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—— Abstract

Given a planar subdivision with n vertices, each face having a cone of possible directions of travel,
our goal is to decide which vertices of the subdivision can be reached from a given starting point
s. We give an O(nlogn)-time algorithm for this problem, as well as an Q(nlogn) lower bound
in the algebraic computation tree model. We prove that the generalization where two cones of

directions per face are allowed is NP-hard.
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1 Introduction

We consider a motion planning problem where a point robot moves within a planar subdivision,
with constraints on its direction of travel. Within each face of the subdivision, there is a
cone of possible directions of travel, and we want to decide which vertices are reachable from
a given starting position. (See Figure la.)

This type of constraints appear, for instance, for motion planning in the presence of
flows [6]. In this model, a vehicle moves within a flow field, say wind or current. If the
speed of the vehicle is less than the speed of the flow, then it can only travel in a cone of
directions, with axis parallel to the direction of the current, and whose angle depends on the
ratio between the speed of the robot and the speed of the current. (See Figure 1b.)

Our results. Our main result is an O(nlogn)-time algorithm to compute all the vertices
that are reachable from a given source point s, where n is the size of the input subdivision,
and each face has a cone of possible directions of travel (Section 6). We also give a matching
Q(nlogn) lower bound in the algebraic computation tree model. This result is based on
Ben-Or’s topological lower bound [1], and holds even in the special case where only one
direction of travel is given for each face. Finally, we prove that the generalization where
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Reachability in a Planar Subdivision with Direction Constraints
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Figure 1 (a) The input to our reachability problem is the triangulation, the cone of direction in
each face, and the starting point s. The output is the set of reachable vertices {v1i,v2, v3, v4, vs, V6, V7 }.
(b) Within the region f, the velocity of the flow is ¥} and the control speed of the robot is v,.
The blue circle represents the points that can be reached from s in unit time. Hence, the possible
directions of travel are given by the cone C(f).
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Figure 2 (a) The reachable region (shaded) is a spiral formed by an infinite sequence of blocks.
(b) The reachable region has quadratic complexity, without any spiral.
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two cones of directions per face are allowed is NP-hard. Our proof is a reduction from the
partition problem, and it even holds when only two directions of travel are allowed throughout
the subdivision.

A natural approach to compute all reachable vertices would be to construct the reachable
region piece by piece, handling one face at a time. Unfortunately, this algorithm would not
necessarily terminate as the direction constraints may force a path to follow a spiral with
arbitrarily many edges (Figure 2a). Even when there are no such spirals, the complexity of
the reachable region can still be quadratic (Figure 2b). So in order to achieve a near-linear
running time, our algorithm uses efficient data structures to implicitly encode the boundary
of the part of the reachable region that has already been constructed. This data structure is
used to propagate a boundary path in O(logn) time, if it follows a previously constructed
boundary. More details can be found in Section 6.

Comparison with previous work. The most directly related problem is to find a descending
path (that is, a path that never goes up) between two points on a terrain. This is a special
case of reachability under direction constraints: After projecting the terrain to horizontal,
we get an instance of our problem where each face has a cone of possible directions which is
a halfplane. De Berg and Van Kreveld [5] gave a data structure that can answer descending
path reachability queries between two points in O(logn) time, after O(nlogn) preprocessing
time. Another related paper [4] shows how to compute a collection of n paths of steepest
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descent in O(nlogn) time [4]. This work uses a data structure similar to our data structure
for recording beams (Section 6), but it uses it in a different way as it proceeds by sweeping a
horizontal plane over the whole terrain. This approach cannot be applied to our problem, as
there is no notion of elevation. Recently, Cheng and Jin [2] gave the first FPTAS for finding
a shortest descending path between two points.

The problem of planning the movement in the presence of a flow was studied by Reif and
Sun [6]. A point robot can apply a control velocity, with bounded norm, and each face of
the triangulation has a flow of constant velocity (Figure 1b). They give an approximation
algorithm for finding a shortest path between two points. However, it only applies when
the control velocity is larger than the flow velocity, meaning that all directions of travel are
possible. ! Hence, their algorithm cannot be used to solve our problem, although it has the
advantage of providing an approximate shortest path.

Sun and Reif also considered another anisotropic motion planning problem, where a
wheeled robot travels on a terrain [7]. The mechanical constraints such as friction and
steepness imply that some directions of travel are forbidden, and the speed depends on the
direction. They present an approximation algorithm for the single source shortest path
problem. This algorithm places Steiner points along the edges and searches the induced
graph. The case where some directions of travel are forbidden is only briefly described [7,
Theorem 4] and no time bound is given for this case. In any case, the number of Steiner
points depends on several extra parameters, such as the minimum angle in the triangulation,
or the length of the longest edge.

