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Abstract
Given a function f : [N ]k → [M ]k, the Z-test is a three query test for checking if a function f is
a direct product, namely if there are functions g1, . . . gk : [N ] → [M ] such that f(x1, . . . , xk) =
(g1(x1), . . . gk(xk)) for every input x ∈ [N ]k.

This test was introduced by Impagliazzo et. al. (SICOMP 2012), who showed that if the test
passes with probability ε > exp(−

√
k) then f is Ω(ε) close to a direct product function in some

precise sense. It remained an open question whether the soundness of this test can be pushed
all the way down to exp(−k) (which would be optimal). This is our main result: we show that
whenever f passes the Z test with probability ε > exp(−k), there must be a global reason for
this: namely, f must be close to a product function on some Ω(ε) fraction of its domain.

Towards proving our result we analyze the related (two-query) V-test, and prove a “restricted
global structure” theorem for it. Such theorems were also proven in previous works on direct
product testing in the small soundness regime. The most recent work, by Dinur and Steurer
(CCC 2014), analyzed the V test in the exponentially small soundness regime. We strengthen
their conclusion of that theorem by moving from an “in expectation” statement to a stronger
“concentration of measure” type of statement, which we prove using hyper-contractivity. This
stronger statement allows us to proceed to analyze the Z test.

We analyze two variants of direct product tests. One for functions on ordered tuples, as
above, and another for functions on sets, f :

([N ]
k

)
→ [M ]k. The work of Impagliazzo et. al was

actually focused only on functions of the latter type, i.e. on sets. We prove exponentially small
soundness for the Z-test for both variants. Although the two appear very similar, the analysis
for tuples is more tricky and requires some additional ideas.
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1 Introduction

A function f : [N ]k → [M ]k for N,M, k ∈ N, is a direct product function if f = (g1, . . . gk),
for gi : [N ] → [M ], i.e. the output of f on each coordinate depends on the input to this
coordinate alone. Direct products appear in a variety of contexts in complexity, usually
for hardness amplification. In PCPs it underlies the parallel repetition theorem [12] and
implicitly appears in other forms of gap amplification, e.g. [4]. The specific task of testing
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direct products as an abstraction of a certain element of PCP constructions was introduced
by [8].

The combinatorial question that underlies these works is the direct product testing
question: given a function f : [N ]k → [M ]k, is it a direct product function? The setting of
interest here is where we query f in the smallest number of inputs possible, and decide if is it
a direct product function or not.

The direct product testing question is a type of property testing question, yet it is not
in the standard property testing parameter regime. In property testing we are generally
interested in showing that functions that pass the test with high probability, for example
99%, are close to having the property.

In our case, we are interested in understanding the structure of functions that pass the test
with small – but non-trivial – probability, e.g. 1%. The 1% regime is often more challenging
than the 99% regime. It plays an important role in PCPs where one needs to prove a large
gap. In such arguments one needs to be able to deduce non trivial structure even from a
proof that passes a verification test with small probability, e.g. 1%.

There are very few families of tests for which 1% theorems are known. These include
algebraic low degree tests and direct product tests. For low degree tests there has been a
considerable amount of work in various regimes and in particular towards understanding the
extent of the 1% theorems, see e.g. [13, 1, 3] and [2]. It is intriguing to understand more
broadly for which tests such theorems can hold. Indeed, as far as we know, there are no
other tests that exhibit such strong “structure vs. randomness” behavior, and direct product
tests are natural candidates in which to study this question.

We remark that finding new settings where 1% theorems hold (including in particular
derandomized direct products) can be potentially useful for constructing locally testable
codes and stronger PCPs, see e.g. the recent works of [10, 6]. Towards this goal gaining a
more comprehensive understanding of direct product tests, as well as developing tools for
proving them, is a natural goal.

1.1 Our Main Result
The main question we study is: if f : [N ]k → [M ]k passes a certain natural test (Test 1
below) with non-negligible probability, how can f look like? We prove

I Theorem 1 (Main Theorem – Global Structure). For every N,M > 1, there exist small
constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if f : [N ]k → [M ]k
is a function that passes Test 1 with probability αZ( k10 )(f) = ε ≥ e−c1λ

2k, then there exist
functions (g1, . . . gk), gi : [N ]→ [M ] such that

Pr
x∈[N ]k

[
f(x) λk≈ (g1(x1) . . . gk(xk))

]
≥ c2 · ε.

Where λk
≈ means that the strings are equal on all but at most λk coordinates.

The theorem is qualitatively tight with respect to several parameters: (i) Soundness,
(i.e. the parameter ε), (ii) Approximate equality vs. exact equality (i.e. the parameter λ),
(iii) Number of queries in the test. We discuss these next.

(i) Soundness

The soundness of the theorem is the smallest success probability in which the theorem is
valid, in our case it is 2−ck for some constant c > 0. This is tight up to the constant c, as
can be seen by the example bellow.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)(f) the success probability of f on this test.

Test 1 “Z”-test with parameter t (3-query test).

I Example 2 (Random function). Let f : [N ]k → {0, 1}k be a random function; i.e. for each
x ∈ [N ]k choose f(x) ∈ {0, 1}k uniformly and independently. Two random strings in {0, 1}t
are equal with probability 2−t, therefore αZ(t)(f) = 2−2t, since the test performs two such
checks. On the other hand, since f is random, it is not close to any direct product function.

We remark that every function f : [N ]k → {0, 1}k is at least 2−k close to a direct product
function 1, so this amount of correlation is meaningless. We conclude that in order to have
direct product theorem that is not trivial, the minimal soundness has to be 2−c′k for some
constant c′ < 1.

(ii) Approximate equality vs. exact equality

In the theorem, we prove that for Ω(ε) of the inputs x: f(x) λk≈ (g1(x), . . . , gk(x)). A priori,
one could hope for a stronger conclusion in which f(x) = (g1(x), . . . , gk(x)) for Ω(ε) of the
x’s. However, Example 3 shows that for t = k

10 , approximate equality is necessary.

I Example 3 (Noisy direct product function). This example is from [5]. Let f be a direct
product function, except that on each input x we “corrupt” f(x) on λk random coordinates
by changing f(x) on these coordinates into random values. For λ < 1

10 , the probability that
Test 1 on f missed all the corrupted coordinates is 2−Ω(λk), in which case the test succeeds.
Since we have changed f(x) on λk coordinates into random values, no direct product function
can approximate f on more than (1− λ) of the coordinates.

From this example we conclude that for f that passes Test 1 for t = k
10 with probability

e−δλk, it is not possible to approximate f on more than (1− λ) of the coordinates. Further
discussion and examples for different intersection sizes (i.e. t) are in Section 6.

(iii) Number of queries in the test

The absolute minimal number of queries for any direct product test is two. Indeed, there is
a very natural 2-query test, Test 2.

Dinur and Goldenberg showed that it is not possible to have a direct product theorem
with soundness lower than 1

poly(k) using the 2-query test [5].

I Example 4 (Localized direct product functions). In this example we assume N � k. For
every b ∈ [N ] we choose a random function gb : [N ]→ [M ] independently. For every input
x ∈ [N ]k, we choose a random ix ∈ k, set b = xi and set f(x) = (gb(x1), . . . , gb(xk)).

1 Consider the direct product function constructed incrementally by taking the most common value out
of {0, 1} on each step.

CCC 2017
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1. Choose A ⊂ [k] of size t, uniformly at random.
2. Choose uniformly at random x, y ∈ [N ]k such that

xA = yA.
3. Accept if f(x)A = f(y)A.

A

x

y

Denote by αV (t)(f) the success probability of f on this test.

Test 2 “V” test with parameter t (2-query test).

1. Choose random V,W,X, Y ⊂ [N ], such that |W | =
|V | = t, |X| = |Y | = k − t and X ∩W = Y ∩W =
Y ∩ V = ∅.

2. Reject if f(X ∪W )W 6= f(Y ∪W )W or
f(Y ∪W )Y 6= f(Y ∪ V )Y , else accept.

X W

Y V

Denote by αZset(t)(f) the success probability of f on this test.

Test 3 “Z” test for functions over sets, with parameter t (3-queries).

The function f satisfies αV (t)(f) ≥ 1
k ·

t
k ; indeed, for x, y and A chosen in the test, if

ix = iy and ix ∈ A, then the test will pass. The probability that ix = iy is 1
k , and the

probability that ix ∈ A is t
k .

For N � k, the function f is very far from direct product, since it is made up from
N different direct product functions. Each piece consisting of roughly 1/N fraction of the
domain [N ]k.

For every t, the function described in the example satisfies αV (t)(f) ≥ 1
k2 , yet there is

no direct product function that approximates f when N � k. In [5] the conclusion from
Example 4 was that 1/poly(k) is the limit for small soundness for direct product tests.
However, [9] showed that by adding just one more query, this limitation goes away. They
introduced a 3-query test, similar to Test 1, and proved a direct product theorem for all
ε > 2−kβ for some constant β ≤ 1/2.

