Can We Recover the Cover?

Amihood Amir!, Avivit Levy?, Moshe Lewenstein3, Ronit Lubin?,
and Benny Porat®

1 Bar-Ilan University, Ramat Gan, Israel; and
Johns Hopkins University, Baltimore, MD, USA
amir@cs.biu.ac.il

2 Shenkar College, Ramat Gan, Israel
avivitlevy@shenkar.ac.il

3 Bar-Ilan University, Ramat Gan, Israel
moshe.lewenstein@gmail.com

4 Bar-Ilan University, Ramat Gan, Israel
ronit.moldovan@gmail.com

5 Bar-Ilan University, Ramat Gan, Israel
bennyporat@gmail.com

—— Abstract

Data analysis typically involves error recovery and detection of regqularities as two different key
tasks. In this paper we show that there are data types for which these two tasks can be powerfully
combined. A common notion of regularity in strings is that of a cover. Data describing measures
of a natural coverable phenomenon may be corrupted by errors caused by the measurement pro-
cess, or by the inexact features of the phenomenon itself. Due to this reason, different variants of
approximate covers have been introduced, some of which are N"P-hard to compute. In this paper
we assume that the Hamming distance metric measures the amount of corruption experienced,
and study the problem of recovering the correct cover from data corrupted by mismatch errors,
formally defined as the cover recovery problem (CRP). We show that for the Hamming distance
metric, coverability is a powerful property allowing detecting the original cover and correcting
the data, under suitable conditions.

We also study a relaxation of another problem, which is called the approzimate cover problem
(ACP). Since the ACP is proved to be NP-hard [5], we study a relaxation, which we call the
candidate-relaxation of the ACP, and show it has a polynomial time complexity. As a result,
we get that the ACP also has a polynomial time complexity in many practical situations. An
important application of our ACP relaxation study is also a polynomial time algorithm for the
cover recovery problem (CRP).

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems, G.2.1 Com-
binatorics, G.4 Mathematical Software, 1.5.2 Design Methodology

Keywords and phrases periodicity, quasi-periodicity, cover, approximate cover, data recovery

Digital Object Identifier 10.4230/LIPIcs.CPM.2017.25

1 Introduction

Data analysis typically involves error recovery and detection of regularities as two different
key tasks. In this paper we show that there are data types for which these two tasks can be
powerfully combined. A classical tool for handling data recovery is through the use of error
correcting codes. Error correcting codes are an invaluable method of adding redundancy
to data so that the initial data can be recovered even after the introduction of a bounded
number of errors. Errors in raw natural data with no prior knowledge of its structure are

© Amihood Amir, Avivit Levy, Moshe Lewenstein, Ronit Lubin, and Benny Porat;
37 licensed under Creative Commons License CC-BY

28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017).

Editors: Juha Kérkkéinen, Jakub Radoszewski, and Wojciech Rytter; Article No. 25; pp. 25:1-25:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CPM.2017.25
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

25:2

Can We Recover the Cover?

usually considered beyond the feasible scope of recovery. Nonetheless, it was recently [4]
shown, that data regularity, even if its structure is unknown a-priori, can serve as an aid to
€rTor recovery.

Regularities in strings arise in various areas of science, including coding and automata
theory, formal language theory, combinatorics, molecular biology and many others. A typical
form of regularity is periodicity, meaning that a “long” string 1" can be represented as a
concatenation of copies of a “short” string P, possibly ending in a prefix of P. Periodicity
has been extensively studied in Computer Science over the years (see [28]).

1.1 Regularities and Data Recovery

Recently, it was shown [4] that periodicity can serve as an aid to error recovery. It was proven
(H’%p mismatch errors are introduced to a periodic string of length n
having period of length p then, even if p is not known a-priori, it is possible to recover O(logn)
possible candidates, one of which is guaranteed to be the original period. This surprising
result was further reinforced by discovering that a similar result holds not just for mismatch
error corruptions bounded by the Hamming distance, but for any errors bounded by a pseudo
local metric (e.g. the swap or interchange metrics). An interesting additional result was that
even under some non-pseudo local metrics, such as the edit distance, periodicity can still
allow recovery of O(logn) candidate periods [4, 2]. However, these candidate periods are
distinguished in that none are cyclic rotations of each other. In other words, if we take one

that if no more than

representative of all candidates that are cyclic rotations of each other, we end up with the
small number of candidates. It was unknown whether there are other regularities in natural
phenomena that allow recovery of the original string. Identifying such a type of regularity is
the first topic of this paper.

In particular, for many phenomena, it is desirable to broaden the definition of periodicity
and study wider classes of repetitive patterns in strings. One common such notion is that of
a cover, defined as follows.

» Definition 1 (Cover). A length m substring C of a string T of length n, is said to be a
cover of T, if n > m and every letter of T lies within some occurrence of C'.

Note that the string C' is both a prefix and a suffix of the string 7". For example, consider the
string T' = abaababaaba. Clearly, T' is “almost” periodic with period aba, however, as it is
not completely periodic, the algorithms that exploit repetitions cannot be applied to it. On
the other hand, the string C' = aba is a cover of T, which allows applying to T" cover-based
algorithms. We study error correction feasibility for coverable phenomena.

1.2 Related Work

We review related regularity types and other approaches to handle errors in regularities.
Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according to [7]). The earliest
paper in which it was studied is by Apostolico, Farach and Iliopoulos [9], which defined the
quasi-period of a string to be the length of its shortest cover and presented an algorithm
for computing the quasi-period of a given string in O(n) time and space. The new notion
attracted immediately several groups of researchers (e.g. [10], [29, 30], [27], [11]). An overview
on the first decade of the research on covers can be found in the surveys [7, 20, 32].

While covers are a significant generalization of the notion of periods as formalizing
regularities in strings, they are still restrictive, in the sense that it remains unlikely that an
arbitrary string has a cover shorter than the word itself. Due to this reason, different variants

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

of quasi-periodicity have been introduced. These include seeds [19], mazimal quasi-periodic
substring [8], the notion of k-covers [21], A-cover [33], enhanced covers [16], partial cover [23].
Since the notion of a seed is necessary to our study and presentation of results, we give its
formal definition here.