Cheng et al. considered approximate shortest path problems in anisotropic environments
where the cost function within each face is a convex distance function [3]. This model allows
different costs for different directions of travel, but again all directions must be allowed, so
it does not solve our problem. They give an approximation algorithm whose running time
depends on the ratio between the largest and the smallest speed in any direction, and the
dependency on the input size is cubic.

In summary, we propose the first provably efficient algorithm to compute a path between
two points in a planar subdivision, when there is one cone of possible directions of travel per
face. Previous work on path planning with direction constraints either considered a special
case where each cone of direction is a halfplane [2, 5], or did not provide any time bound [6, 7].
Unlike the algorithms in other anisotropic models [2, 3, 6, 7], our algorithm does not return
an approximate shortest path, but it handles more general direction constraints, and it runs
in near-linear time, regardless of the geometry of the input.

2 Notation and preliminary

Problem statement. We are given a planar triangulation S with n vertices. More precisely,
S is a simplicial complex in R?. Each face f of S is a triangle, and is associated with a
cone C(f) of possible directions of travel. This cone is specified by a leftmost (clockwise)
and rightmost (counterclockwise) direction d,(f) € R? and d,.(f) € R%. We assume that
C(f) is convex: Its opening angle is at most m. A direction (or vector) d is in C(f) if
d = Mdy(f) + pd,-(f) for some A, > 0. In addition, halfplanes bounded by lines through
(0,0) are considered to be cones, as well as the whole plane R?, which is called the full cone
of directions.

! The algorithm by Reif and Sun [6, Section 5] requires that the parameter p, is larger than 1, which
means that the control velocity is always larger than the flow velocity. In other words, all directions of
travel are allowed. The speed depends on the direction, but it is always positive.
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We denote by pq the directed closed line segment from point p to point g. We will abuse
notation so that pg € C(f) means that the vector m isin C(f). A segment pg in a face f is
feasible if pg € C(f). Let s and ¢ be two points in this subdivision. A feasible path from s to
t is a polyline whose edges are feasible segments. Given a starting point s, our goal is to find
all the vertices of S that can be reached by a feasible path.

Model of computation. We assume that, given a point p on the boundary of a face f
of S, we can compute in constant time the points ¢ and ¢’ along the boundary of f that
are in directions dy(f) and d.(f). In addition, we assume that we have at our disposal a
constant-time logarithm function. It will help us handle spirals efficiently: We will be able
to compute in O(logn) time the exit point of a spiral (Figure 11).

Notation. An interval is a closed segment along an edge of S. We allow an interval to
be a single point in the interior of an edge of S, but vertices of S are not called intervals.
So any interval u is contained in a unique edge of S. This edge is denoted by edge(u). A
full interval is an edge of S. In other words, a full interval u is such that edge(u) = u. An
extreme interval is an interval ©q such that v is a vertex of S. In particular, a full interval is
an extreme interval with respect to both of its endpoints. A free interval is an interval that
is not extreme. In other words, a free interval is contained in the interior of an edge of S.

Let u be an interval on the boundary of a face f. We denote by R(u, f) the set of points
on the boundary of f that are reachable from u along a direction in C(f). More precisely,
R(u, f) is the intersection of u + C(f) with the boundary of f. An image vertex of (u, f)
is a vertex of f that lies in R(u, f). An image interval of (u, f) is a maximal segment of
R(u, f). In degenerate cases, an image interval can be a single point in the interior of an
edge, but we do not count vertices of S as image intervals. The list of image vertices and
intervals is denoted by L(u, f). An interval u is non-propagating if R(u, f) C u. Otherwise,
it is propagating. We may also say that u propagates into f.

Let 7 be a feasible path from s to ¢t. As the cones of directions are convex, we can replace
any subpath of 7 contained in a face f with a single edge pg. So a path 7 can be specified
by a sequence py fipafa ... feper1 where D;pir1 € C(f;) and f; # fiy1 for all 4. As this is the
only relevant type of path for our problem, in order to alleviate notation, we will assume
that all paths are of this form.

3 Overview

In this section, we present a brief description of our results and the approach used to prove
them. We start with the algorithms.