Direct product test for functions over sets

Some of the previous direct product works, such as [9] were proven in a slightly different
setting, where the function tested is f :

([N ]
k

)
→ [M ]k, i.e. the input to the function f is an

unordered set S ⊂ [N ] of k elements. In this work, we also prove a direct product testing
theorem for this setting, Test 3 is the analog of Test 1 for functions over sets. In Test 3 (see
figure), we pick disjoint sets W,X, Y, Z such that X ∩W = Y ∩W = Y ∩ V = ∅ so that
|X ∪W | = |Y ∪W | = |Y ∪ V | = k and they can be inputs to the function f .

I Theorem 5 (Global Structure for Sets). There exist a small constant c > 0, such that for
every constant λ > 0, large enough k ∈ N and N > k2e10cλk, if the function f :

([N ]
k

)
→ [M ]k

passes Test 3 with probability αZset( k10 )(f) = ε > e−cλk, then there exist a function g : [N ]→
[M ] such that

Pr
S

[
f(S) λk≈ g(S)

]
≥ ε− 4ε2 .

Notice that the probability bound of ε−4ε2 is better than Ω(ε), and it is tight as demonstrated
by the function f which is a hybrid of 1

ε different direct product functions on equals parts of
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the inputs. f passes Test 3 with probability ε, and every direct product function is close to
f only on ε fraction of the inputs.

We remark that the two theorems are not the same. In Theorem 1, there are k different
functions g1, . . . , gk : [N ]→ [M ] whereas in Theorem 5 there is a single one. Furthermore,
Theorem 1 holds for any N,M ∈ N and large enough k, and Theorem 5 (and other such
direct product theorems) only holds for N � k. The proofs of the theorems are also different,
which is discussed later in the introduction.

1.2 Restricted Global Structure
Our proof has two main parts, similar to the structure of the proof of [5, 9]. In the first part,
we analyze only Test 2 (which is on tuples) and prove a restricted global structure theorem
for it, Theorem 6 below (this was called local structure in [9, 7]). The term “restricted global
structure” refers to when we restrict the domain to small (but not trivial) pieces, and show
that f is close to a product function on each piece separately. This is the structure of the
function in Example 4.

More explicitly, for every A ∈ [k] of size k
10 , r ∈ [N ]A and γ ∈ [M ]A, a restriction is a

triple τ = (A, r, γ). The choice of t = k
10 in Theorem 1 is somewhat arbitrary, the theorem

can be proven with t = ck for c < 1
2 . The restriction corresponds to the set of inputs

Vτ = {w ∈ [N ][k]\A|f(r, w)A = γ}.

Our next theorem shows that for many restrictions τ there exist a direct product function
that is close to f on Vτ .

I Theorem 6 (Restricted Global Structure – informal). Let f : [N ]k → [M ]k be a function
that passes Test 2 with probability αV ( k10 )(f) = ε > e−δλk, then there exist a natural distri-
bution over restrictions τ = (A, r, γ) such that with probability Ω(ε), there exist functions
(gτ1 , . . . gτ9k

10
), gτi : [N ]→ [M ] such that,

Pr
w∈[N ][k]\A

[
f(r, w)[k]\A

λk
≈ (gτ1 (w1), . . . gτ9k

10
(w 9k

10
))
∣∣∣∣ w ∈ Vτ] ≥ 1− ε2. (1)

Where the distribution over τ is the test distribution, namely choose A ⊂ [k], x ∈ [N ]k
uniformly, and set τ = (A, xA, f(x)A).

A similar theorem was proven in [9] but only for soundness (i.e. ε) at least exp(−kβ) for
a constant β ≤ 1/2. This was strengthened to soundness exp(−Ω(k)) in [7]. Our Theorem 6
improves on the conclusion of [7] . In [7] the probability in (1) was shown to be at least
1−O(λ) (recall that λ is a constant), whereas we show it is exponentially close to 1 (when
ε is that small). This difference may seem minor but in fact it is what prevented [7] from
deriving global structure via a three query test (i.e. moving from the V test to the Z test).
When we try to move from restricted global structure to global structure, the consistency
inside each restriction needs to be very high for the probabilistic arguments to work, as we
try to explain below.

The restricted global structure gives us a direct product function that approximates
f only on a restricted subset of the inputs. In the proof of the global structure, we use
the third query to show that there exists a global function. A key step in the proof of the
global structure is to show that for many restrictions τ , the function gτ is close to f on a
much larger subsets of inputs. This is done, intuitively, by claiming that if f(x)A = f(y)A,
then with high probability f(y) ≈ gτ (y) for τ = (A, xA, f(x)A). Since B is a random set

CCC 2017
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and f(z)B = f(y)B, then f(z), gτ (z) are also close. This claim only holds if the success
probability on (1) is more than 1− ε, else it is possible that all the success probability of the
test comes from f such that f(x)A = f(y)A, but f(y), gτ (y) are far.

1.3 Technical Contribution
In terms of technical contribution our proof consists of two new components.

Domain extension

Our first contribution a new domain extension step that facilitates the proof of the restricted
global structure. The restricted global structure shows that with probability Ω(ε), the
function f is close to a direct product on the restricted domain Vτ . A natural way to show
that a function is close to a direct product function is to define a direct product function by
majority value. However, this method fails when the agreement guaranteed for f is small, as
in our case.

This is usually resolved by moving to a restricted domain in which the agreement is
much higher, and to define majority there. The first part of our proof is to show that with
probability Ω(ε), over restrictions τ = (A, r, γ) ∼ D, the set Vτ satisfies the following two
properties:
1. Its density is at least ε

2 .
2. f has very high agreement in Vτ , informally it means that taking a random pair w, v ∈ Vτ

such that wJ = vJ , results in agreeing answers, i.e. f(r, w)J ≈ f(r, v))J , with probability
greater than 1− ε120.

We call such restrictions excellent, following [9].
We show that for every excellent restriction Vτ , the restriction hτ of f to Vτ , defined

by hτ (w) = f(r, w)[k]\A, is close to a direct product function. The function hτ has high
agreement, which is good for defining majority, but unfortunately the low density of Vτ ,
which can be as low as ε

2 , which is exponentially small, is where the techniques used in [9]
break down. In order to prove that hτ is close to a direct product function, we use a local
averaging operator to extend the domain from Vτ to [N ][k]\A.

The local averaging operator P 3
4
is the majority of a 3

4 -correlated neighborhood,

∀w ∈ [N ][k]\A, i /∈ A P 3
4
hτ (w)i = Plurality

v∈N 3
4

(w),v∈Vτ ,vi=wi
{hτ (v)i},

where v ∈ N 3
4

(w) means that v is 3
4 -correlated with w, i.e. we change each coordinate of

w with probability 1
4 independently. The new function, P 3

4
hτ is defined over all [N ][k]\A,

unlike hτ which is defined only on Vτ .
In order to use P 3

4
hτ for showing that hτ is close to a direct product function, we show

two things:
1. P 3

4
hτ and hτ are similar on Vτ .

2. P 3
4
hτ has high agreement, taking a random pair w, v ∈ [N ][k]\A such that wJ = vJ ,

results in agreeing answers, P 3
4
hτ (w)J ≈ P 3

4
hτ (v)J with probability 1− ε6.

To prove that P 3
4
hτ has high agreement we use reverse hypercontractivity to show that only

a few w ∈ [N ][k]\A have sparse neighborhood (with density less than ε50), and use the very
high agreement of hτ .

Lastly, we define a direct product function gτ by taking the plurality over P 3
4
hτ , and

show that it is close to hτ .
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Direct product testing in a dense regime

A second new element comes when stitching the many localized functions into one global
direct product function, by using the third query.

We prove two global structure theorems, Theorem 1 for functions on tuples f : [N ]k →
[M ]k and Theorem 5 for functions on sets f :

([N ]
k

)
→ [M ]k.

When we work with f that is defined over sets, we can directly follow the approach
of [9] to complete the proof. However, when working with f defined on tuples we reach
a combinatorial question that itself resembles a direct product testing question, but in a
different (dense) regime. Luckily, the fact that this question is in a dense regime makes it
easier to solve, and this leads to our global structure theorem for tuples. An outline of the
global structure proofs appears in Section 5.1.

1.4 Agreement Tests and Direct Product Tests
The question of direct product testing fits into a more general family of tests called agreement
tests. We next describe this setting formally and explain how direct product tests fit into
this framework.

Agreement tests

In all efficient PCPs we break a proof into small overlapping pieces, use a relatively inefficient
PCPs (i.e. PCPs that incur a large blowup) to encode each small piece, and then through an
agreement test put the pieces back together. The agreement test is needed because given
the collection of pieces, there is no guarantee that the different pieces come from the same
underlying global proof, i.e. that the proofs of each piece can be “put back together again”.
The PCP system needs to ensure this through agreement testing: we take two pieces that
have some overlap, and check that they agree.

This situation can be formulated as an agreement testing question as follows. Let V be a
ground set, |V | = N , and let H be a collection of subsets of V , namely, a set of hyperedges.
Let [M ] be a finite set of colors, where it is sufficient to think of M = 2.

A local assignment is a collection a = {as} of local colorings as : s→ [M ], one per subset
s ∈ H. A local assignment is called global if there is a global coloring g : V → [M ] such that

∀s ∈ H, as ≡ g|s.

An agreement check for a pair of subsets s1, s2 checks whether their local functions agree,
denoted as1 ∼ as2 . Formally,

as1 ∼ as2 ⇔ ∀x ∈ s1 ∩ s2, as1(x) = as2(x).

