemma 6, and omitting asymptotic tight factors, write

HT+(P,M) = 1
εM

E(P,M)

≤ 1
εM

(
E(P,M1) + E(P,M2)

)
= ε1
εM

1
ε1

E(P,M1) + ε2
εM

1
ε2

E(P,M2)

= ε1
εM

HT+(P,M1) + ε2
εM

HT+(P,M2).

Theorem 2 follows by linearity. J
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Corollary 3 has an important and previously unrecognized consequence. Consider we are
given some computational problem that has multiple solutions, and assume that we know
how to solve the problem when there is a unique solution. Then we may be able to device
a randomized polynomial-time reduction that probabilistically makes all solutions but one
into non-solutions, and then find the only remaining solution. Such pruning ideas have been
used in e.g. reducing SAT to unique-SAT [35] and finding a marked element on the torus by
Aaronson and Ambainis [1]. As stated in e.g. [25], randomized reductions of multiple marked
elements to a unique marked element may increase the cost by a poly-logarithmic factor.

Theorem 2 yields an alternative to such reductions. We simply just run either the
controlled quantum walk of [15] or the interpolated quantum walk of [22]. Both algorithms
take a number of steps in the order of the square-root of the extended hitting time, ignoring
logarithmic factors. By Theorem 2, the extended hitting time of a subset M is upper
bounded by the average of the hitting times of its members, where the average is with
respect to the stationary distribution π. Provided we are given an estimate ε̃ of εM satisfying
that 2

3 ≤
ε̃
εM
≤ 4

3 , then we find a marked element with probability at least 1/5. (Apply
e.g. Theorem 7 in [22] with the value ε2 = 1

100 in their proof.)

I Corollary 7. Given a reversible ergodic Markov chain P with marked elements M, and
an estimate ε̃ of εM satisfying that 2

3 ≤
ε̃
εM
≤ 4

3 , we can find a marked state by a quantum
walk with probability at least 1/5 using in the order of

√
HT(P, {m}) steps, where m ∈M is

chosen to maximize the upper bound.

One advantage of applying an algorithm that runs in the square-root of the extended
hitting time, is that no direct pruning is necessary. We do not need to turn marked elements
into non-marked elements. It suffices to guess an estimate ε̃ of the probability εM of measuring
a marked state in the stationary distribution. A second advantage is that the extended
hitting time of a subset can be significantly less than the average of the hitting times of
its members. The bounds in Theorem 2 and Lemma 6 are only upper bounds, not tight
bounds. The bounds can not be improved in general as they are tight for some instances.
One such example is the case considered by Nahimovs and Rivosh [29] of the torus with
multiple marked elements packed as densely as possible into a sub-square.

3 The torus graph

We consider walks on two-dimensional square torus graphs. The graph contains N = n2

vertices organized into n rows and n columns. There is one vertex at location (r, c) for each
row 0 ≤ r < n and column 0 ≤ c < n. The graph is directed and every vertex has in-degree 4
and out-degree 4.

We consider two types of boundary conditions. We define the torus graph in the usual
way, with vertices along the boundary connecting to vertices on the opposite boundary. A
vertex at location (r, c) is connected to its four neighbors at locations (r − 1, c), (r + 1, c),
(r, c− 1), and (r, c+ 1), where the addition is modulo n.

We define the grid graph to have self-loops on vertices on the boundary. A vertex
at location (r, c) has four out-going edges pointing to the locations (max{r − 1, 0}, c),
(min{r + 1, n − 1}, c), (r,max{c − 1, 0}), and (r,min{c + 1, n − 1}). Every vertex has
in-degree 4 and out-degree 4, as for the torus.

Prior to this Section, all of our discussions have been for the torus, not the grid. Our
algorithm given in Section 5 uses both the torus and grid graphs. Since one cannot replace a
walk on a torus that crosses the boundary by a walk on a grid without potentially incurring

STACS 2017



42:8 Efficient Quantum Walk on the Grid with Multiple Marked Elements

a cost, we need to clearly distinguish between the two graphs. Our algorithm in Section 5
works for both the torus and grid.

We form a random walk PG on a graph G by taking the adjacency matrix Adj(G) of G
and normalize its columns. For every directed edge (u, v) ∈ G, we set entry (v, u) in PG to
be the inverse of the out-degree of vertex u. All other entries of PG are zero. Since both
the torus and grid are regular graphs G with out-degree 4, their random walk operators
PG = 1

4Adj(G) are scaled versions of their adjacency matrices.
Our proposed quantum algorithm for finding a marked state on the torus uses both the

torus and grid graphs. Since the torus and grid are so closely related, it seems intuitively
obvious that walking on either graphs should have little influence on the complexity of the
algorithm. Indeed, the escape times on the torus and grid with N = |V | vertices of an
element m ∈ V are both of order logN .