The naive approach would be to compute the whole reachable region block by block, by
recursively propagating intervals along the boundary of the faces of the subdivision. (See
Figure 3.) One difficulty with this approach is that the blocks partially overlap, so the
algorithm would do a lot of double-work, and it is not clear how to use planarity arguments in
the analysis. So instead of constructing the whole reachable region, we construct the skeleton
Ske (Figure 3c), which is a tree connecting the midpoints of the reachable intervals. While
constructing this tree, we will prove that any new edge that crosses a previously constructed
edge can be pruned without affecting the set of reachable nodes computed by the algorithm.
Hence, we can ensure that the skeleton is a tree properly embedded in the plane, and we
will be able to use planarity arguments in our proofs. For instance, it is easy to see that the
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Figure 3 (a) Naive approach to compute the reachable region block by block. (b) After propagating
another branch, some blocks overlap. (¢) Our approach using the skeleton (thick, blue). Two edges
are pruned (dashed), so that the skeleton remains a tree embedded in the plane.

skeleton can have only one branching node (i.e. degree at least 3) within each face of the
subdivision, and thus the skeleton has a linear number of branchings.

We present in Section 4 a description of our first algorithm (Algorithm 1) to construct the
skeleton edge by edge. In Section 5, we prove several properties of the skeleton constructed
by Algorithm 1. Algorithm 1 is inefficient because it could enter an infinite loop when it
encounters a spiral (Figure 2a), and even without spirals, the tree could have a quadratic
number of edges (Figure 2b). Note that in both cases, the issue arises from long paths
that cross the same sequence of edges: in the case of a spiral, the subsequence is repeated
periodically, and in the second example, we have long, horizontal paths crossing the same
sequence of edges.

We present in Section 6 an algorithm (Algorithm 2) that overcomes this difficulty using
efficient data structures for handling parallel beams, that is, paths in the skeleton that
cross the same sequence of edges of the triangulation. The idea is the following. Consider
a path that crosses the sequence of edges (e1,es,...,en) in their interiors. If z; is the
coordinate of the path along ey, then the coordinate x,, along e,, is given by a linear map,
whose coefficients can be easily determined from the geometry of the faces and the cones of
directions. We record these linear functions in a binary tree over (eq, ..., €, ), so that we
can implicitly construct in O(logm) time any path through a subsequence (e, ..., €;), given
its starting point x;.

We record such data structures for the left side and the right side of each beam. (See
Figure 4.) When a new beam B follows parallel and to the right of an already constructed
beam C, it forms a new tunnel, which is the empty region between these two beams. We
update the data structure in O(logm) time by first appending a subtree associated with C
to the data structure for B. Then we create a single node for the tunnel, which is sufficient
for our purpose, as any new beam entering the tunnel can only go parallel to B and C within
this tunnel.

As we shall see, Algorithm 2 runs in O(nlogn) time using this data structure. For
instance, in the example of Figure 2b, the data structure for each one of the ©(n)-long
horizontal beams can be constructed in O(logn) time, given the data structure for the beam
immediately above it. The analysis relies on several observation on the structure of the
skeleton. For instance, we show that it has O(n) maximal tunnels and maximal beams, and
that the total number of nodes in our data structures is O(n). Spirals are handled in the
same way as tunnels, as they can be seen as a special type of tunnels.
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Figure 4 Data structure for beams. One node is created for the right side of C' and the left side
of B to represent the tunnel (blue). A subtree of the data structure for the right side of C (red) is
deleted and inserted into the data structure for the right side of B.
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Figure 5 (a) Q(nlogn) lower bound. (b) NP-hardness proof.

Finally, we show two hardness results. (Detailed proofs are omitted due to space
limitation.) We first prove an (nlogn) lower bound on our problem using Ben-Or’s
technique [1]. Figure 5a gives an outline of our construction: The direction constraints
force the path to follow a spiral with ©(n) edges. Then we place ©(n) obstacles that can
move left or right, so that the target point ¢ can only be reached if no obstacle overlaps
with the spiral. This problem has n®( connected components, and hence it requires an
algebraic computation tree of depth Q(nlogn). Then we prove that the reachability problem
where two cones of directions per face are allowed is NP-hard. In fact, our construction only
requires that each face allows the directions (0, 1) and (1,1). Our proof is a reduction to
the partition problem: Given a set of integers, can it be partitioned into two subsets with
same sum? The reduction is given in Figure 5b. The heights of the rectangles are the input
integers, and the target point ¢ is at the midpoint of the top edge. It can only be reached if
the instance of the partition problem is positive.