A local assignment that is global passes all agreement checks. The converse is also true: a
local assignment that passes all agreement checks must be global.

An agreement test is specified by giving a distribution D over pairs (or triples) of subsets
s1, s2. We define the agreement of a local assignment to be the probability of agreement,

agreeD(a) = Pr
s1,s2∼D

[as1 ∼ as2 ] .

An agreement theorem shows that if a is a local assignment with agreeD(a) > ε then a

is somewhat close to a global assignment. Agreement theorems can be studied for any
hypergraph and in this work we prove such theorems for two specific hypergraphs: the
k-uniform complete hypergraph, and the k-uniform k-partite complete hypergraph.

CCC 2017



29:8 Exponentially Small Soundness for the Direct Product Z-Test

h ∈ H

V1 V2 Vk

N

vertices

Figure 1 Complete k-uniform k-partite graph.

Relation to direct product testing

Theorem 1 is equivalent to an agreement theorem on the complete k-uniform k-partite
hypergraph (see Figure 1). Let G = (V = V1, . . . Vk, H) be the complete k-partite hypergraph
with |Vi| = N for i ∈ [k], and

H = {(v1, . . . vk) | ∀i ∈ [k], vi ∈ Vi} .

There is a bijection between H and [N ]k. We shall interpret f(x1, . . . , xk) as a local coloring
of the vertices x1, . . . , xk. In this way, we have the following equivalence

f : [N ]k → [M ]k ⇐⇒ a = {ax}x∈H .

Moreover, local assignments which are global, i.e. a such that ax = g|x for some global
coloring g : V1 ∪ · · · ∪ Vk → [M ], correspond exactly to functions f which are direct products,
f = (g1, . . . , gk) where gi = g|Vi ,

f = (g1, . . . , gk) ⇐⇒ a is global.

Finally, Test 2 can be described as taking 2 hyperedges that intersect on t vertices, and
check if their local functions agree on the intersection. Similarly, Test 1 can be described as
picking three hyperedges, h1, h2, h3 ∈ H such that h1, h2 intersect on t vertices, and h2, h3
intersect on a disjoint set of t vertices, and checking agreement.

Our main theorem, Theorem 1, is equivalent to an agreement theorem showing that if a
local assignment a passes a certain 3-query agreement test with non-negligible probability,
then there exists a global assignment g : V → [M ] with which it agrees non-negligibly.

The k-uniform complete hypergraph (it is non-partite, in contrast to the above), is
related to Theorem 5. In this hypergraph the vertex set is [N ] and there is a hyperedge for
every possible k-element subset of [N ]. Now we have a similar equivalence between local
assignments and functions over sets, i.e. functions where the input is a set S ⊂ [N ] of size k,

f :
(

[N ]
k

)
→ [M ]k ⇐⇒ a = {as}s∈([N]

k ).

An agreement theorem for this hypergraph is equivalent to Theorem 5, in which f is defined
not on “tuples” [N ]k but on “sets”

([N ]
k

)
. A global assignment a or this graph is equivalent

to a direct product function over sets, i.e. f = g : [N ]→ [M ].
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1.5 Organization of the Paper
Section 2 contains preliminary notations and definitions. In Section 3 we prove the restricted
global structure, Theorem 6. Section 4 is dedicated to the global structure for functions on
sets. We show how to deduce a variant of Theorem 6 for sets rather than tuples and then
prove the global structure theorem for sets, Theorem 5. In Section 5 we prove the global
structure theorem for tuples, Theorem 1. Lastly, in Section 6 we discuss lower bounds for
various 3-query direct product tests that were not presented in the introduction.

2 Preliminaries

I Definition 7. For each two strings x, y ∈ [N ]k we say that:
1. x

t
≈ y if x, y differ in at most t coordinates.

2. x
t

6≈ y if x, y differ in more than t coordinates.

I Definition 8 (Plurality). The plurality of a function f on a distribution D is its most
frequent value

Plurality
x∼D

(f(x)) = arg max
β

{
Pr
x∈D

[f(x) = β]
}

For a set A ⊂ [k] we denote by Ā the set [k] \A.

I Fact 9 (Chernoff bound). Let X1, . . . Xk be independent random variables in {0, 1}, let
X =

∑k
i=1, and denote µ = E[X], then for every δ ∈ (0, 1),

Pr
X1,...Xk

[X ≤ (1− δ)ν] ≤ e−
δ2µ2

2 ,

and for every δ ∈ (0, 1]

Pr
X1,...Xk

[X ≥ (1 + δ)ν] ≤ e−
δ2µ2

3 .

I Corollary 10. Let k be a large integer, and let A ⊆ [k] be the set generated by inserting
each i ∈ [k] into A with probability ρ. For every constant c ∈ (0, 1)

Pr
A

[|A| ≤ cρk] ≤ e−
(1−c)2

2 ρk,

and for every c′ ∈ [1, 2],

Pr
A

[|A| ≥ c′ρk] ≤ e−
(c′−1)2

3 ρk.

I Claim 11 (Chernoff bound for fixed size subsets). Let k ∈ N be a large integer, D ⊂ [k] be a
fixed subset of size at most k

3 . Let A be a random subset of size exactly k
10 , then

Pr
A

[
|A ∩D| ≥ 1

5 |D|
]
≤ e− 1

320 |D| (2)

If |D| ≤ 1
30k then

Pr
A

[
|A ∩D| ≤ 1

20 |D|
]
≤ e− 1

60 |D| (3)

CCC 2017
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1. Choose A ⊂ [k] of size t, uniformly at random.
2. Choose uniformly at random x, y ∈ [N ]k such that

xA = yA.
3. Accept if f(x)A = f(y)A.

A

x

y

Denote by αV (t)(f) the success probability of f on this test.

Test 2 “V” test with parameter t (2-query test).

The proof appears in Appendix A.
In our proof we also need Chernoff bound for non-binary random variables.

I Fact 12 (Non-binary Chernoff bound). Let X1, . . . Xk be independent random variables in
[0, 1], let X =

∑k
i=1Xi, and denote µ = E[X] then,

Pr
X1,...Xk

[|X − µ| > t] ≤ 2e−t
2k,

2.1 Reverse Hypercontractivity
I Definition 13 (ρ-correlated distribution). For each string y ∈ [N ]k and constant ρ ∈ (0, 1),
the ρ correlated distribution from y will be denoted by (x, J) ∈ Nρ (y). For each i ∈ [k]
independently, i ∈ J with probability ρ, and x is chosen such that xJ = yJ , and the rest is
uniform.

We quote Proposition 9.2 from [11]:

I Claim 14. Let A,B ⊆ [N ]k of sizes Prw∈[N ]k [w ∈ A] = e−
a2
2 and Prw∈[N ]k [w ∈ B] = e−

b2
2 ,

then

Pr
x∈[N ]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ e−
(2−ρ)(a2+b2)

4(1−ρ) − ρab
2(1−ρ) .

By changing notations and simplifying, we get the following corollary.

I Corollary 15. For |A| ≥ |B|,

Pr
x∈[N ]k,y∈Nρ(x)

[x ∈ A, y ∈ B] ≥ Pr
x∈[N ]k

[x ∈ A]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ B]1+ 3ρ

2(1−ρ) .

I Claim 16. Let G ⊂ [N ]k be a set of measure ν, then for any η ∈ (0, 1) the set L ={
w ∈ [N ]k

∣∣∣ Pr(v,J)∈N 3
4

(w) [v ∈ G] ≤ η
}

has a measure less than ν− 11
9 η

2
9 .

Both proofs appears in Appendix A.

3 Restricted Global Structure

Let f : [N ]k → [M ]k be such that αV ( k10 )(f) = ε ≥ e−cλk, i.e. the success probability of f on
Test 2 equals ε. To make the reading easy, we write again Test 2 from the introduction.

We show in this section that αV ( k10 )(f) = ε already implies that f is somewhat structured,
namely there are restrictions of the domain Vτ ⊂ [N ]k such that on these restrictions f is
roughly a product function.

Recalling the definition from the introduction, we define a restriction to be a triple
τ = (A, r, γ), for A ⊂ [k], r ∈ [N ]A and γ ∈ [M ]A. In this section denote by k′ = 9k

10 , and
recall that Ā = [k] \A.
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I Definition 17 (Consistent strings). For each restriction τ = (A, r, γ), a string w ∈ [N ]Ā is
consistent with τ if f(r, w)A = γ. For every τ , let Vτ be the set of consistent strings,

Vτ =
{
w ∈ [N ]Ā

∣∣∣ f(r, w)A = γ
}
.

I Definition 18 (Distribution of Restrictions). Let D be the following distribution over
restrictions τ . Pick a uniform set A ⊂ [k] of size k

10 , pick a uniform x ∈ [N ]k and set r = xA
and γ = f(x)A.

Note that the distribution D depends on the function f .
We define good restriction in an analogous way to the definitions of [9].

I Definition 19 (Good restriction). A restriction τ = (A, r, γ) is good, if Prw∈[N ]Ā [w ∈ Vτ ] ≥
ε
2 .