» Definition 2 (Seed). A length m substring C of a string T of length n, is said to be a seed
of T, if n > m and there exists a superstring 7" of T such that C' is a cover of T".

Note that the first and last occurrence of the seed C' in T' may be incomplete. Other recently
explored directions include the inverse problem for cover arrays [14], extensions to strings
in which not all letters are uniquely defined, such as indeterminate strings [6] or weighted
sequences [34]. Some of the related problems are A'P-hard (see e.g., [6, 12, 23]).

In applications such as molecular biology and computer-assisted music analysis, finding
exact repetitions and covers is not always sufficient. A more appropriate notion is that of
approximate repetitions, where errors are allowed (see, e.g., [13, 15]). This notion was first
studied in 1993 by Landau and Schmidt [25, 26] who concentrated on approximate tandem
repeats. Note that, the natural definition of an approximate repetition is not clear. One
possible definition is that the distance between any two adjacent repeats is small. Another
possibility is that all repeats lie at a small distance from a single “original”. Such a definition of
approzimate seeds is studied in [12, 18, 17]. Indeed, all these definitions along with other ones
were proposed and studied (see [3, 24, 31]). Yet another possibility is that all repeats must
be equal, but we allow a fixed total number of mismatches. The possibility presented in [3]
is a global one, assuming that an original unknown string is a sequence of repeats without
errors, but the process of sequence creation or transmission incurs errors to the sequence
of repeats, and, thus, the examined input string is not a sequence of repeats. Therefore, a
(smallest) repeat generating a string with the minimum total number of mismatches with
the input string is sought. Extension of this definition approach to approximate covers is
another topic of this paper.

1.3 Our Results

In this paper we show that coverability is also a tool that allows error correction. We formally
define the Cover Recovery Problem (CRP) and characterize the feasibility of its solution. In
particular, we show:

» Theorem 3. Let S be a string coverable by a cover C of length c, and let € > 0. Assume
that at most ﬁ mismatch errors were introduced to S resulting in a string S’. Then there
exist O(logn) possible primitive substrings of S’, one of which is guaranteed to be C or a

seed of C.

In addition, extending the approach of [3] to the notion of covers, [5] define the approzimate
cover problem (ACP), in which we are given a text that is a sequence of some cover repetitions
with possible mismatch errors. Since the ACP is proved to be A'P-hard [5], we study a
relaxation of this problem. In our relaxation, which we call the candidate relazation of
the ACP, a candidate cover is also given, and we seek to align it with the given text (this
alignment is called a tiling) such that the number of mismatches is minimized. This scenario
is quite realistic in the case where a cover is sought for a string where the errors are distributed

in a manner that at least one occurrence of the cover appears in the string without errors.

We examine this relaxation and show it has polynomial time complexity. As a result, we get
that the ACP also has polynomial time complexity in many practical situations. This ACP
relaxation study enables also an efficient algorithm for recovering the candidate covers in
CRP.

25:3

CPM 2017

25:4

Can We Recover the Cover?

Paper Contributions. The main contributions of this paper are:
Proving that recovery of raw data from errors is possible not only for periodic phenomena
but also for the less rigid coverable phenomena.
Demonstrating that efficient recovery is feasible even when the underlying problem of
computing an approximate cover is N'P-hard. This is in line with the previous result of [4]
that show efficient recovery for the interchange metric, which is A"P-hard to compute.
Formalizing the candidate relaxation of the ACP and showing it is polynomial time
computable. This study served both to give a solution to the CRP and to suggest an
efficient solution for the ACP in many practical situations.

The paper is organized as follows. In Section 2, we give formal definitions and basic
lemmas. In Section 3, we study the cover recovery problem (CRP) and characterize the
extent to which the cover of the unknown uncorrupted original string can be recovered given
the possibly corrupted by mismatch errors input string. In Section 4, we study the candidate
relaxation of the ACP with its application to the ACP itself and, more importantly, to the
CRP. We conclude with some open problems in Section 5.

2 Preliminaries
In this section we give the needed formal definitions and basic lemmas.

» Definition 4 (Tiling). Let T be a string over alphabet X such that the string C' over
alphabet ¥ is a cover of T. Then, the sorted list of indices representing the start positions of
occurrences of the cover C in the text T is called the tiling of C' in T.

In this paper we have a text T' which may have been introduced to errors and, therefore,
is not coverable. However, we would like to refer to a retained tiling of an unknown string C
in T although C' does not cover T because of mismatch positions. The following definition
makes a distinction between a list of indices that may be assumed to be a tiling of the text
before mismatch errors occurred and a list of indices that cannot be such a tiling.

» Definition 5 (A Valid Tiling). Let T be an n-length string over alphabet ¥ and let L be
a sorted list of indices L C {1,...,n}. Let m =n 4+ 1 — Lj,st, where Ljqq is the last index
in L. Then, L is called a valid tiling of T, if i1 = 1 and for every iy, ix4+1 € L, it holds that
Tl — T < M.

» Notation 1. Let C be an m length string over alphabet . Denote by S(C) a string of
length n, n > m, such that C' is a cover of S(C).

Note that S(C) is not uniquely defined even for a fixed n > m, since every different valid
tiling of the m-length string C generates a different n-length string S(C). A unique version
can be obtained if a valid tiling L is also given.

» Notation 2. Let T be an n-length string over alphabet ¥ and let L be a valid tiling of
T. Let m =n+ 1 — Ligst, where Ligst is the last index in the tiling L. For any m-length
string C’, let SL(C") be the n-length string obtained using C’ as a cover and L as the tiling
as follows: Sp(C') begins with a copy of C' and for each index i in L a new copy of C' is
concatenated starting from index i of Sp.(C") (running over a suffix of the last copy of C' if
the difference between i and the previous index in L is less than m).