4 First algorithm

In this section, we present our first algorithm (Algorithm 1), which recursively propagates
reachable intervals or vertices to other reachable intervals or vertices that lie on the boundary
of the same face. As Algorithm 1 constructs intervals one by one, it does not terminate if
it encounters an infinite spiral. In Section 6, we present a faster version of this algorithm
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Figure 6 Propagating a pair (u, f), when w is an interval. (Left) The skeleton before propagating
(u, f). (Right) When we propagate (u, f), the pair (w, f') is created, and v and @ are pruned.

(Algorithm 2) that computes all reachable vertices of S in O(nlogn) time, using efficient
data structures that allow us to implicitly construct a beam or a whole spiral in O(logn)
time.

Algorithm 1 draws a directed tree Ske, called the Skeleton, whose nodes lie on edges of
S. In particular, these nodes are either vertices of S that are found to be reachable by our
algorithm, or midpoints of reachable segments of edges of S.

Description. Algorithm 1 propagates recursively pairs (u, f), where u is an interval or a

vertex on the boundary of a face f. By propagating, we mean that we create children of the

pair (u, f) that are of the form (w, f’), where w is an image vertex or interval in L(u, f), and

f' is a face other than f. Some of these pairs will be pruned, and thus not created. The pairs

that have been created, but not yet propagated, are stored in a set A, and are called active

pairs. After being propagated, a pair is inactive. Each pair (u, f) is processed as follows.
First assume that u is an interval. (See Figure 6.) We compute the list L(u, f) of image

vertices and intervals. Then for each vertex or interval w in this list, we check whether it

needs to be pruned as follows. Let p = mid(u) and ¢ = mid(w). We prune w if at least one

of the three conditions below is met (Figure 7).

(i) pg N Ske # {p}.

(i) w and w are intervals, and edge(u) = edge(w).

(iii) » and w are intervals, edge(u) # edge(w), and there is a node g of Ske in the interior of

edge(w) such that ggq € C(fo), where fo is the face other than f bounded by edge(w).

Condition (i) ensures that Ske has no self-crossing and no cycle. Condition (ii) will be
needed in Algorithm 2 (Section 6), so that we do not need to propagate an interval backwards.
Condition (iii) will also be needed in Algorithm 2, in order to ensure that the skeleton cannot
enter two-way tunnels. (See Lemma 7.) We will prove later that our pruning scheme is
correct in the sense that, when Algorithm 1 terminates, it always outputs all the reachable
vertices. However, for some input, it may not terminate, as it may enter infinite spirals, and
thus some reachable vertices may never be visited.

If w is not pruned, we insert pg into Ske. Then we create all pairs (w, f’) such that
w C f"and f’ # f, and we insert them into the set A of active pairs. If w is an interval,
there is at most one such face f’.

Now suppose that u is a vertex (Figure 8). We still compute the list L(u, f) of image
vertices and intervals. If L(u, f) contains an interval w along the edge opposite to u, we
apply pruning condition (i). So we prune w if pg N Ske # {p}. Again, if w is not pruned,
we insert pg into Ske, and insert into A the pair (w, ') if f is adjacent to a face f’ along
edge(w). Then we handle each vertex v € L(u, f) such that v # u (if any) as follows. Let
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Figure 7 The three pruning conditions. The interval w corresponding to ¢ is pruned, and hence
the edge pg (dotted) is not constructed.
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Figure 8 Propagating a pair (u, f), when u is a vertex. (Left) The skeleton before dequeuing
(u, f). (Right) When we propagate (u, f), only v1 is pruned, and the edges ug, umz, umz and mavz
are inserted into Ske.

]

m denote the midpoint of wo. We apply pruning condition (i), so if wm N Ske # {u}, we
prune uv, and we are done with v. On the other hand, if wv is not pruned, then we insert
the edge wm into Ske, and if there is a face f’ adjacent to f along uv, we insert into A the
pair (v, f').

After this, still assuming that wo was not pruned, we try to extend the skeleton Ske
further to v. So we apply pruning condition (i) to mw. If mw N Ske # {m}, we prune v.
Otherwise, we insert the edge M into Ske, and we insert into A the pair (v, f') for each face
f' # f that is adjacent to v.

Proof of correctness. We can prove that Algorithm 1 is correct in the following sense:
» Theorem 1. If Algorithm 1 terminates, then the reachable vertices are nodes of Ske.