I Definition 20 (DP restriction). A restriction τ = (A, r, γ) is a DP restriction if it is good,
and if there exist functions (gτ1 , . . . gτk′), gτi : [N ]→ [M ] such that

Pr
w∈[N ]Ā

[
f(r, w)Ā

λk

6≈ (gτ1 (w1), . . . gτk′(wk′))
∣∣∣∣ w ∈ Vτ] ≤ ε2.

The main theorem of this section shows that (a) a non-negligible fraction of restrictions
are good, and that (b) almost all good restrictions are DP restrictions.

I Theorem 21 (Restricted Global Structure, restated). There exist a small constant δ > 0,
such that for every constant λ > 0 and large enough k ∈ N the following holds. For every
function f : [N ]k → [M ]k, if αV ( k10 )(f) = ε > e−δλk, then with probability at least ε

2 , τ ∼ D
is good, and with probability at least 1− ε2 over the good restrictions, τ is a DP restriction.
Namely, τ is such that there exist functions (gτ1 , . . . gτk′), gτi : [N ]→ [M ] such that

Pr
w∈[N ]Ā

[
f(r, w)Ā

λk

6≈ (gτ1 (w1), . . . gτk′(wk′))
∣∣∣∣ w ∈ Vτ] ≤ ε2.

A similar theorem was proven in [7] under the name “local structure”. Under the same
assumptions [7] showed that f must be close to a product function for many restrictions Vτ
of the domain. However the closeness was considerably weaker: unlike in our definition of a
DP restriction, in [7] even in the restricted part of the domain, Vτ ⊂ [N ]k, there could be a
(small) constant fraction of the inputs on which f differs from the global product function
gτ . In contrast, we only allow an ε2 fraction of disagreeing inputs. As explained in the
introduction, in order to extend the restricted global structure into a global one, the set of
disagreeing inputs in Vτ has to be smaller than ε.

3.1 Proof of Theorem 21
In this section we prove Theorem 21, we start by writing a few definitions and lemmas that
are used in the proof, and give an intuition for the proof of each lemma. We defer the proofs
of these lemmas to the next sections.

The distribution D over τ is related to the distribution of Test 2. The test can also be
written as choose τ = (A, r, γ) ∼ D, w ∈ [N ]Ā and accept iff f(r, w)A = γ. Therefore, if the
function f passes Test 2 with probability ε, by a simple averaging argument

Pr
τ∼D

[τ is good] ≥ ε

2 . (4)

For each τ we define the function hτ , which is a restriction of f to Vτ .
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I Definition 22. For each restriction τ = (A, r, γ), let hτ : Vτ → [M ] 9k
10 be the function,

hτ (w) = f(r, w)Ā.

We define excellent restriction, in an analogous way to [9],

I Definition 23 (Excellent restriction). Fix a constant α = 1
1600λ, a restriction τ = (A, r, γ)

is excellent, if:
1. τ is good.
2. For every ρ ∈

{
a
b

∣∣ a, b ∈ N, a < b ≤ k
}
, if we pick w ∈ [N ]Ā and (v, J) ∈ Nρ (w) then,

Pr
w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

) 1
2αk

. (5)

Note that (5) holds trivially when ρ < α, because with high probability |J | ≈ ρk < αk,
in which it is not possible that h(w)J , h(v)J differs in more than αk coordinates. For an
excellent τ , the set Vτ is of measure at least ε

2 , and the function f is consistent on Vτ .
We assume that the constant δ is small enough to satisfy

( 9
10
) 1

2αk < ε120 = e−120δλk, and
ε120 > e−

αk
43000 .

I Lemma 26. For every ρ ∈ (0, 1), let τ = (A, r, γ) ∼ D, let w ∈ [N ]Ā be uniform, and let
(v, J) ∈ Nρ (w), then

Pr
τ,w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

)αk
.

The proof appears on Section 3.2, the main idea in the proof is that the probability of

w, v ∈ Vτ , h(w)J
αk

6≈ h(v)J is low when averaging over τ as well. From the definition of hτ ,

this is equivalent to f(r, w)A = f(r, v)A = γ and f(r, w)J
αk

6≈ f(r, v)J . When r, w, v, A, J are
all random, the probability for a uniform A, J to be such that f(r, w), f(r, v) are equal on A
but far on J is very small.

I Corollary 24. A good τ ∼ D is excellent with probability larger than 1− ε2.

Proof. Let µ =
( 9

10
) 1

2αk, and denote by E(τ, w, v, J) the event of w, v ∈ Vτ , hτ (w)J
αk

6≈
hτ (v)J . Lemma 26 in these notations is: for every ρ ∈ (0, 1), Prτ∼D,w,(v,J)∈Nρ(w) [E] ≤ µ2.

For every τ that is good but not excellent, exist ρ ∈
{
a
b

∣∣ a, b ∈ N, a < b ≤ k
}
such that,

Pr
w,(v,J)∈Nρ(w)

[E] > µ.

In this case we say that τ is bad for ρ.
Assume towards contradiction that Prτ∼D [τ is good but not excellent] > ε4. The set{

a
b

∣∣ a, b ∈ N, a < b ≤ k
}
contains less than k2 elements, so there exists ρ in this set such

that

Pr
τ∼D

[τ is bad for ρ] ≥ ε4

k2 .

For this ρ,

Pr
τ∼D,w,(v,J)∈Nρ(w)

[E] ≥ Pr
τ∼D

[τ is bad for ρ] Pr
w,(v,J)∈Nρ(w)

[E | τ is bad for ρ] ≥ ε3

k2µ.
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This contradicts Lemma 26, because ε4

k2µ� µ2 (we assume that µ < ε120). Therefore, we
conclude that Prτ∼D [τ is good but not excellent] ≤ ε4

Since τ ∼ D is good with probability at least ε
2 , by averaging a good τ ∼ D is excellent

with probability at least 1− ε2. J

In order to prove Theorem 21, it is enough to show that every excellent restriction is a
DP restriction. A natural idea is to define a direct product function by taking the plurality
of hτ on Vτ , because the agreement of hτ inside Vτ is almost 1. However, it is difficult to
prove that this function is close to hτ because the set Vτ is very sparse. We define a local
averaging operator, which allows us to go from hτ that is defined on Vτ , to a function that is
defined on [N ]Ā.

I Definition 25 (Local averaging operator). For every ρ ∈ [0, 1], let Pρ be the following
function operator. For every subset Vτ ⊂ [N ]Ā, and every function h : Vτ → [M ]t, the
function Pρh : [N ]t → [M ]t satisfies ∀i ∈ [k], w ∈ [N ]t,

Pρh(w)i = Plurality
(v,J)∈Nρ(w),vi=wi

(h(v)i).

If there is no v such that vi = wi in Vτ , we define Pρh(w)i to an arbitrary value.

The local averaging operator of h takes for every w and i the most frequent value h(v)i over
a ρ-correlated neighborhood of w. We note that the function operator is not linear.

In order to prove that hτ is close to a direct product function, we first show that that
P 3

4
hτ is close to hτ , and then that P 3

4
hτ is close to a direct product function. Clearly 3

4 is
an arbitrary constant, our proof works for any constant ρ > 1

2 , and we fix ρ = 3
4 .

I Lemma 27. For every excellent τ ,

Pr
w∈[N ]

9k
10

[
hτ (w)

12αk
6≈ P 3

4
hτ (w)

∣∣∣∣ w ∈ Vτ] ≤ ε3.
The proof is in Section 3.3, and uses the very high consistency of hτ inside Vτ to show
that the plurality vote is almost always consistent with hτ (w). In the proof we use reverse
hypercontractivity [11] to show that the set Vτ is not too sparse, such that for almost all
w ∈ Vτ , the neighborhood N 3

4
(w) is not empty.

In a similar way to the proof of Lemma 27, we show that for an excellent τ the function
P 3

4
hτ has high agreement.

I Lemma 28. For every excellent τ ,

Pr
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1− ε10,

where w ∈ [N ] 9k
10 and (v, J) ∈ N 1

2
(w).

The proof of this lemma also appears in Section 3.3, the main idea is that if P 3
4
h(w1),P 3

4
h(w2)

disagree on a lot of coordinates, then a large fraction of their 3
4 -correlated neighborhood

also disagree on a lot of coordinates. This can only happen for very few inputs w, else we
contradict the fact that τ is excellent.

After showing that P 3
4
hτ has high agreement, we define gτ to be the plurality vote of

P 3
4
hτ , and then use the high agreement, Lemma 28, to show that they gτ is close to P 3

4
hτ .
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I Lemma 29. For every excellent restriction τ there exist a direct product function gτ =
gτ1 . . . g

τ
9k
10

: [N ] 9k
10 → [M ] 9k

10 such that

Pr
w∈[N ]

9k
10

[
P 3

4
hτ (w)

1500αk
6≈ gτ (w)

]
≤ 3ε4.

The proof is in Section 3.4.
Using the above lemmas we can prove the local structure.

Proof of Theorem 21. Let f : [N ]k → [M ]k be a function that passes Test 2 with probabil-
ity ε.