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

» Definition 6. Let T be a string of length n over alphabet ¥. Let H be the Hamming
distance. The distance of T' from being covered is:

dist = H(S(O),T).

min
cex*,|Cl<n,S(C)exn
We will also refer to dist as the number of errors in T.

» Definition 7. Let T be an n-long string over alphabet 3. An m-long string C' over X,
m € N, m < n, is called an m-length approzimate cover of T, if for every string C’ of length
m over ¥, mingcnes» H(S(C"),T) > mingcyesn H(S(C),T), where H is the Hamming
distance of the given strings.

We refer to ming(cyes» H(S(C),T) as the number of errors of an m-length approvimate
cover of T.

» Definition 8 (Approximate Cover). Let T be a string of length n over alphabet 3. A string
C over alphabet X is called an approzimate cover of T if:
1. C is an m-length approximate cover of T' for some m € N, m < n, for which
min H(S(C),T) = dist.
5(C)exn
2. for every m/-length approximate cover of T', C’, s.t. ming(cryexn H(S(C"),T) = dist, it
holds that: m' > m.

Primitivity. By definition, an approximate cover C' should be primitive, i.e., it cannot be
covered by a string other than itself (otherwise, T has a cover with a smaller length). Note
that a periodic string can be covered by a smaller string (not necessarily the period), and
therefore, is not primitive.

» Definition 9. The Approzimate Cover Problem (ACP) is the following:
INPUT: String T of length n over alphabet X.
OUTPUT: An approximate cover of T', C'; and the number of errors in T'.

The goal of the following definition and lemmas is Lemma 15, which is a crucial tool for
the efficiency of the candidate relaxation algorithm.

» Definition 10 (String Mask). Given a string C of length m, the mask M of C' is a boolean
array of length m, such that M[i] = 1 if and only if the suffix C[i..m] is equal to the prefix
Cll.m—1i+1].

» Lemma 11. Let C be a string of length m and let M be its mask. Let i,j be indices such
that 1 <i < j <m and M[i] = M[j] = 1, then the substring C[i..m] has a period of length
j—i.

» Lemma 12. Let C be a primitive string of length m and let M be its mask. Let i be the
smallest index such that 1 <i <m and M[i| =1, then i > |] + 1.

» Lemma 13. Let C be a string of length m and let M be its mask. Let i,j be indices such
that M[i)| = M[j]=1, j —i=g > 0. Let k be the minimal index such that j < k < m and
Mkl =1. Then, k=j+g ork>j+|5].

» Lemma 14. Let C be a string of length m and let M be its mask. Let i, 7, k, ¢ be indices
such that i < j, k < £, M[i] = M[j] = M[k] = M[{] = 1 and j —i = ¢ — k then
Cli.j—1] = Clk.. —1].

25:5

CPM 2017

25:6

Can We Recover the Cover?

» Lemma 15. Let C be a primitive string of length m and let M be its mask. Let Ip; be
the sorted list of indices i such that 1 < i < m and M[i] = 1. Let S¢ = {Clig..ix+1 —
1] | igyiks1 are adjacent indices in Ipr} U {Clijgst--m] | t1ast = max;, er,, ik} be a set of
substrings of C. Then, |Sc| = O(logm).

3 Characterization of the Cover Recovery Problem Approximation

In this section we study the Cover Recovery Problem (CRP) and characterize the extent to
which the cover of the original unknown uncorrupted original string can be recovered given
the possibly corrupted by mismatch errors input string. The term approzimation here refer
to the ability to give a relatively small size set of candidates that includes the exact cover of
the original string or a seed of it. We begin with a formal definition of the CRP problem.

» Definition 16 (The Cover Recovery Problem).

INPUT: An € > 0 and a string S’ of length n over alphabet 3, which is a string S covered
by the primitive cover C possibly corrupted by at most ﬁ mismatch errors, where c is
the length of C.

OUTPUT: A small size set O of candidate strings such that C € O.

First, we show the bounds on the number of errors that still guarantees a small-size set
O of candidates. We then prove a bound on the size of this set O. In Section 4 we then
conclude how this set can be identified, and thus the original uncorrupted string can be
approzimately recovered. Some more formal definitions and lemmas are needed. We start
with the definitions of alignment and neighbourhood that we use to prove the bound on the
number of errors that still enable a recovery.

» Remark. Throughout this section we use ¢ to denote a cover length and C' the cover string,
ie,c=|C|.

» Definition 17. Let S = S[1],...,S[s]and T' = T'[1],. .., T'[t] be strings, and let 1 < ¢ < |T|.
The alignment of S with T in location i is the comparison of S[j] and T[i + j — 1],Vj =
1,...,min(s,t — i+ 1). In other words, we place S above T such that the first location of S
is aligned with the ¢-th location of T'.

» Definition 18. Let C = C[1],...,C]c| be a primitive cover, and let 1 <i <ec. We call i a
neighbouring index of C ifVj, j =1,...,c—1, we have C[i+ j|] = C[j]. For any neighbouring
index 4, denote by C o; C the string composed of the prefix of length i of C' concatenated by
C. We call C o; C the neighbourhood of C at index i. In particular, if ¢ = ¢ then C o; C is
C?, the concatenation of C' with itself.

If we are interested in a neighbourhood of C' where the location is not important, we will
denote it by C o C.

Lemma 19 is the basic building block in our error bound proof.

» Lemma 19. Let C be a primitive cover and C o; C' be a neighbourhood of C at location i.
Then for every j # i, 1 < j < ¢, the alignment of C with C o; C in location j has at least
one mismatch.

Proof. Because C' is a primitive cover, then ¢ > ¢/2, by Lemma 12. If 1 < j < ¢/2 then an
exact alignment leads to non-primitivity of C', contradiction. However, if there is an exact
alignment for ¢/2 < j # i, then |j — i| < ¢/2 and thus we again have a contradiction to the
primitivity of C. Therefore, there must be at least one mismatch in an alignment at any
index j # 1. |

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

We make use of following lemma for proving the upper bound on the number of candidates
in our output set.