The condition that the algorithm terminates is necessary, as otherwise it could extend
a spiral indefinitely and then some reachable vertices would not be visited. The proof is
omitted due to space limitation. The idea is to show that, whenever we prune a vertex or an
edge, which results in a pair (w, f’) not being created, then some other pair (w’, f’) must
have been created earlier such that R(w, f') C R(w’, f'). It means that (w, f’) can be safely
pruned. Our proof is based on proving this type of invariants carefully through case analysis.
It also uses the property below.

» Lemma 2. At any time during the execution of Algorithm 1, Ske is a tree embedded in the
plane.

Proof. Pruning condition (i) ensures that Ske does not contain any cycle or crossing edges.
When propagating a pair (u, f) where u is an interval, pruning condition (ii) ensures that
the new node ¢ is different from p = mid(u). When u is a vertex of S, then our algorithm
does not attempt to propagate u into itself, so it does not create a duplicate node either. <«
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Figure 9 (a) Four one-way tunnels (shaded). (b) A two-way tunnel. All these tunnels are
maximal.

5 Properties of the skeleton

In this section, we consider the properties of the skeleton Ske, at any time during the
execution of Algorithm 1. These properties will be needed in Section 6, in order to analyze
and prove correctness of Algorithm 2. The proofs of the lemmas in this section are omitted
due to space limitation.

A branching node of Ske is a node with outdegree at least 2. An edge of Ske that is
incident to a branching node or a vertex of S, is called a special edge. The other edges of Ske
are called transversal edges. Hence, a transversal edge connects two points in the interiors of
two different edges of S, and is incident to at most one other edge at each endpoint. A beam
is a subpath made of transversal edges. If it is not contained in any other beam, we say that
it is a mazimal beam.

» Lemma 3. There are O(n) branching nodes in Ske.
» Lemma 4. There are O(n) special edges and mazimal beams in Ske.

The combinatorial structure of a transversal edge from a point in an edge e of S to a
point along another edge e’ is the pair (e, e’). Similarly, the combinatorial structure of a
beam is the sequence of edges of S that it traverses. Two beams are parallel if they have
the same combinatorial structures. A one-way tunnel is formed by two parallel beams such
that there is no other edge of Ske in the space delimited by the two beams and the first and
last edge of S that they meet. (Figure 9.) A two-way tunnel is analogous, but one sequence
is equal to the other sequence reversed. A tunnel is either a one-way tunnel or a two-way
tunnel. A tunnel is mazimal if it is not contained in any other tunnel.

We now show that there is a linear number of maximal tunnels. We prove it by charging
tunnels to either special edges, or corners: A corner of a face f is a pair (v, f) where v is a
vertex of f. (See Figure 10.)

» Lemma 5. At any time during the course of Algorithm 1, there are O(n) maximal tunnels.

A spiral is a one-way tunnel that is bounded by the same beam B on both sides. Therefore,
the beam B, or its subsequence that bounds the spiral, is periodic: it has combinatorial
structure (e1,ez,...,e) with e;4, = ¢; forall 1 < i <i+p < /¢ and some p < {. If a
spiral can be extended indefinitely, that is, we can extend the sequence (eq, e, ..., ¢e) into
an arbitrarily long sequence with period p, then we say that the spiral is an infinite spiral.
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Figure 10 Proof of Lemma 5. (Left) The tunnel (shaded) is charged to the corner (v, f).
(Middle) The tunnel is charged to the special edge pg. (Right) The tunnel is charged to beam B.
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Figure 11 (Left) A finite spiral (shaded). (Right) An infinite spiral that does not converge to a
vertex, as it never enters the shaded region.

Otherwise, we say that it is a finite spiral. Figure 2a shows an infinite spiral that converges to
a single vertex. Figure 11 shows a finite spiral, and an infinite spiral that does not converge
to a vertex.

We will see later that our algorithm handles finite spirals in the same way as a regular
tunnel (that is, a tunnel which is not a spiral). Infinite spirals behave differently, but the
lemma below shows that any beam that enters an infinite spiral cannot exit it, and hence
Algorithm 2 will interrupt this beam. (See Figure 12a.)

» Lemma 6. Suppose that Algorithm 1 extends an edge pq of the skeleton Ske inside an
infinite spiral. Then the subtree of Ske rooted at p is a single beam, which remains within
this spiral.

The lemma below shows that, while we construct the skeleton, the only way to enter a
tunnel is to enter a one-way tunnel from its entrance and towards its exit. It means that
one-way tunnels will act as one-way gates, and two-way tunnels will act as barriers during
the execution of the algorithm. The proof relies on pruning condition (iii), and is illustrated
in Figure 12b.