From averaging, Prτ∼D [τ is good] ≥ ε
2 , Lemma 26 implies that with probability (1− ε2),

a good τ is also excellent.
Fix an excellent τ , by definition the function hτ has high consistency inside Vτ , and by

Lemma 27, P 3
4
h is close to h on Vτ . Let E1(w) be the event that hτ (w)

12αk
6≈ P 3

4
hτ (w), in

this notation Lemma 27 implies that

Pr
w

[E1 | w ∈ Vτ ] ≤ ε3. (6)

From Lemma 29, there exists a product function gτ that is similar to P 3
4
hτ . Denote by

E2(w) the event that P 3
4
hτ (w)

1500αk
6≈ gτ (w). In this notation,

Pr
w

[E2] ≤ 3ε4. (7)

We want to use (6) and (7) to prove that hτ is similar to gτ on Vτ . In order to do that,
we need to bound the probability of E2 conditioned on w ∈ Vτ .

3ε4 ≥Pr
w

[E2]

≥Pr
w

[w ∈ Vτ ] Pr
w

[E2 | w ∈ Vτ ] (τ is excellent)

≥ ε2 Pr
w

[E2 | w ∈ Vτ ] .

Therefore Prw [E2 | w ∈ Vτ ] ≤ 6ε3.
If w is such that none of E1, E2 happened, then hτ (w),P 3

4
hτ (w) are equal in all but

12αk of the coordinates, and P 3
4
hτ (w), gτ (w) are equal in all but 1500αk of the coordinates,

which means that hτ (w) 1512αk
≈ gτ (w).

Pr
w

[
hτ (w)

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] ≤Pr
w

[E1 ∨ E2 | w ∈ Vτ ]

≤Pr
w

[E1 | w ∈ Vτ ] + Pr
w

[E2 | w ∈ Vτ ]

≤ε3 + 6ε3 < ε2.

By definition, hτ (w) = f(xA, w)Ā,

Pr
w

[
f(xA, w)Ā

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] = Pr
w

[
hτ (w)

1512αk
6≈ gτ (w)

∣∣∣∣ w ∈ Vτ] < ε2.

Since λ = 1600α we are done. J
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3.2 Good Restrictions are Excellent with High Probability
For convenience, we restate the lemma.

I Lemma 26. For every ρ ∈ (0, 1), let τ ∼ D, w ∈ [N ] 9k
10 and (v, J) ∈ Nρ (w), then

Pr
τ,w,(v,J)

[
w, v ∈ Vτ , hτ (w)J

αk

6≈ hτ (v)J
]
≤
(

9
10

)αk
.

Proof. Fix ρ ∈ (0, 1), let E1(τ, w, v, J) be the event in equation (5) of the definition of

excellence, Definition 23. More explicitly, E1 = 1 if w, v ∈ Vτ and hτ (w)J
αk

6≈ hτ (v)J .
Recall the definition of hτ for τ = (A, r, γ), for w ∈ Vτ , hτ (w) = f(r, w)Ā. Therefore, the

event E1 can also be written as f(r, w)A = f(r, v)A = γ and f(r, w)Ā
αk

6≈ f(r, v)Ā.

Let E2 be the event that f(r, w)A = f(r, v)A and f(r, w)Ā
αk

6≈ f(r, v)Ā. We can easily see
that E1 ⊆ E2, therefore over every distribution Pr[E1] ≤ Pr[E2].

We start by bounding the probability of event E2, over the distribution τ ∼ D, w ∈ [N ] 9k
10

uniformly and (v, J) ∈ Nρ (w). Writing the distribution explicitly:
1. Pick A ⊂ [k] of size k

10 .
2. Pick x ∈ [N ]k, set r = xA and γ = f(x)A.
3. Pick J ⊂

[ 9k
10
]
of size B( 9k

10 , ρ) (binomial random variable).
4. Pick uniform w, v ∈ [N ] 9k

10 such that wJ = vJ .
Notice that E2 is independent of γ, so it does not matter how γ is chosen. We can define an
equivalent process for producing the same distribution (without γ):
1. Pick a set A′ ⊂ [k] of size k

10 +B( 9k
10 , ρ).

2. Pick y, z ∈ [N ]k such that yA′ = zA′ .
3. Pick A ⊆ A′ of size k

10 .
4. Set r = yA, w = yĀ and v = zĀ.

In order of E2 to happen, y, z, A′ must be such that f(y)A′
αk

6≈ f(z)A′ . Furthermore, the
set A must be chosen such that f(y)A = f(z)A. As the second random process allows us to
see, A is a random subset of A′, and each of the αk coordinates i on which f(y)i 6= f(z)i has
probability of at least 1

10 to be chosen to A (as |A| = k
10 and |A′| ≤ k). The probability that

none of the αk coordinates are in A is at most
( 9

10
)αk, so

Pr
τ,w,(v,J)

[E1] ≤ Pr
τ,w,(v,J)

[E2] ≤
(

9
10

)αk
. (8)

J

3.3 Local Averaging Operator
In this section we prove the two lemmas concerning local averaging operator. We repeat the
two lemmas and prove them.

I Lemma 27. For every excellent τ ,

Pr
w∈[N ]

9k
10

[
hτ (w)

12αk
6≈ P 3

4
hτ (w)

∣∣∣∣ w ∈ Vτ] ≤ ε3.
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Proof. Fix an excellent restriction τ , denote by V = Vτ , h = hτ , P 3
4
h = P 3

4
hτ and k′ = 9k

10 .

In order to simplify the notations, denote by µ =
( 9

10
) 1

2αk the constant from the definition
of excellence (Definition 23).

From the fact that τ is excellent, we know that Prw∈[N ]k′ [w ∈ V] ≥ ε
2 and

Pr
w,(v,J)∈N 3

4
(w)

[
w, v ∈ V, hJ(w)

αk

6≈ hJ(v)
]
≤ µ.

Our goal is to prove that for almost all w ∈ V, P 3
4
h(w) ≈ h(w). First, we characterize

the “bad” inputs w ∈ V for which we can’t prove this claim . Then, we prove it on the rest.
Fix η = ε20, the first set of “bad” inputs is the set of inconsistent ones,

B =
{
w ∈ V

∣∣∣∣∣ Pr
(v,J)∈N 3

4
(w)

[
v ∈ V, h(v)J

αk

6≈ h(w)J
]
≥ η

100

}
.

By averaging, Prw[w ∈ B] ≤ 100µ
η .

The second set is the set of “lonely” inputs, inputs that have very sparse neighborhood,

L =
{
w ∈ V

∣∣∣∣∣ Pr
(v,J)∈N 3

4
(w)

[v ∈ V] ≤ η
}
.

By hypercontractivity, Claim 16 (uses [11]), Prw[w ∈ L] ≤ η 2
9
(
ε
2
)− 11

9 .
Fix an input w ∈ V \{B ∪L}, we will show that h(w) 12αk

≈ P 3
4
h(w), i.e. h(w) and P 3

4
h(w)

are equal on all but 12αk of the coordinates. Since Prw [w /∈ B ∩ L] ≤ 100µ
η η

2
9
(
ε
2
)− 11

9 ≤ ε3,
this finishes the proof (ε is such that ε120 > µ).

Denote by D the following set

D =
{
i ∈ [k′]

∣∣∣ h(w)i 6= P 3
4
h(w)i

}
.

D is the set of coordinates in which the local averaging of h doesn’t equal h. Since w /∈ B∪L,
the neighborhood of w is very consistent, and we show that the set D is small.

Assume towards a contradiction that |D| > 12αk. For v ∈ [N ]k′ , J ⊂ [K] and i ∈ [k], let
E(v, J, i) be the event

E(v, J, i) = (i ∈ J ∧ h(w)i 6= h(v)i) .

We will reach a contradiction by upper bounding and lower bounding the probability of the
event E, under the distribution i ∈ D and (v, J) ∈ N 3

4
(w), given that v ∈ V

Lower bound

We look on E = E1 ∧E2, where E1 = i ∈ J and E2 = h(w)i 6= h(v)i. By definition, for every
i ∈ D, the value h(w)i is not the most probable h(v)i when (v, J) ∈ N 3

4
(w). Therefore,

∀i ∈ D, Pr
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V] = Pr
(v,J)∈N 3

4
(w)

[h(w)i 6= h(v)i | i ∈ J, v ∈ V] ≥ 1
2 . (9)

We want to remove the conditioning over E1, in order to get a bound E. If we choose a
uniform (v, J) ∈ N 3

4
(w), the probability of i ∈ J is exactly 3

4 . If we condition on v ∈ V , this
probability can be different. We start by bounding the probability of D ∩ J to be small.
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Every i ∈ D has probability of 3
4 be be in J independently, by Chernoff bound (Corol-

lary 10), Pr(v,J)∈N 3
4

(w)
[
|D ∩ J | ≤ 3

5 |D|
]
≤ e−αk10 . If we condition on v ∈ V, this probability

can increase by a factor of at most 1
η , where η ≤ Pr(v,J)∈N 3

4
(w) [v ∈ V].

Pr
(v,J)∈N 3

4
(w)

[
|D ∩ J | ≤ 3

5 |D|
∣∣∣∣ v ∈ V] ≤ 1

η
e−

αk
10 . (10)

Equation (10) implies that for a typical i ∈ D, the probability E1 is not very far from 3
4 . If

(v, J) are such that |D ∩ J | ≥ 3
5 |D|, a random i ∈ D has probability at least 3

5 to be in J .

Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] = Pr
(v,J)∈N 3

4
(w),i∈D

[i ∈ J | v ∈ V]

≥ Pr
(v,J)∈N 3

4
(w),i∈D

[
i ∈ J ∧ |D ∩ J | ≥ 3

5 |D|
∣∣∣∣ v ∈ V]

(by (10))

≥3
5

(
1− 1

η
e−

αk
10

)
. (11)

Now we can lower bound the probability of E:

Pr
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] = Pr
(v,J)∈N 3

4
(w),i∈D

[E1 ∧ E2 | v ∈ V]

= Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] Pr
(v,J)∈N 3

4
(w)

[E2 | E1, v ∈ V]

(by (9))

≥ Pr
(v,J)∈N 3

4
(w),i∈D

[E1 | v ∈ V] 1
2 (by (11))

≥3
5

(
1− 1

η
e−

αk
10

)
1
2 ≥

1
5 . (12)

Where the last inequality holds since η = ε20 and ε satisfies ε120 > e−
αk
10 .

Upper Bound

We want to upper bound the same probability, and reach a contradiction. Since w /∈ L,
Pr(v,J)∈N 3

4
(w) [v ∈ V] ≥ η, and from the fact that w /∈ B we know that its neighborhood is

consistent, i.e. Pr(v,J)∈N 3
4

(w)

[
v ∈ V, h(v)J

αk

6≈ h(w)J
]
≤ η

100 . Combining both together,

Pr
(v,J)∈N 3

4
(w)

[
h(v)J

αk

6≈ h(w)J
∣∣∣∣ v ∈ V] ≤ 1

100 . (13)

This implies that with probability at most 1
100 the chosen (v, J) can be such that h(v)J

αk

6≈
h(w)J .

Else, h(v)J
αk
≈ h(w)J , so there are at most αk coordinates i ∈ J in which h(v)i 6= h(w)i.

Since |D| ≥ 12αk, with probability at most 1
12 a uniform i ∈ D is in these αk coordinates.

Pr
(v,J)∈N 3

4
(w),i∈D

[E | v ∈ V] ≤ 1
100 + 1

12 <
1
5 . (14)

And we reached a contradiction with (12). J
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In order to show that the function P 3
4
hτ is close to a product function, we need to show

that it is consistent in a similar way to hτ (as in the definition of excellence, Definition 23).
Lemma 27 only gives us that P 3

4
hτ is consistent among the inputs in Vτ , and not in all

[N ] 9k
10 .

I Lemma 28. For every excellent τ ,

Pr
w,(v,J)

[
P 3

4
h(w)J

20αk
≈ P 3

4
h(v)J

]
≥ 1− ε10,

where w ∈ [N ] 9k
10 and (v, J) ∈ N 1

2
(w).

Proof. This proof is similar to the proof of Lemma 27. We fix excellent τ and denote V = Vτ ,
h = hτ and P 3

4
h = P 3

4
hτ , k′ = 9k

10 and µ =
( 9

10
) 1

2αk.

We characterize the inputs w, (v, J) on which we can’t prove that P 3
4
h(w)J

20αk
≈ P 3

4
h(v)J .

Instead of the set B in the proof of Lemma 27, we define a set of two correlated inputs
(w, (v, J)) that are inconsistent. Fixing η = ε51, let

C =
{
w, (v, J)

∣∣∣∣ Pr
(w′,J′),(v′,J′′)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≥ η2

4000

}
.

Where (w′, J ′) ∈ N 3
4

(w) , (v′, J ′′) ∈ N 3
4

(v) and J̃ = J ∩ J ′ ∩ J ′′.
If w is chosen uniformly in [N ]k′ and (v, J) ∈ N 1

2
(w), then the marginal distribution on

w′ is uniform, and (v′, J̃) ∈ N( 3
4 )2 1

2
(w′), since for each i independently, the probability of i

to be in J̃ = J ∩ J ′ ∩ J ′′ is
( 3

4
)2 1

2 .

Since τ is excellent, Prw′,(v′,J̃)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≤ µ. By averaging, it means

that Prw,(v,J) [w, (v, J) ∈ C] ≤ 4000µ
η2 .

We define the set of inputs with sparse neighborhood,

L =
{
w ∈ [N ]k

′

∣∣∣∣∣ Pr
(w′,J′)∈N 3

4
(w)

[w′ ∈ V] ≤ η
}
.

From hypercontractivity argument, see Claim 16, Prw[w ∈ L] ≤ η 2
9
(
ε
2
)− 11

9 .

For every w and (v, J) such that w, v /∈ L and (w, (v, J)) /∈ C, we show that P 3
4
h(w)J

20αk
6≈

P 3
4
h(v)J . This finishes the proof since for w ∈ [N ]k′ and (v, J) ∈ N 1

2
(w),

Pr
w,(v,J)

[(w, (v, J)) ∈ C ∨ w ∈ L ∨ v ∈ L] ≤ 4000µ
η2 + 2 · η 2

9

( ε
2

)− 11
9 ≤ ε10.

Fix w, (v, J) such that w, v /∈ L and (w, (v, J)) /∈ C, and let D ⊆ J be the set

D =
{
i ∈ J

∣∣∣ P 3
4
h(w)i 6= P 3

4
h(v)i

}
.

Similarly to the previous proof, we assume towards a contradiction that |D| ≥ 20αk.
For every J ′, J ′′ ⊂ [k′], w′, v′ ∈ V and i ∈ [k′], we denote by E(J ′, J ′′, w′, v′, i) the

following event:

E(J ′, J ′′, w′, v′, i) = (h(w′)i 6= h(v′)i ∧ i ∈ J ′ ∩ J ′′) .

We upper bound and lower bound the probability of this event, under the distribution i ∈ D
and (w′, J ′) ∈ N 3

4
(w) , (v′, J ′′) ∈ N 3

4
(v) given that w′, v′ ∈ V.
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Lower Bound

We look on E = E1 ∧ E2, where E1 = i ∈ J ′ ∩ J ′′ and E2 = h(w′)i 6= h(v′)i.
For every i ∈ D, P 3

4
h(w)i 6= P 3

4
h(v)i, so the most frequent value h(w′)i for (w′, J ′) ∈

N 3
4

(w) doesn’t equal the most frequent value h(v′)i for (v′, J ′′) ∈ N 3
4

(v). For every i ∈ D,
taking (w′, J ′) ∈ N 3

4
(w) , (v′, J ′′) ∈ N 3

4
(v):

Pr
(w′,J′)
(v′,J′′)

[E2 | E1, w
′, v′ ∈ V] = Pr

(w′,J′)
(v′,J′′)

[h(w′)i 6= h(v′)i | i ∈ J ′ ∩ J ′′, w′, v′ ∈ V] ≥ 1
2 . (15)

In order to prove the lower bound, we need to remove the condition over E1. To do
that, we need to lower bound the size of D ∩ J ′ ∩ J ′′. Both J ′ and J ′′ are taken by picking
each coordinated independently with probability 3

4 . If we do not condition on w′, v′ ∈ V
expected value of |D ∩ J ′ ∩ J ′′| is

( 3
4
)2 |D|. Each i ∈ D is in J ′ ∩ J ′′ with probability

( 3
4
)2

independently, so using Chernoff bound (Corollary 10),

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J ′ ∩ J ′′| ≤ 0.56|D|] ≤ e− αk
9000 .

If we condition on w′ ∈ V, v′ ∈ V, the probability can increase by a factor of at most 1
η2 ,

where Pr(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and Pr(v′,J′′)∈N 3
4

(v) [v′ ∈ V] ≥ η,

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[|D ∩ J ′ ∩ J ′′| ≤ 0.56|D| | w′, v′ ∈ V] ≤ 1
η2 e
− αk

9000 . (16)

If |D ∩ J ′ ∩ J ′′| ≥ 0.56|D|, then a uniform i ∈ D has probability of at least 0.56 to be in
J ′ ∩ J ′′,

Pr
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E1 | w′, v′ ∈ V] ≥
(

1− 1
η2 e
− αk

9000

)
0.56 ≥ 0.55. (17)

The last inequality is correct because we assume ε is large enough to satisfy ε120 > 1
η2 e
− αk

9000 .
Combining (15) and (17), we can lower bound the probability of E, when i ∈ D, (w′, J ′) ∈

N 3
4

(w) and (v′, J ′′) ∈ N 3
4

(v),

Pr
i,(w′,J′),(v′,J′′)

[E | w′, v′ ∈ V] = Pr
i,(w′,J′),(v′,J′′)

[E1 ∧ E2, | w′, v′ ∈ V]

= Pr
i,(w′,J′),(v′,J′′)

[E1 | w′, v′ ∈ V] (18)

· Pr
i,(w′,J′),(v′,J′′)

[E2 | w′, v′ ∈ V, E1]

≥1
2 · 0.55 > 1

4 . (19)

Upper Bound

Since (w, (v, J)) /∈ C, we know that

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
w′, v′ ∈ V, h(w′)J̃

αk

6≈ h(v′)J̃
]
≤ η2

4000 ,
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where J̃ = J ∩ J ′ ∩ J ′′. From the fact that w /∈ L, Pr(w′,J′)∈N 3
4

(w) [w′ ∈ V] ≥ η and since
v /∈ L, Pr(v′,J′′)∈N 3

4
(v) [v′ ∈ V] ≥ η. This implies that

Pr
(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[
h(w′)J̃

αk

6≈ h(v′)J̃

∣∣∣∣ w′, v′ ∈ V] ≤ 1
4000 .