» Lemma 20. Let S and C be two primitive strings such that C is a seed of S. Then there
is at most one string S’ with the following properties:

1. S’ is covered by C.

2. S is a substring of S’

3. S’ is the shortest string with properties 1 and 2 above.

Proof. Assume there are two such strings, S’ and S”. Since they are both shortest possible
superstrings of S (i.e., strings containing S as a substring), then S matches each of them in
their first occurrence of C. If S” # S” then there must be at least one index ¢ in S where C
starts in S’ but not in S”. However, then by Lemma 19 there must be at least one mismatch
in the alignment of at least one of them with S, contradiction to the fact that S is a substring
of both of them. |

» Lemma 21. Let n € N and let Sy, Ss be two n-long coverable strings with C1 and Co the
covers of S1 and Sy respectively, where c1 > co and Cy is not a seed of Cy. Then

H(S), S5) > L.
C1

We are now ready to prove our approximation bound for the CRP. Lemma 22 is needed
for proving our characterization theorem.

» Lemma 22. Let € > 0 be a constant, S an n-long string, and C1,Cs are ¢1 and co-length
approzrimate seeds of S with at most m, m errors respectively (w.l.o.g. assume
that ¢1 > ¢3), where Cy is not a seed of Cy. Then,

aa>(1+e) e

Proof. Let S; be the n-long string such that C; is its seed and Ss be the n-long string
such that Cs is its seed. We are given that H(S1,S) < ﬁ and H(S2,5) <
Therefore,

__n___
(24¢€)-ca”

n n n
24+¢e)-c1 (2+¢)

> H(S1,S5)+ H(Ss,5).

By triangle inequality we have,
H(SDS) + H(SQ,S) > H(Sl,SQ) .
By Lemma 21,

H(S), S5) > L.
&1

Therefore,
n N n o n
24+¢e)-c1 (242

from which we get,
cat+ec1 > (24¢)e
or,

c1 > (1+€)CQ. |

25:7

CPM 2017

25:8

Can We Recover the Cover?

We conclude with our characterization theorem, which is a more accurate version of
Theorem 3.

» Theorem 23. Let S be an n-long string. Then, there are at most log,, . n + 1 different

c-length approxrimate covers C' of S with at most ﬁ errors such that none is a seed of

another.

Proof. First, note that there cannot be two such different c-length approximate covers unless
one is a seed of the other, because then, by Lemma 22, we get ¢ > (1 + ¢)¢, contradiction.
Thus, such different c-length approximate covers must have different length. Now, let
1<l <l <...<ly—1 <l <n be the different lengths of c-length approximate covers of S.
By Lemma 22,

A+ '<U+e)f <42 h<...<(0+e)? lio<(Q4e) -1 <l;<n
Therefore, ¢t — 1 < log; . n. |

» Example 24. We now show an example where a string has many substrings that all cover
the given string with two errors. However, all these substrings have a single shortest 2-error
seed. Consider the string S = aaaaaaaaa(baaaa)fbaaaaaaaaa. Then, all the following
primitive strings cover S with two errors: aaaabaaaa, aaaabaaa, aaaabaa, aaaaba, aaabaaaa,
aabaaaa, abaaaa. They all have either abaaaa or aaaaba as a seed. Note that there are 2
such shortest 2-error covers, however, each is a seed of the other.

4 The Candidate Relaxation of the ACP

In this section we study the following relaxation of the approximate cover problem:

» Definition 25 (The Candidate Relaxation of the ACP).

INPUT: String T of length n over alphabet ¥, and a candidate cover C of length m over
alphabet X.

OUTPUT: ming(cyesn H(S(C),T), i.e., the minimum number of errors in any valid tiling of
CinT.

» Remark. If £ = mingcyexn H(S(C),T), we use the term k-error cover for the given C.

Note that, since a candidate cover must be primitive, we may assume that this is indeed
the case. A linear-time verification is possible using the algorithm of [9]. We describe a
dynamic programming algorithm for this problem, which uses the well-known Knuth-Morris-
Pratt [22] and Abrahamson-Kosaraju [1] algorithms. Our algorithm consists of a preparation
phase, and a dynamic programming phase. We denote by m™* the number of set bits in the
mask M of the given candidate C.

4.1 The preparation phase

The preparation phase is composed of the following three stages:

1. Computing the mask of C. This computation can be performed efficiently using the
KMP algorithm. We compute the “failure automaton” for C'. Denote the states of the
automaton by sg, 1, S2, ..., Sy,. We consider the final state s,, of the automaton, and
follow the sequence of fail links that start from it. Assume that this sequence is s, s, , Si,,
etc. The first link in the sequence means that C7, the longest proper prefix of C' that is
equal to the corresponding suffix, is of length ;. The second link means that Cs, the

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

longest proper prefix of C; that is equal to the corresponding suffix of C, is of length is.
However, C is also the second longest prefix of C' that is equal to the corresponding suffix
of C. By continuing in this process, we obtain the sequence C7,Cs5, ... of all prefixes of
C that are equal to the corresponding suffixes. Hence, the corresponding sequence of
lengths 47,142, ... gives the (decreasing) sequence of indices j, = m — iy + 1, for which
MTje] = 1, where M is the mask of C.

2. Dividing C into disjoint substrings. We divide C into substrings according to the indices
i for which M[i] = 1. Specifically, if the (increasing) sequence of indices ¢ for which
MIi] = 11is 41,42, ... 0m where 1 = i3 <is < ... < iy, then the substrings we consider
are all substrings of C' of the form s; = C[i;..i;41 — 1], for 1 < j < m* — 1, along with
the suffix s,,« = Cliy,-..m].

3. Computing the Hamming distance from substrings of T' to the strings s;. For each
string s;, 1 < j < m*, we compute its Hamming distance to all substrings of T' simul-
taneously using the Abrahamson-Kosaraju algorithm. Since for many values of j, s; is
equal to s;_1 (actually, by Lemma 15, the sequence s1, S, .. ., Sm,» contains only O(logm)
distinct elements), we first check whether s; = s;_1 and apply the Abrahamson-Kosaraju
algorithm only in the rare cases of inequality. The array of Hamming distances returned
by the Abrahamson-Kosaraju algorithm is denoted below by Hamming(s;,T).