» Lemma 7. During the course of Algorithm 1, no new skeleton edge can be created inside
an existing tunnel, except if the tunnel is a one-way tunnel, and the new edge has the same
combinatorial type as an edge of the tunnel.

Left-turn and right-turn function. We introduce the left-turn and right-turn functions
associated with the combinatorial structure o of a beam B. Intuitively, the left-turn function
fo returns the exit point of a path that, from a given starting point, traverses the edge
sequence o, and turns left as much as possible. Similarly, the right-turn function corresponds
to an extreme right-turning path. A more precise description follows.

So let o = (eq,...,ep) denote the combinatorial structure of the beam B. We denote by
T1,%2,...,2e the coordinates along these edges. We assume that the edges are oriented in a
consistent manner, so that the left hand side of B corresponds to smaller values of z; and
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Figure 12 (a) Proof of Lemma 6. The red beam enters an infinite tunnel (shaded), and cannot
get out. (b) Proof of Lemma 7. Edge pg gets pruned by condition (iii).

the right hand side corresponds to larger values. We assume that the range of z; is [0, 1],
and thus the endpoints of e; have coordinates x; = 0 and x; = 1.

Then a beam parallel to B is completely defined by its first interval, which lies along
e1. More precisely, we denote by [a;, b;] the interval along e; corresponding to this beam
B(ay,b1). We assume without loss of generality that x;(a;) < x;(b;), that is, a; lies on the
left-hand side of B. Then x(ay) is a piecewise linear function f,(z1) of 1, with at most
one flat patch and one non-flat patch. More precisely, f, is given by two coefficients a, and
b, and an interval [¢,,d,]. The values of a,, by, ¢s, d, depend on the shapes and the cones
of directions of the faces spanned by 0. When z; € [c,,d,|, we have f,(r1) = a,z1 + bs.
When z; < ¢,, then f,(z1) = fs(c;). When x; > d,, then there is no beam corresponding
to this value of .

Similarly, we define the right-turn function g, that gives the right endpoint of the interval
along e, as a function of x;(by). Given a beam whose combinatorial structures o is the
concatenation oy.09 of two sequence o; and o5, the functions f, and g, can be determined
in constant time, given the functions f,,, ¢s,, fs, and go,.

6 Faster algorithm

In this section, we present an O(nlogn) time algorithm (Algorithm 2) to compute all the
vertices that are reachable from s. Algorithm 2 is based on Algorithm 1, and the speed-
up comes from the fact that a new beam parallel to an existing beam can be implicitly
constructed in logarithmic time, using appropriate data structures. The differences with
Algorithm 1 are the following.
The skeleton is built in a depth-first manner, always starting with the leftmost subtree,
and going from left to right at each branching. So Algorithm 2 starts by constructing a
leftmost turning path of Ske, and it constructs each maximal beam in one go.
When constructing a new transversal edge, if an edge with the same combinatorial
structure has been constructed earlier, the new beam follows parallel to a previously
constructed beam, forming a new tunnel. Then a procedure called CONSTRUCT TUNNEL
extends the new beam in one go, for as long as this tunnel can be extended. We will see
that this procedure can be implemented to run in O(logn) time.
If a beam begins to form an infinite spiral, or enters one, then it is interrupted, that is,
the corresponding active pair never gets propagated. When all active pairs correspond to
infinite spirals, Algorithm 2 halts.

On the other hand, similarly as in Algorithm 1, a special edge, or a transversal edge
such that no other edge with the same combinatorial structure has been constructed before,
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is constructed in constant time. As there are O(n) different combinatorial structures for
transversal edges, this contributes O(n) to the running time. We will argue that CONSTRUCT
TUNNEL is called only O(n) times, and hence overall running time is O(nlogn).

6.1 Data structures for beams

Let B be a beam with combinatorial structure o = (ey,...,e;). Then we represent the
left-turn and right-turn functions of any subsequence of ¢ using two balanced binary trees
Ty(B) and T, (B). These trees could be, for instance, Red-Black trees, as we will need to be
able to perform insertion, deletion, join and split operations in O(logm) time [8]. We also
record the first interval [ag, b1] of B, that is, the interval of e; that was propagated to create
the beam B.

First suppose that B does not bound any tunnel. Then Ty(B) and T, (B) are two copies
of the same binary tree representing the subsequences of ¢ in a hierarchical manner, and
recording both the left-turn and the right-turn functions. Each node corresponds to a
subsequence o;; = (e;,...,e;) of o, and records the two indices ¢ and j, as well as the
functions f,,, and g,,;. The root corresponds to the sequence o of the whole beam B, and
the leaves correspond to the sequences o;(; 1) where 1 < i < m — 1. The subsequence
corresponding to an internal node is the concatenation of the sequences stored at its children,
which are consecutive.