If h(w′)J̃
αk
≈ h(v′)J̃ , then even if all these αk coordinates are in D, a uniform i ∈ D has

probability of at most αk
|D| ≤

αk
20αk ≤

1
20 to be one of these coordinates. Therefore,

Pr
i∈D,(w′,J′)∈N 3

4
(w)

(v′,J′′)∈N 3
4

(v)

[E] ≤ 1
4000 + 1

20 <
1
10 ,

which contradicts (19). J

3.4 Direct Product Function
Fixing an excellent τ , we first show that the local average function P 3

4
hτ is close to a product

function gτ . Then, by Lemma 27, we will conclude that hτ is close to gτ . This implies that
τ is a DP restriction as needed.

In this section we prove Lemma 29,

I Lemma 29. For every excellent restriction τ there exist a product function gτ : [N ] 9k
10 →

[M ] 9k
10 such that

Pr
w∈[N ]

9k
10

[
P 3

4
hτ (w)

1500αk
6≈ gτ (w)

]
≤ 3ε4.

We first define gτ , the candidate direct product function

I Definition 30. For each excellent τ = (A, r, γ), let gτ : [N ] 9k
10 → [M ] 9k

10 be the following
function, for each i /∈ A and b ∈ [N ],

gτ,i(b) = Plurality
w∈[N ]

9k
10 s.t. wi=b

{P 3
4
h(w)i},

ties are broken arbitrarily.

We prove Lemma 29 using the following few claims.

I Claim 31.

Pr
i∈[ 9k

10 ],w,v∈[N ]
9k
10

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ 1− 200α.

In order to prove Claim 31, we need to define an “almost ρ-correlated”’ distribution.

I Definition 32. (x, J) are almost ρ-correlated to y ∈ [N ]k, denoted by (x, J) ∈ Aρ (y), if
they are chosen by the following process:
1. Choose i ∈ [k] uniformly at random, set J = {i}.
2. For each j 6= i, add j to J with probability ρ independently.
3. Set xJ = yJ and the rest of x is uniform.
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I Claim 33. For any ρ ∈ (0, 1) and any event E(y, x, J) over x, y ∈ [N ]k and J ⊆ [k],

Pr
y∈[N ]k,(x,J)∈Aρ(y)

[E(y, x, J)] ≤ 2 Pr
y∈[N ]k,(x,J)∈Nρ(y)

[E(y, x, J)] + 5e−
ρk
4 .

The proof appears at the end of the section.

Proof of Claim 31. Let k′ = 9k
10 . We start by showing that for a uniform w ∈ [N ]k′ ,

(u, J ′) ∈ A 1
2

(w) and i ∈ J ′, Pri,w,(v,J′)
[
P 3

4
h(w)i = P 3

4
h(v)i

]
≥ 1− 100α.

Let E1 be the event that P 3
4
h(w)i 6= P 3

4
h(v)i, we further define the following two events,

let E2 to be the event P 3
4
h(w)J′

20αk
6≈ P 3

4
h(u)J′ , and let E3 be the event that |J ′| < k

4 .
If both E2, E3 don’t happen, then |J ′| ≥ k

4 , and there are at most 20αk coordinates i
in which P 3

4
h(w)i 6= P 3

4
h(v)i. Therefore, a uniform i ∈ J ′ has probability at most 20αk

k
4

to
satisfy P 3

4
h(w)i 6= P 3

4
h(v)i,

Pr
w,(v,J′),i

[E1 | ¬E2,¬E3] ≤20αk
k
4

= 80α. (20)

In order to remove the condition over ¬E2,¬E3, we bound their probability. For a
uniform w ∈ [N ]k′ and (u, J ′) ∈ A 1

2
(ρ),

Pr
w,(u,J′)∈A 1

2
(w)

[E2] ≤2 Pr
w,(u,J′)∈N 1

2
(w)

[E2] + 5e−
ρk
4 (by Claim 33)

≤2ε10 + 5e−
ρk
4 ≤ 3ε10. (by Lemma 28)

Similarly, for w ∈ [N ]k′ and (u, J ′) ∈ A 1
2

(w),

Pr
w,(u,J′)∈A 1

2
(w)

[E3] ≤2 Pr
w,(u,J′)∈N 1

2
(w)

[E3] + 5e−
ρk
4 (by Claim 33)

≤2e− k
100 + 5e−

ρk
4 ≤ ε10. (Chernoff Bound)

For (u, J ′) ∈ N 1
2

(w), each coordinate i is in J ′ with probability 1
2 independently, so we can

use Chernoff bound. If we add a condition on ¬E2, it can increase the probability by a factor
of 1

Pr[¬E2] < 2, therefore Prw,(u,J ′)∈A 1
2

(w) [E3 | ¬E2] ≤ 2ε10.

Combining everything together, for a uniform w ∈ [N ]k′ , (u, J ′) ∈ A 1
2

(w) and i ∈ J ′,

Pr
w,(u,J′),i

[E1] ≤ Pr
w,(u,J′),i

[E2] + Pr
w,(u,J′),i

[E3 | ¬E2] + Pr
w,(u,J′),i

[E1 | ¬E2,¬E3]

≤3ε10 + 2ε10 + 80α ≤ 100α (21)

Let D′ : [k′] × [N ]k′ × [N ]k′ × [N ]k′ → {0, 1} be the following distribution, generating
i, w, v, u:
1. Pick a uniform i ∈ [k′].
2. Pick w, v ∈ [N ]k′ such that wi = vi.
3. For every j 6= i, insert j into J with probability 1

2 independently.

4. For every j ∈ [k′], uj =
{
wj j ∈ J
vj else

.
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The distribution D′ is built such that the marginal distribution over w, v, i is that i ∈ [k′]
uniformly, and w, v are uniform in [N ]k′ such that wi = vi. Furthermore, the marginal
distribution over w, (u, J ∪{i}), i is such that w ∈ [N ]k′ uniformly, (u, J ∩{i}) ∈ A 1

2
(w) and

the coordinate i is uniform in {i} ∪ J . Similarly, the marginal distribution over v, (u, J̄) is
v ∈ [N ]k′ , (u, J̄) ∈ A 1

2
(v) and i ∈ J̄ .

Therefore, we can use equation (21) on the pairs w, (u, J ∪ {i}) and v, (u, J̄), and by
union bound,

Pr
i∈[k′]

w,v∈[N ]k
′

[
P 3

4
h(w)i = P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ Pr
i,w,v,u∼D′

[
P 3

4
h(w)i = P 3

4
h(v)i = P 3

4
h(u)i

]
≥1− 100α− 100α.

J

I Corollary 34.

Pr
w∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i = g(w)i

]
≥ 1− 400α.

Proof. For each w ∈ [N ] 9k
10 and i ∈ [ 9k

10 ] such that P 3
4
h(w)i 6= g(w)i, the value P 3

4
h(w)i is

not the most frequent, Pr
v∈[N ]

9k
10

[P 3
4
h(w)i = P 3

4
h(v)i|wi = vi] ≤ 1

2 . Therefore,

Pr
w,v∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i 6= P 3

4
h(v)i

∣∣∣ wi = vi

]
≥ 1

2 Pr
w∈[N ]

9k
10 ,i∈[ 9k

10 ]

[
P 3

4
h(w)i 6= g(w)i

]
.

Using Claim 31 we reach the corollary. J

Proof of Lemma 29. Fix an excellent τ , denote k′ = 9k
10 .

For each w ∈ [N ]k′ , let Dw ⊂ [k′] be the set of coordinates in which gτ (w),P 3
4
hτ (w)

differs

Dw =
{
i ∈ [k′]

∣∣∣ gτ (w)i 6= P 3
4
hτ (w)i

}
.

Let C ⊂ [N ]k′ be the set of inputs such that gτ ,P 3
4
hτ are similar on them,

C =
{
w ∈ [N ]k

′
∣∣∣ |Dw| ≤ 500αk

}
.

By Corollary 34 and averaging, Prw[w ∈ C] ≥ 1
5 .

Let B ⊂ [N ]k′ be the set of inputs on which gτ ,P 3
4
hτ are far,

B =
{
w ∈ [N ]k

′
∣∣∣ |Dw| ≥ 1500αk

}
.

B is the set of inputs in which P 3
4
hτ (w)

1500αk
6≈ gτ (w), so our goal is to prove that B is small.

Let E1(w, v, J) be the event that |J ∩Dw| > 600αk, and let E2(w, v, J) be the event that

P 3
4
h(w)J

20α
6≈ P 3

4
h(v)J . By Lemma 28, Prw∈[N ]k′ ,(v,J)∈N 1

2
(w) [E2] ≤ ε10.