I Fact 8. The escape times of an element m ∈ V on the torus and grid are both of order
logN ,

E(Ptorus, {m}) ∈ Θ(logN) and E(Pgrid, {m}) ∈ Θ(logN).

The above fact can be derived from known facts that the hitting time of a unique element
on the torus and grid are of order N logN and then applying Theorem 4. The fact can also
be shown directly by first computing the spectra for the torus and grid, as done in e.g. [5]
for the torus, and then applying Definition 5.

4 Locality of random walks on the torus

To obtain a faster quantum algorithm, we first need to resolve the main obstacle that a
random walk on a torus is localized.

I Lemma 9. The probability that a random walk of T steps on an infinite line stays within
distance

⌈
4
√
T
⌉
from the initial position is at least 1− 1/745.

Proof. Consider a walk on a doubly-infinite line. The walk starts in some fixed initial
position, and we measure distances from this initial position. The probability that the walk is
at distance (strictly) more than k from the initial position after ` steps is at most 2 exp(−k

2

2` )
by the Azuma–Hoeffding inequality.

The conditional probability that the walk ends at a distance larger than k, conditioned on
that the walk ever reaches distance k + 1, is at least 1/2 by the reflection principle: once the
walk reaches distance k + 1, the walk is equally likely to end on either side of that location.

By Bayes’s rule, the probability that the walk reaches distance k + 1 is then at most
4 exp(−k

2

2` ) which is at most 4e−8 when k =
⌈
4
√
T
⌉
. Finally, 4e−8 is less than 1/745. J

Since the grid is the cartesian graph product of two line graphs, we immediately get that
a walk on the grid is also locally contained.

I Lemma 10. The probability that a random walk of T steps on an infinite grid stays within
distance

⌈
4
√
T
⌉
in all four directions from the initial position is at least 1− 2/745.

Let us say that a walk is localized if it stays within distance
⌈
4
√
T
⌉
in all four directions

from its initial position u.
This locality property implies that we can substitute the global walk by disjoint local

walks. Consider a torus of size n× n, and fix an integer 1 ≤ d < n. We cut the torus into
Θ((nd )2) disjoint graph components by removing edges from the torus. We remove edges that
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cross graph cuts so that each resulting component is a sub-grid (without self-loops on the
boundary vertices) and so that all components have length and width that are at least D
and at most D + 1, for some d ≤ D < 2d. We next add self-loops to every vertex on the
boundaries of the resulting graph components. The overall effect is that we have modified
the n× n torus into Θ((nd )2) disjoint grid graphs, each of size roughly D ×D, by turning
edges between adjacent components into self-loops.

Now, consider a random walk of T steps on the torus of size N = n2 starting from the
stationary distribution π. We set d = 2

⌈
4
√
T
⌉
and modify the torus into Θ(NT ) disjoint

sub-grids as described above. We next sample one of these Θ(NT ) sub-grids according to the
stationary distribution π for the torus. That is, we sample the sub-grid G with probability
εG =

∑
v∈G πv. The next lemma shows that the probability that a random sub-grid G

contains at least one marked vertex is high.

I Lemma 11. If a random walk of T steps on the torus of size N finds a marked vertex with
probability at least p, for p ≥ 1

74 , then the probability pG that a random sub-grid, sampled from
the Θ(NT ) sub-grids as described above, contains at least one marked vertex is at least 1

5p.

Proof. We define the probabilities pml and pGl below and prove the following three inequali-
ties,

p− 2
745 ≤ pml ≤ pGl ≤ 4pG.

By these three inequalities, when p ≥ 1
74 then pG ≥ 1

5p, and the lemma follows.
Sample a random walk ω of length T as follows: Pick a vertex u on the torus according

to the stationary distribution π, and apply the stochastic matrix Ptorus a number of T times,
starting at u.

Let pml be the probability that a sampled walk is localized and visits a marked vertex.
Let pGl be the probability that a sampled walk is localized and visits a vertex that is in a
sub-grid that contains a marked vertex. Clearly, pml ≤ pGl, proving the second inequality.

The unconditional probability that the walk ω visits a marked vertex is at least p. The
unconditional probability that ω is not localized is at most 2

745 by Lemma 10. The joint
probability that ω visits a marked vertex and is localized, is then at least p− 2

745 , proving
the first inequality.

Fix any sub-grid G and consider the joint probability that the sampled walk ω is localized
and visits G. For a localized walk ω to visit G, its starting vertex must be within distance⌈
4
√
T
⌉
of G. Since G has width and length at least 2

⌈
4
√
T
⌉
, the number of such vertices is

at most four times the number of vertices in G. The probability of sampling any of these as
the starting vertex u from the stationary distribution π, which is uniform, is then at most
four times the probability of sampling the starting vertex u from G itself. This proves the
third inequality, and thus also the lemma. J

In the next Section, we use this locality property in the design of our quantum algorithm
and give an efficient algorithm for the torus with multiple marked elements.