If the beam B bounds a tunnel on its left side, starting from edge e; to edge e;, we replace
the subtree of Ty(B) corresponding to o;; = (e;, €i+1, ..., €;) with a single node that records
the functions f,,, and g,,;. If B bounds several tunnels on its left side, we do the same for
each tunnel, as they correspond to disjoint subsequences of o. The tree T.(B) is constructed
in a similar way, except that it deals with tunnels on the right side of B.

FEach tunnel is bounded by two parallel beams B and C', each one of them being recorded
as one node in our data structure. Suppose that B lies on the left and C' lies on the right
of the tunnel. Then the node of T,.(B) and the node of T;(C) corresponding to this tunnel
record a pointer to each other.

As each node of a beam is the midpoint of the corresponding left- and right-turning path,
this data structure allows us to implicitly trace a new beam that appears immediately to the
left or to the right of B, for as long as it remains parallel to B, in logarithmic time.

If a beam B bounds an infinite spiral, then the infinite periodic subsequence is represented
by a single node that we call a sink node. By Lemma 6, a beam that enters an infinite spiral
cannot get out, so our algorithm will stop extending such beams when it encounters a sink
node.

6.2 Procedure Construct Tunnel

Suppose that we are extending a beam B, and the next transversal edge to be constructed
in this beam is pg. Assume that an edge with the same combinatorial structure has been
constructed earlier. Then there should exist a beam C' adjacent to pg. Without loss of
generality, we assume that C' lies to the right of pg, and that it has combinatorial structure
o =7.(e1,...,em), where e; is the edge containing p.2 The procedure CONSTRUCT TUNNEL
will consider a constant number of cases below, which can be handled in logarithmic time
using our data structure.

2 When several beams cross e;, we will show in the full version of this paper how to identify the beam C:
we will use a pointer from each vertex v of S to the closest beam crossing each edge incident to v.
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Initial situation

Figure 13 Result after calling CONSTRUCT TUNNEL once in Cases 1 and 2.

» Lemma 8. Let N denote the total number, over all beams D constructed during the course
of the algorithm, of nodes in the trees Ty(D) or T, (D). The procedure CONSTRUCT TUNNEL
runs in O(log N) time.

We now describe the procedure CONSTRUCT TUNNEL.

Case 1. In this case, we assume that B follows the left side of C, until B and C split at
some edge e;. That is, the combinatorial structure of B is a.(eq,...,¢e;,e’) where ¢’ # e;11,
and « is the sequence of edges crossed by B before it reaches e;. (See Figure 13.) So the
goal is to identify this index ¢, and to update the data structures accordingly.

In order to simplify the presentation, we first assume that C' did not bound any tunnel
before we started to expand B on its left side. Let a; and b; denote the ith vertex along
the left- and right-turning paths of B, starting from a; and by, respectively. We now want
to find the last index ¢ such that a; and b; lie on e;. Our data structures Ty(C) and T;.(C)
allows us to find it in O(log N) time as follows. Without loss of generality, we only consider
a; and use T;(C).

We find the last index 4 by traversing T;(C') from the leaf recording (e, e2) towards the
root, and going then going down towards the leaf recording (e;, e;4+1). (Essentially, we are
doing exponential search.) The left-turn function (ey, e3), together with the coordinates of ay,
allow us to determine whether ao € es—more precisely, we check whether a; is in the domain
of fie,,es)- If not, then we are done. Otherwise, we move to the parent of the node recording
(e1,e2). If (e1,e2) was a left child, then its parent records (e, ez, e3) or (e1,es,es,eq), SO We
use the corresponding left-turn function to determine whether a3 € e3 or a4 € e4. If (e, €2)
is a right child, then we move to the node at the same level and immediately to the right of
its parent. This node records the sequence (eq, ..., e;) where j < 6, and we can determine in
constant time from the position of az computed earlier whether a; lies on e;. We repeat this
process O(log N) time, until it fails. Then we know that (e;, e;11) is stored at a descendent
of the current node, and we find it by traversing the tree downwards.