4.2 The dynamic programming phase

When the preparation phase is done, we are ready to compute the minimal & such that C'
is a k-error cover of T'. This computation is performed in a dynamic fashion. Namely, we
go over all suffixes of T in an increasing order, and for each suffix T'[i..n], we compute the
minimal k(T'[i..n]) such that C is a k(T[i..n])-cover of T[i..n], utilizing the computations
performed for the previous suffixes. The values k(T[i..n]) are stored in an array M IN, where
MIN|i] = k(T[i..n]). In the beginning of the algorithm, all values of MIN are initialized to
0o. The output of the algorithm is MINTJ1].

As a cover must be a suffix of the covered string, we have MIN[i] = oo for all i > n—m+1,
meaning that there does not exist a string of length n — i + 1 that can be covered by C.
For the same reason, MIN[n —m+ 1] = H(C,T[n — m + 1..n]), as there is a unique way
to cover a string of length m by C'. Since any two overlapping occurrences of C' in a tiling
that covers the suffix T'[i..n] must differ by a value j such that M[j + 1] = 1, and since
|s1] =min({j : 1 < j <m, M[j+ 1] = 1}), it is impossible to cover a string of length m + j,
1 < j < s1], by copies of C. Thus, MIN[i] =oc0 foralln —m — |s1|+ 1 <i<n-—m+1.
The following steps are performed for all ¢ <n —m — |s1]|, in a decreasing order.

For each such i, we go over all possible strings of length n — ¢ 4+ 1, S, (C) that cover
Ti..n] by C with k-errors (resulted from different tiling L; for which its first index is aligned
with index 4 in the text). As each such tiling must start with a copy of C, and as the second
occurrence of C' in this tiling must differ from the initial one either by m or by a value j such
that M[j + 1] = 1, we can compute the minimal number of error in any such tiled strings
St.;(C) (for which the first occurrence of C' is aligned with index 7 in 7" and the second
occurrence of C' is index j) as Error(Sr,,(C)) = H(C[1..4],T[i..i + j — 1]) + MIN[i + j]
(note that by the structure of the algorithm, MINTi + j] is already known at this stage.)
The value MINTi] is given by:

MINTJi| = Error(Sy,;(C)).

min
Je{i:M[j+1]=1}u{m}
Naively, we can go over all m* possible values of j, compute Error(Sr,,(C)) for each of them,
and find out the minimum. For the sake of efficiency, we compute these values incrementally,

25:9

CPM 2017

25:10

Can We Recover the Cover?

by advancing the starting point of the second occurrence of C' in the covering by |s;| every
time. Formally, this is performed as follows.

We define a counter j that corresponds to the initial shift of the second occurrence of C
in the tiling relative to the position ¢ in 7. j is initialized to 0. Then, for £ =1,2,...,m*, we
advance j by |s¢| and check whether H(C[1..5], T[i..i+j —1])+ MIN[i+ j] for j = Zf,zl 5|
is lower than the previously best value of Error. If the answer is positive, the temporary
value of MINTi] is replaced by H(C[1..5],T[i..i +j — 1]) + MIN[i + j].

In order to compute the values H(CI1..5], T[i..i + j — 1]) efficiently, we observe that for
j= Eﬁzl |s|, we have

H(C[.4),Tli.i+j—1]) = H(s1,T[i..i +|s1] —1])
+ H(so,T[i+ |s1]-i + [s1] + [s2| = 1]) + ...

-1 {—1
+ H(se, T+ Y seli+ Y [sel])
r=1 r=1

Hence, we compute H(C[1..j], T[i..i4+j—1]) incrementally by keeping a counter err, initializing
it to 0, and advancing it by H(s¢, T[i + Zf;i |sp]..0 + Zf;i |s]]) when j is advanced
by |s¢|. Finally, in order to skip unnecessary operations, for each ¢ we check whether
i+ j+|s¢] <n—m+1, as otherwise, an occurrence of C clearly cannot start at position
14 7.

After going over £ =1,2,...,m* we fix the last temporary value MINTJi] to be its final
value, and proceed to ¢ — 1. As mentioned before, M IN[1] is the output of the algorithm. A
pseudo-code of the algorithm is presented in Figure 1.

The correctness of the Candidate Relaxation Dynamic Programming algorithm is given
in Lemma 26. The complexity of the algorithm is given in Lemma 27.

» Lemma 26. Let T be a length-n string and let C be a length-m cover. Let MIN be the
final array obtained by the dynamic programming algorithm described above with input T
and C. Then for any 1 <i <mn, MINIi] is equal to the minimal k such that C is a k-error
cover of T'[i..n].

Proof. The proof is by an inverse induction on i. The induction basis is the cases i >
n—m — |s1| + 1, for which MINJi| was calculated explicitly above and is easily seen to be
equal to their final value computed by the algorithm.

Assume that the claim holds for all ¢ > iy, and consider the case i = ig. Let SLiO (@)
be the tiled string of T'[ig..n] by copies of C starting from index ig, for which the minimal
number of errors k(T'[ig..n]) is attained. The tiling S, (C) must start with a copy of C, and
the second occurrence of C'in S, (C') must differ from the initial one either by m or by a
value j such that M[j + 1] = 1. As the total error of Sz, (C) is k(T'[ig..n]), we have

k(Tlig..n]) > H(C[1..4], T[i.i0 + § — 1]) + k(T[ip + j..n]).
On the other hand, by the structure of our algorithm, its outputs satisfy

MINTi] < H(C[1..4], T[i..io+j—1])+MIN[ig+j] = H(C[1..5], T[i..t0+7i—1])+k(T[io+]..n]),
where the equality holds by the induction assumption. Hence, MIN[ig] < k(T[ig..n]).
Finally, since M INi] is obtained in the algorithm by computing the error of a concrete cover
(that can be traced inductively), it is clear that MIN[i] > k(T [ig..n]). This completes the
proof. |