5 An efficient quantum algorithm for the torus

An implementation of a random walk is done as follows. We first pick a starting node v ∈ V
for the random walk. This node is picked according to the stationary distribution π. The
cost of generating v is called the setup cost and is denoted by S. We next apply the absorbing
walk P′ for some number T steps. Each step consists of two parts: We first check whether
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the node v we are currently located at is marked or not. The cost of checking whether a node
is marked or not is called the checking cost and is denoted by C. If v is marked, we halt the
algorithm and output v. If v is not marked, we next apply the operator P once. The cost of
applying P is called the update cost and is denoted by U. After repeating these two parts for
T steps, we check whether the final node v is marked or not. If so, we output v, and if not, we
output “failed search.” A random walk with T steps has total cost S + (T + 1)C + TU, which
we write as S + T (U + C) by letting the setup cost include the cost of the first checking cost.
The walk outputs a marked element with constant probability when T ∈ Ω(HTeff(Ptorus,M)).

A quantum walk is implemented similarly [33, 32, 31]. We first create some initial state
|init〉 from the state |π〉 =

∑
v∈V
√
πv|v〉, where π is the stationary distribution. We next

apply some number Tq steps of the quantum walk, where each step consists of one application
of each of two quantum operators, one denoted Ref(M) and one denoted W(P), corresponding
to the checking and update operators applied in a random walk. The algorithm stops after
Tq steps in some final state. The costs of these three operators are also denoted S, C, and U,
and are in general comparable in cost to the corresponding operators for the random walk.
The quantum algorithm has total cost S + Tq(U + C).

A measurement of the final state of the quantum walk will not necessarily produce a
marked state with constant probability. Had that been the case, then we would have had a
quantum algorithm that finds a marked element in cost S + Tq(U + C). Instead, the quantum
walk evolves the initial state |init〉 away from the initial state, and this evolution away
from the initial state is sufficient to detect that a marked state exists. Szegedy [33] show
that after Tq steps, for some Tq ∈ Θ

(√
HTeff(P,M)

)
, the final state has overlap bounded

away from 1 with the initial state. A change by a constant in overlap can be detected by
standard techniques such as the swap test [12]. If the swap test shows the final state is
different from the initial state, we deduce there is a marked state. We learn that there exists
a marked element, but we do not necessarily find one. It is possible to efficiently estimate
the speed of the change in overlap by applying eigenvalue estimation [20] similar to its uses
in e.g. quantum counting [11], phase estimation [14], and quantum walks [26, 25, 22].

I Theorem 12. There exists a quantum algorithm that given a reversible ergodic random
walk P with marked elementsM⊂ X, with probability at least 2/3 performs as follows: (1)
it outputs an estimate h̃ ∈ O(HTeff(P,M)) satisfying that if we apply P′ for h̃ steps starting
from the initial distribution π, we find a marked state with probability at least 3/4 and (2) it
has cost in the order of S +

√
h̃(U + C).

Theorem 12 states that there is a quantum algorithm that, with probability at least
2/3, computes an accurate estimate of the effective hitting time efficiently. With com-
plementary probability at most 1/3, this does not happen. We can prevent that the
algorithm in Theorem 12 never terminates or terminates after a significant cost. Let
Hunique = HTeff(Ptorus, {m}) ∈ Θ(N logN) be the effective hitting time for the torus when
there is a unique marked element. If the algorithm in Theorem 12 has not halted after√
Hunique steps, we halt the algorithm and output Hunique as our estimate h̃.
With this, we can give our quantum algorithm for finding a marked element on the torus.

Our algorithm works for multiple marked elements, finds a marked element with probability
at least 1/ logN , and has cost in the order of

S + min
{√

H logH,
√
N logN

}
(U + C),

where H = HTeff(Ptorus,M) is the effective hitting time on marked subsetM. This is within
a poly-logarithmic factor of being a quadratic speed-up over the cost of a random walk,
which has cost the effective hitting time.
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I Theorem 13 (Main). There is a quantum algorithm that, given a torus Ptorus with marked
verticesM⊂ V , with probability at least 2/3, outputs a marked element m ∈M with success
probability at least 1

logN in cost in the order of S + min
{√

H logH,
√
N logN

}
(U + C), where

H = HTeff(Ptorus,M) is the effective hitting time.

The input to the algorithm in Theorem 13 is a torus Ptorus of size n×n with some subset
M⊂ V of vertices being marked. The algorithm is as follows.