After finding this last index 4, we cut from T;(C') the nodes corresponding to the sequence
(e1,...,e;) and append them to Ty(B). This can be done by performing two split and two
join operations, which takes O(log N) time using Red-Black trees [8]. We then insert a single
node into T;(C') that records the functions f, .. es) and g(e,,....eq), Whose coefficients we can
also compute in O(log N) time using our data structure. Then we make a copy of this node
and append it to 7;.(B). Finally, we record in each of these two nodes a pointer to the other.
So overall, we have updated the data structures for B and C in O(log N) time.

The procedure above still applies when beam C' bounds one or several tunnels on its left
side which are then split by B. The nodes of Ty(C) corresponding to these tunnels are moved
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to Ty(B) in the same way as the other nodes, which represent single edges of the skeleton.
The cross-pointers between these nodes do not need to be updated. Thus, the data structure
can be updated in O(log N) time.

Case 2. In this case, we assume that B follows the left side of C', until B reaches an edge e;
and branches. This case is similar to Case 1, except for the termination condition. In Case 1,
the beam B was extended until it quit following C from the left. In Case 2, we extend B
until it branches, and hence the left- and right-turning paths of B must be separated by a
vertex v of the subdivision S. (See Figure 13.) This vertex v can be found in O(log N) time
using the data structures Ty(C) and T;(B), which allow us to trace the left- and right-turning
paths from a; and b;. After v has been found, we know that B stops at the edge e; opposite
from v, and we update the data structures in the same way as in Case 1.

Case 3. In this case, we assume that B follows the left side of C, until B is interrupted
because its next tentative edge gets pruned. So we assume that this edge p1g; has combinat-
orial structure (e, e2), and it gets pruned due to an edge Paqz of Ske. We denote by e’ the
third edge of the face bounded by e; and es.

First assume that ps € e; and g2 € e3. Then we can prove that ¢; and ga must be at the
midpoint of an edge of S. We will show in the full version of this paper how to identify this
case in constant time by augmenting the subdivision S.

Now assume that p2gz C es. In this case, p2gz is an edge of S, so it can be identified in
O(log N) time as in Case 1.

Suppose that p; € es and g2 € e;. Then C forms a reversed tunnel with the beam D
containing pzqz. This tunnel is narrower along ey, and since piq; follows parallel to B, it
cannot cross Pa2qsz, a contradiction.

The case where py € e1 and ¢ € € is similar to the case where py € e; and ¢o € e5. The
case where py € ¢’ and ga € ey is similar to the case where ps € e; and ¢y € e3. The case
where py € €’ and gs € e; is similar to the case where ps € e and ¢o € e;. The case where
pa € e and ¢y € € is similar to the case where py € e and ¢o € €.

Case 4. In this case, we assume that B follows the left side of C, until we reach the terminal
node of C. Our data structure allows us to identify this case in O(log N), by checking that
the new section of B has the same combinatorial structure as C' until we reach the end of C.
If the terminal node is a sink, then B enters an infinite spiral and thus we stop extending it.

Case 5. The beams B and C are equal, and hence we start a spiral. So B has a combinatorial
structure of the form «.f, where 5 = (e, €2, ..., €p), before the current call to CONSTRUCT
TUNNEL. If the spiral is finite, then we are going to extend it into a.3*.(eq, ..., e;), where
k > 0 is the number of full turns made by the spiral, and ¢ is the number of edges in the last
(partial) turn.

Using our data structure, we compute f, and g,, which are linear functions. So (f,)*(a1)
and (f,)*(b;) are geometric progressions, whose expression can be determined in constant
time. If 21 (a1) is not in the domain of (f,)* for some k, then the spiral is finite, and we can
find in constant time the first such index k, which is the number of full turns of the spiral.
Similarly, we can find whether z;(b;) leaves (g, )" for some k.

If the spiral is finite, then we append a node to T,.(B) and T;(C) corresponding to the
sequence f3*.(e1,...,e;) of the spiral. If the spiral is infinite, we stop propagating B, and
append a sink node at the end of Ty(B) and T;(B).
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Case 6. In this case, we assume that B and C form a two-way tunnel, starting from pg.

For any node of Ty(C) or T,(C) that corresponds to a sequence o, we know the description
of the left- and right-turn functions f, and g,. So we can also get in constant time their
inverses f, ! and g, '. Therefore, we can follow beam C backwards in the same way as in
Cases 1 to 4, and Case 6 can be handled in the same way.

6.3 Main result

The main result of this paper is the theorem below. Due to space limitation, its proof is
omitted.

» Theorem 9. The vertices that are reachable from s are nodes of the skeleton computed by
Algorithm 2. Therefore, we can compute all the reachable vertices in O(nlogn) time.
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