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

THE CANDIDATE RELAXATION DYNAMIC PROGRAMMING ALGORITHM
Input: A string T of length n, and a candidate cover C of length m
1 find the mask M of C using the KMP algorithm

2 start <1

3 for i< 2tomdo

4 if M[i] =1 then

5 s+ sUCClstart..i — 1]

6 start <1

7 s< sUC|[start..m]

8 for each substring s; do

9 if |si| = |si—1| then

10 Hamming(s;, T) + Hamming(si—1,T)

11 else

12 Hamming(si, T) < Abrahamson — Kosaraju(s;,T)
13 for i < 1 ton do

14 MINJi] + oo

15 MINn —m+1] < H(C,T[n —m + 1..n])

16 fori<—n—m+1— |s1| to 1 by -1 do

17 7+0

18 err <0

19 for each substring s, do

20 if j + |s¢] <m —m then

21 err < err + Hamming(se, T[i + j])

22 if MIN[i] > err + MIN[i + j + |s¢|] then

23 MINTi] < err + MIN[i+ j + |s¢|]

24 G+ sl

Output:

25 MIN[1]

Figure 1 The dynamic programming algorithm for the candidate relaxation of the ACP.

» Lemma 27. Let T be a text of length n and C' a candidate cover of length m. Then, the
time complezity of the Candidate Relazation Dynamic Programming algorithm on T and C

is O(n-m* + ny/mlogm), where m* is the number of set bits in the mask M of C.

Proof. First, we analyze the preparation phase of the algorithm. As explained above in the
description of the algorithm, computing the mask M of C' can be done by running the KMP
algorithm for C', which requires O(m) operations. Dividing C into disjoint substrings given
the mask M of C can clearly be done in O(m) operations. Computing the Hamming distance
from substrings of T' to the strings s; can be performed by applying the Abrahamson-
Kosaraju algorithm once for each of the substrings s;. As by Lemma 15, the number
of distinct substrings s; is O(logm), the Abrahamson-Kosaraju algorithm is applied only
O(logm) times, while for the other values of j (whose total number is bounded from above
by m) we perform only a simple “copy” operation. The complexity of each application of the
Abrahamson-Kosaraju algorithm is O(n+/mlogm), and hence, the total complexity of this
step is O(logm - ny/mlogm).

A refinement of the analysis of this computation shows that the complexity is actually
O(n+/mlogm). Note that the Abrahamson-Kosaraju algorithm is applied for distinct strings
of the form s;. Consider the lengths of these strings. By Lemma 15, if we denote |sx| = gk
and let hy denote the distance from the end of s; to the end of C, we have that whenever

25:11

CPM 2017

25:12

Can We Recover the Cover?

Sk+1 # Sk, either gry1 < gi/2 or hip1 < 3hy/4. Moreover, as the latter condition arises only
in the case hy < 2g; (see the proof of Lemma 15), it follows that the sequence of lengths
g1 > g2 > ... of strings on which the Abrahamson-Kosaraju algorithm is applied satisfies
Jk+a < gr/4. Since g3 < m, the total complexity of this step is at most O(n\/mlogm).
We now analyze the dynamic programming phase. The main loop of the dynamic
programming is performed for all 1 <i <n —m —|sq|, i.e., O(n) times. For each i, we go
over the m* strings s;, and for each of them, we perform a few simple operations (i.e., table
lookups and comparisons). Hence, the time complexity of this phase is O(n - m*).
Therefore, the total time complexity of the algorithm is O(n - m* + ny/mlogm). <

This completes the proof of Theorem 28.

» Theorem 28. Given a text T' of length n a candidate cover C of length m over alphabet
3. Then, the candidate relaxation of the approrimate cover problem of T can be solved in
O(n - m* 4+ n/mlogm) time, where m* is the number of set bits in the mask M of C.

Theorem 28 has the following useful applications to the ACP (Corollary 29) and CRP
(Corollary 30).

» Corollary 29. Let T be a text of length n over alphabet ¥. Denote by v(T') the mazimum
of m* + v/mlogm over all primitive substrings C of T with length m < n, where m* is the
number of set bits in the mask M of C. Assume that the error distribution guarantees that
at least one occurrence of an approximate cover of the text is without errors. Then, the
approximate cover problem of T can be solved in O(n®-~y(T)) time.

Proof. The condition implies that C' is a substring of T. Take each of the O(n?) primitive
substrings of T" of length less than n as a candidate cover in the algorithm and run the dynamic
programming algorithm of Figure 1. The corollary then follows from Theorem 28. |

» Corollary 30. Let S be a n-long string and ¢ > 0. Denote by v(S) the mazimum of
m* + v/mlogm over all primitive substrings C' of S with length m < n, where m* is the
number of set bits in the mask M of C. Then, a set of at most log, . n different m-length
approximate covers C' of S such that none is a seed of another, each with at most m
errors, can be constructed in O(n3 - ~y(S)) time.

Proof. Use the same algorithm as in the proof of Corollary 29 but retain as candidates in
the output set only m-length approximate covers C of S, for which the candidate relaxation

algorithm finds at most (errors. From this set retain only candidates that do not have

n
2+e)-m
a shorter or same length candidates as seeds. |

5 Open Problems

In this paper we initiated the study of the CRP as well as a new relaxation of the ACP.
Some interesting questions and open problems are:
Since the ACP is proved to be N"P-hard, it is interesting to find other polynomial time
relaxations of the ACP, besides the candidate relaxation studied in this paper. Such a
study will broaden our understanding as well as suggest practical solutions.
In this paper we considered the Hamming distance as a metric in the definition of
approximate cover. Other string metrics can be considered as well. It is interesting to see
if and how the complexity of the problem changes with the use of other string metrics.

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

—— References

1

10

11

12

13

14

Karl R. Abrahamson. Generalized string matching. SIAM J. Comput., 16(6):1039-1051,
1987. doi:10.1137/0216067.