1. Compute an estimate h̃ ∈ O(HTeff(Ptorus,M)) using Theorem 12. If the algorithm in
Theorem 12 has not halted after

√
Hunique steps, where Hunique = HTeff(Ptorus, {m}),

halt it and use Hunique as our estimate h̃.
2. Set d = 2

⌈
4
√
h̃
⌉
. If d > n, then set d = n.

3. Divide the n× n torus into disjoint sub-grids so that each sub-grid has length and width
between D and D + 1, for some d ≤ D < 2d.

4. Create the initial state |π〉 =
∑
v∈Ptorus

√
πv|v〉 over all vertices in the torus corresponding

to the stationary distribution π for the torus.
5. For each vertex v ∈ Ptorus, assign the name of the sub-grid that v belongs to in an ancilla

register,
∑
v∈Ptorus

√
πv|v〉|subgrid(v)〉, in superposition.

6. Set ε̃ = 1
2k , where integer k is picked uniformly at random satisfying 1 ≤ 2k < N .

7. Run a controlled quantum walk with estimate ε̃ on each sub-grid for Θ(D
√

logD) steps
in superposition over all sub-grids, by conditioning the walk on the name of the sub-grid
in the ancilla register.

8. Measure the final state, producing a vertex v of the torus. Check if v is marked. If so,
output v. If not, output “unsuccessful search.”

We first prove the correctness of the algorithm. Assume that the first step of the algorithm
outputs a suitable estimate for the effective hitting time as given in Theorem 12. This event
happens with probability at least 2

3 . Then the probability that a random sub-grid contains
at least one marked vertex is at least 1

5 ×
3
4 = 3

20 , by Lemma 11. For each of those sub-grids,
by Corollary 7, the controlled quantum walk in step seven finds a marked element with
probability at least 1

5 , for at least one of the logN possible values for k. Note that in step
seven, each of the conditional walks on the sub-grids start the walk on the state corresponding
to the stationary distribution for that sub-grid. The entire algorithm thus outputs a marked
element with probability at least 2

3 ×
3

20 ×
1
5 = 1

50 for at least one of the logN possible values
for k.

The cost of the algorithm is easily deduced. With probability at least 2/3, two properties
hold: (1) the estimate h̃ computed in the first step is in the order of the effective hitting time
HTeff(Ptorus,M), and (2) the first and seventh steps of the algorithm each uses a number of
steps that is in the order of S +

√
h̃ log h̃(U + C). Further, in all events, each of the seven

steps of the algorithm never uses more than in the order of
√
N logN(U + C) steps of a

quantum walk. Theorem 13 follows.
We remark that we can test all logN possible values for k by testing each of them in

turn. This will increase the overall cost by a factor of logN and lead to an algorithm with
constant success probability. By applying amplitude amplification [10], the increase in cost
can be improved to being a factor of order

√
logN . By testing each value of k in increasing

order in turn, our algorithm can be made to have the same cost as the best known quantum
algorithms when there is a unique marked element.

We remark that in step seven, we need to run a quantum walk that finds a marked element
in the sub-grid, even if the sub-grid contains multiple marked elements. The controlled
quantum walk of [15] and the interpolated walk of [22] both do so in O(D

√
logD) steps,
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42:12 Efficient Quantum Walk on the Grid with Multiple Marked Elements

when provided an estimate of the probability εM. We also remark that one may omit the
conditioning of the quantum walk in step seven by measuring the ancilla register containing
the name of a sub-grid immediately after step five. Conducting measurements as early as
possible in a quantum algorithm is frequently used when no further computations are required.
An early example of such is the semi-classical quantum Fourier transform by Griffiths and
Niu [17].

6 Concluding remarks

We have given an efficient quantum algorithm for a finding a marked element on the torus
with probability at least 1/ logN when there are multiple marked elements. Our algorithm
has cost in the order of S +

√
Heff logHeff(U + C), where Heff = HTeff(Ptorus,M) is the

number of steps used by the random walk Ptorus to find any one of the marked elementsM.
This is a quadratic speed-up, up to a poly-logarithmic factor. It is the first known quantum
walk that has cost less than the square-root of the extended hitting time. It is, for the torus,
an affirmative answer to the main open question in quantum walks whether it is possible to
find a marked element efficiently when there are multiple marked elements.

The study of the torus has proven influential for at least two reasons. Firstly, much
progress in quantum walks has been initiated by work on the cycle and the torus, and then
later generalized to arbitrary graphs. Secondly, the torus is a hard test-case because the
ratio between its hitting time and the reciprocal of its εδ bound [33] is large. For a unique
marked element, the hitting time is of order N logN , and the reciprocal of the εδ bound is
of order N2, and thus almost quadratically bigger.

In this work, we have proposed to use localization to our advantage in quantum search,
and not as an obstacle to be overcome. We show that localization makes quantum search
efficient when there are multiple marked elements on the torus.
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