Amihood Amir, Mika Amit, Gad M. Landau, and Dina Sokol. Period recovery over
the Hamming and edit distances. In Evangelos Kranakis, Gonzalo Navarro, and Edgar
Chévez, editors, Proceedings of the 12th Latin American Symposium on Theoretical In-
formatics (LATIN 2016), volume 9644 of LNCS, pages 55-67. Springer, 2016. doi:
10.1007/978-3-662-49529-2_5.

Amihood Amir, Estrella Eisenberg, and Avivit Levy. Approximate periodicity. In Otfried
Cheong, Kyung-Yong Chwa, and Kunsoo Park, editors, Proceedings of the 21st Interna-
tional Symposium on Algorithms and Computation (ISAAC 2010), volume 6506 of LNCS,
pages 25-36. Springer, 2010. doi:10.1007/978-3-642-17517-6_5.

Amihood Amir, Estrella Eisenberg, Avivit Levy, Ely Porat, and Natalie Shapira. Cycle
detection and correction. ACM Trans. Algorithms, 9(1):13:1-13:20, 2012. doi:10.1145/
2390176.2390189.

Amihood Amir, Avivit Levy, Ronit Lubin, and Ely Porat. Approximate cover of strings.
In Juha Kérkkéinen, Jakub Radoszewski, and Wojciech Rytter, editors, Proceedings of
the 28th Annual Symposium on Combinatorial Pattern Matching (CPM 2017), volume 78
of LIPIcs, pages 26:1-26:14. Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, 2017.
doi:10.4230/LIPIcs.CPM.2017.26.

Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, and Gad M.
Landau. Conservative string covering of indeterminate strings. In Jan Holub and Jan
Zdérek, editors, Proceedings of the Prague Stringology Conference (PSC 2008), pages 108—
115. Czech Technical University in Prague, 2008. URL: http://www.stringology.org/
event/2008/p10.html.

Alberto Apostolico and Dany Breslauer. Of periods, quasiperiods, repetitions and covers.
In Jan Mycielski, Grzegorz Rozenberg, and Arto Salomaa, editors, Structures in Logic and
Computer Science: A Selection of Essays in Honor of Andrzej Ehrenfeucht, volume 1261
of LNCS, pages 236-248. Springer, 1997. doi:10.1007/3-540-63246-8_14.

Alberto Apostolico and Andrzej Ehrenfeucht. Efficient detection of quasiperiodicities
in strings. Theor. Comput. Sci., 119(2):247-265, 1993. doi:10.1016/0304-3975(93)
90159-Q.

Alberto Apostolico, Martin Farach, and Costas S. Iliopoulos. Optimal superprimitivity
testing for strings. Inf. Process. Lett., 39(1):17-20, 1991. doi:10.1016/0020-0190(91)
90056-N.

Dany Breslauer. An on-line string superprimitivity test. Inf. Process. Lett., 44(6):345-347,
1992. doi:10.1016/0020-0190(92)90111-8.

Dany Breslauer. Testing string superprimitivity in parallel. Inf. Process. Lett., 49(5):235—
241, 1994. doi:10.1016/0020-0190(94)90060-4.

Manolis Christodoulakis, Costas S. Iliopoulos, Kunsoo Park, and Jeong Seop Sim. Approx-
imate seeds of strings. J. Autom. Lang. Comb., 10(5/6):609-626, 2005.

Tim Crawford, Costas S. Iliopoulos, and Rajeev Raman. String-matching techniques for
musical similarity and melodic recognition. In Walter B. Hewlett and Eleanor S. Field, ed-
itors, Melodic Similarity: Concepts, Procedures, and Applications, volume 11 of Computing
in Musicology, pages 73—-100. MIT Press, Cambridge, Massachusetts, 1998.

Maxime Crochemore, Costas S. Iliopoulos, Solon P. Pissis, and German Tischler. Cover
array string reconstruction. In Amihood Amir and Laxmi Parida, editors, Proceedings of
the 21st Annual Symposium on Combinatorial Pattern Matching (CPM 2010), volume 6129
of LNCS, pages 251-259. Springer, 2010. doi:10.1007/978-3-642-13509-5_23.

25:13

CPM 2017

http://dx.doi.org/10.1137/0216067
http://dx.doi.org/10.1007/978-3-662-49529-2_5
http://dx.doi.org/10.1007/978-3-662-49529-2_5
http://dx.doi.org/10.1007/978-3-642-17517-6_5
http://dx.doi.org/10.1145/2390176.2390189
http://dx.doi.org/10.1145/2390176.2390189
http://dx.doi.org/10.4230/LIPIcs.CPM.2017.26
http://www.stringology.org/event/2008/p10.html
http://www.stringology.org/event/2008/p10.html
http://dx.doi.org/10.1007/3-540-63246-8_14
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0304-3975(93)90159-Q
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(91)90056-N
http://dx.doi.org/10.1016/0020-0190(92)90111-8
http://dx.doi.org/10.1016/0020-0190(94)90060-4
http://dx.doi.org/10.1007/978-3-642-13509-5_23

25:14

Can We Recover the Cover?

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

Maxime Crochemore, Costas S. Iliopoulos, and Hiafeng Yu. Algorithms for computing
evolutionary chains in molecular and musical sequences. In Costas S. Iliopoulos, editor,
Proceedings of the 9th Australian Workshop on Combinatorial Algorithms (AWOCA 1998),
pages 172-184, France, 1998. URL: https://hal-upec-upem.archives-ouvertes.fr/
hal-00619988/file/9807-EC.pdf.

Tomés Flouri, Costas S. Iliopoulos, Tomasz Kociumaka, Solon P. Pissis, Simon J. Puglisi,
William F. Smyth, and Wojciech Tyczyriski. Enhanced string covering. Theor. Comput.
Sei., 506:102-114, 2013. doi:10.1016/j.tcs.2013.08.013.

Ondfej Guth and Borivoj Melichar. Using finite automata approach for searching approx-
imate seeds of strings. In Xu Huang, Sio-Iong Ao, and Oscar Castillo, editors, Intelligent
Automation and Computer Engineering, volume 52 of Lecture Notes in Electrical Engineer-
ing, pages 347-360. Springer Netherlands, 2010. doi:10.1007/978-90-481-3517-2_27.
Ondrej Guth, Borivoj Melichar, and Miroslav Balik. Searching all approximate covers and
their distance using finite automata. In Peter Vojtas, editor, Proceedings of the Conference
on Theory and Practice of Information Technologies (ITAT 2008), volume 414 of CEUR
Workshop Proceedings, pages 21-26, 2009. URL: http://ceur-ws.org/Vol-414/paper4.
pdf.

Costas S. Tliopoulos, Dennis W. G. Moore, and Kunsoo Park. Covering a string. Algorith-
mica, 16(3):288-297, 1996. doi:10.1007/BF01955677.

Costas S. lliopoulos and Laurent Mouchard. Quasiperiodicity and string covering. Theor.
Comput. Sci., 218(1):205-216, 1999. doi:10.1016/S0304-3975(98)00260-6.

Costas S. Iliopoulos and William F. Smyth. An on-line algorithm of computing a minimum
set of k-covers of a string. In Costas S. Iliopoulos, editor, Proceedings of the 9th Australian
Workshop on Combinatorial Algorithms (AWOCA 1998), pages 97-106, 1998.

Donald E. Knuth, James H. Morris Jr., and Vaughan R. Pratt. Fast pattern matching in
strings. SIAM J. Comput., 6(2):323-350, 1977. doi:10.1137/0206024.

Tomasz Kociumaka, Solon P. Pissis, Jakub Radoszewski, Wojciech Rytter, and Tomasz
Waleri. Fast algorithm for partial covers in words. Algorithmica, 73(1):217-233, 2015.
do0i:10.1007/s00453-014-9915-3.

Roman M. Kolpakov and Gregory Kucherov. Finding approximate repetitions under Ham-
ming distance. Theor. Comput. Sci., 1(303):135-156, 2003. doi:10.1016/30304-3975(02)
00448-6.

Gad M. Landau and Jeanette P. Schmidt. An algorithm for approximate tandem repeats. In
Alberto Apostolico, Maxime Crochemore, Zvi Galil, and Udi Manber, editors, Proceedings
of the 4th Annual Symposium on Combinatorial Pattern Matching (CPM 1993), volume
684 of LNCS, pages 120-133. Springer, 1993. doi:10.1007/BFb0029801.

Gad M. Landau, Jeanette P. Schmidt, and Dina Sokol. An algorithm for approximate
tandem repeats. J. Comput. Biol., 8(1):1-18, 2001. doi:10.1089/106652701300099038.
Yin Li and William F. Smyth. Computing the cover array in linear time. Algorithmica,
32(1):95-106, 2002. doi:10.1007/s00453-001-0062-2.

M. Lothaire, editor. Combinatorics on words. Cambridge Mathematical Library. Cambridge
University Press, 1997. doi:10.1017/CB09780511566097.

Dennis Moore and William F. Smyth. An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett., 50(5):239-246, 1994. doi:10.1016/0020-0190(94)00045-X.
Dennis Moore and William F. Smyth. A correction to “An optimal algorithm to com-
pute all the covers of a string”. Inf. Process. Lett., 54(2):101-103, 1995. doi:10.1016/
0020-0190(94)00235-Q.

Jeong Seop Sim, Costas S. Iliopoulos, Kunsoo Park, and William F. Smyth. Approx-
imate periods of strings. Theor. Comput. Sci., 262(1):557-568, 2001. doi:10.1016/
50304-3975(00)00365-0.

https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/file/9807-EC.pdf
https://hal-upec-upem.archives-ouvertes.fr/hal-00619988/file/9807-EC.pdf
http://dx.doi.org/10.1016/j.tcs.2013.08.013
http://dx.doi.org/10.1007/978-90-481-3517-2_27
http://ceur-ws.org/Vol-414/paper4.pdf
http://ceur-ws.org/Vol-414/paper4.pdf
http://dx.doi.org/10.1007/BF01955677
http://dx.doi.org/10.1016/S0304-3975(98)00260-6
http://dx.doi.org/10.1137/0206024
http://dx.doi.org/10.1007/s00453-014-9915-3
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1016/S0304-3975(02)00448-6
http://dx.doi.org/10.1007/BFb0029801
http://dx.doi.org/10.1089/106652701300099038
http://dx.doi.org/10.1007/s00453-001-0062-2
http://dx.doi.org/10.1017/CBO9780511566097
http://dx.doi.org/10.1016/0020-0190(94)00045-X
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/0020-0190(94)00235-Q
http://dx.doi.org/10.1016/S0304-3975(00)00365-0
http://dx.doi.org/10.1016/S0304-3975(00)00365-0

A. Amir, A. Levy, M. Lewenstein, R. Lubin, and B. Porat

32

33

34

William F. Smyth. Repetitive perhaps, but certainly not boring. Theor. Comput. Sci.,
249(2):343-355, 2000. doi:10.1016/50304-3975(00)00067-0.

Hui Zhang, Qing Guo, and Costas S. lliopoulos. Algorithms for computing the lambda-
regularities in strings. Fundam. Inform., 84(1):33-49, 2008. URL: http://content.
iospress.com/articles/fundamenta-informaticae/fi84-1-04.

Hui Zhang, Qing Guo, and Costas S. Iliopoulos. Varieties of regularities in weighted se-
quences. In Bo Chen, editor, Proceedings of the 6th International Conference on Algorithmic
Aspects in Information and Management (AAIM 2010), volume 6124 of LNCS, pages 271—
280. Springer, 2010. doi:10.1007/978-3-642-14355-7_28.

25:15

CPM 2017

http://dx.doi.org/10.1016/S0304-3975(00)00067-0
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://content.iospress.com/articles/fundamenta-informaticae/fi84-1-04
http://dx.doi.org/10.1007/978-3-642-14355-7_28

	Introduction
	Regularities and Data Recovery
	Related Work
	Our Results

	Preliminaries
	Characterization of the Cover Recovery Problem Approximation
	The Candidate Relaxation of the ACP
	The preparation phase
	The dynamic programming phase

	Open Problems