For every v, w, J such that vJ = wJ , the function g satisfies gτ (w)J = gτ (v)J (since g
is a product function), and therefore E1 ∧ (v ∈ C) =⇒ E2. This is because if E2 doesn’t
hold, then P 3

4
h(w)J

20α
≈ P 3

4
h(v)J , if E1 does hold then |J ∩Dw| > 600αk, which means that

|Dv ∩ J | ≥ 580αk, and v /∈ C.
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We show if B isn’t small, then E1∧(v ∈ C) happens often, when we pick w ∈ [N ]k, (v, J) ∈
N 1

2
(w).
For w ∈ B, the set Dw is large, |Dw| ≥ 1500αk, if we take (v, J) ∈ N 1

2
(w), each

coordinate i ∈ Dw is in J with probability 1
2 independently, so for w ∈ B, by Chernoff bound

Pr
(v,J)∈N 1

2
(w)

[E1(w)] = Pr
(v,J)∈N 1

2
(w)

[|J ∩Dw| > 600αk] ≥ 1− e−
ρk
100 .

From reverse hypercontractivity [11], Corollary 15

Pr
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C] ≥ Pr
w

[w ∈ C] 3
2 Pr
w

[w ∈ B] 5
2 .

Therefore,

Pr
w,(v,J)∈N 1

2
(w)

[w ∈ B, v ∈ C ∧ E1] ≥Pr
w

[w ∈ C] 3
2 Pr
w

[w ∈ B] 5
2 − e−

ρk
100

≥
(

1
5

) 3
2

Pr
w

[w ∈ B] 5
2 − e−

ρk
100 . (22)

Where (22) is since Prw[w ∈ C] ≥ 1
5 .

Since E1 ∧ (v ∈ C) =⇒ E2 and by Lemma 28, Prw∈[N ]k′ ,(v,J)∈N 1
2

(w) [E2] ≤ ε10, it means

that (22) should be smaller than ε10, which implies Prw[w ∈ B] ≤ 3ε4 and finishes the
proof. J

We are left with proving the simple distribution claim – that almost ρ correlated is similar
to ρ correlated.

Proof of Claim 33. The proof is based on the fact that the distributions Nρ (y) , Aρ (y) are
very close, and the probability of an event depending on y, x, J is not much different in both
distributions.

By Chernoff bound, ρ-correlated sets are almost always of size about ρk, this holds for
almost ρ correlated as well,

Pr
(x,J)∈Nρ(y)

[|J | > 2ρk] ≤ e−
ρk
3 ,

Pr
(x,J)∈Aρ(y)

[|J | > 2ρk] ≤ e−
ρk
4 .

For each y ∈ [N ]k, let By be the (x, J) that satisfy E(y, x, J)

By = {(x, J) | E(y, x, J) = 1} .

Using this notation

Pr
y∈[N ]k,(x,J)∈Nρ(y)

[E(y, x, J)] = Pr
y∈[N ]k,(x,J)∈Nρ(y)

[(x, J) ∈ By] .

Fix y ∈ [N ]k, for each (x, J) ∈ By, by the definition of ρ-correlation,

Pr
(z,J′)∈Nρ(y)

[(z, J ′) = (x, J)] = ρ|J|(1− ρ)k−|J|
(

1
N

)k−|J|
.
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By the definition of almost ρ correlation,

Pr
(z,J′)∈Aρ(y)

[(z, J ′) = (x, J)] = |J |
k
ρ|J|−1(1− ρ)k−|J|

(
1
N

)k−|J|
.

Note that for each such (x, J) ∈ By such that |J | ≤ 2ρk,

Pr
(z,J′)∈Aρ(y)

[(z, J ′) = (x, J)] ≤ 2 Pr
(z,J ′)∈Nρ(y)

[(z, J ′) = (x, J)] .

Therefore

Pr
(x,J)∈Aρ(y)

[(x, J) ∈ By] ≤ Pr
(x,J)∈Aρ(y)

[|J | ≥ 2ρk] + Pr
(x,J)∈Aρ(y)

[(x, J) ∈ By | |J | ≤ 2ρk]

≤e−
ρk
4 + 2 Pr

(x,J)∈Nρ(y)
[(x, J) ∈ By | |J | ≤ 2ρk]

≤e−
ρk
4 + 2 Pr

(x,J)∈Nρ(y)
[(x, J) ∈ By] + 4e−

ρk
3 .

When we used conditional probability in the last inequality. This is true for all y ∈ [N ]k′ ,
therefore,

Pr
y∈[N ]k,(x,J)∈Aρ(y)

[E(y, x, J)] = Pr
y∈[N ]k,(x,J)∈Aρ(y)

[(x, J) ∈ By]

≤ 2 Pr
y∈[N ]k,(x,J)∈Nρ(y)

[(x, J) ∈ By] + 5e−
ρk′
4 . J

4 Global Structure for Sets

Up until now we have considered functions f : [N ]k → [M ]k whose inputs are ordered tuples
(x1 . . . , xk) ∈ [N ]k. We now move to consider functions f :

([N ]
k

)
→ [M ]k whose inputs are

unordered {x1, . . . , xk} ∈
([N ]
k

)
, and we assume that N � k (for tuples no such assumption

was made).
To each subset S = {s1, . . . , sk} the function f assigns f(S) ∈ [M ]k. f(S) should be

viewed as a “local function” on S, assigning a value from [M ] to every a ∈ S. We denote by
f(S)a the output of f that corresponds to a. For a subset W ⊂ S, let f(S)W be the outputs
of f corresponding to the elements in W .

There are straightforward analogs to Theorem 1 and Theorem 21 which we present
and prove in this section. Interestingly, in the case of sets deducing global structure from
restricted global structure is quite easier than it is for tuples.

First, let us present the Z test for sets, from [9] when t = k
10 . Let αZset( k10 )(f) be the

success probability of this test. This is the same test as Test 3 from the introduction written
differently, it is written this way because it is easier to refer to the test items during the
proof.

I Theorem 5. There exist a small constant c > 0, such that for every constant λ > 0,
large enough k ∈ N and N > k2e10cλk, if the function f :

([N ]
k

)
→ [M ]k passes Test 3 with

probability αZset( k10 )(f) = ε > e−cλk, then there exist a function g : [N ]→ [M ] such that

Pr
S

[
f(S) λk≈ g(S)

]
≥ ε− 4ε2.

In order to analyze this test, we first need to “translate” the restricted global structure
result into this setting, and then prove the global structure in this setting.
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1. Choose a random set W ⊂ [N ] of size k
10 .

2. Choose X,Y ⊂ [N ] \W of size 9k
10 .

3. If f(X ∪W )W 6= f(Y ∪W )W reject.
4. Choose V ⊂ [N ] \ Y of size k

10 .
5. If f(Y ∪W )Y 6= f(Y ∪ V )Y reject, else accept.

X W

Y V

Denote by αZset( k10 )(f) the success probability of f on this test.

Test 4 “Z” test for functions over sets, with t = k
10 (3-query test).

4.1 Restricted Global Structure for Sets
In this section, we see that for N � k, the restricted global structure for tuples, Theorem 21,
implies restricted global structure for sets. First we define analog definitions for sets, for good
restrictions and DP restrictions. To make the reduction proof simpler, we use a constant
η ∈

[
1− k2

N , 1
]
(i.e. almost 1) and define good pair using η.

I Definition 35 (Good pair). A pair X,W ⊂ [N ], |X| = 9k
10 , |W | =

k
10 is good if

Pr
Y

[f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] > ε

2η.

This definition is analog to Definition 19 of good restriction, the main difference between the
definitions is that here we don’t have a set of coordinates A ⊂ [k], because f is defined on
sets and not coordinates.

I Definition 36 (DP pair). A pair X,W ⊂ [N ], |X| = 9k
10 , |W | =

k
10 is a DP pair if it is good,

and if there exist a function gX,W : [N ]→ [M ] such that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

This definition is analog to Definition 20 of DP restriction, only here there is a single function
gX,W , instead of 9k

10 different functions in the case of coordinates.

I Lemma 37 (Restricted global structure for sets). There exist a small constants δ > 0, such
that for every constant λ > 0 and large enough k ∈ N such that N > k2e10δλk, the following
holds,

For every function f :
([N ]
k

)
→ [M ]k, if αZset( k10 )(f) = ε > e−δλk, then at least (1−ε2− k2

N )
of the good pairs W ∈

([N ]
k
10

)
, X ∈

([N ]
9k
10

)
are DP pairs, i.e. there exist gX,W : [N ]→ [M ] such

that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

This lemma for sets is analog to Theorem 21, and we prove it by a reduction from it. For
every f :

([N ]
k

)
→ [M ]k we define a function f ′ : [N ]k → [M ]k ∪ ⊥ that equals ⊥ if the input

has two identical coordinates, and identifies with f everywhere else. For N � k, almost all
inputs don’t have two identical coordinates, and f ′, f are equal almost always.

Using Theorem 21, we derive a restricted global structure on f ′ which gives a direct
product function gτ = gτ1 , . . . g

τ
9k
10 k

for every excellent τ . Since f equals f ′ almost always,
we find an equivalence between excellent τ and excellent X,W . Then, we build a restricted
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global function gX,W by taking the most frequent value among the product gτ1 , . . . gτ9k
10
. Note

that even though f ′ is permutation invariant, the functions gτ1 , . . . gτ9k
10

may not be the same.
Since the proof is technical, and its main points are described in the paragraph above, we

defer it to Appendix B.

4.2 Global Structure for Sets
Now we are ready to prove Theorem 5. The proof is very similar to lemma 3.16 in [9].

Proof. Fix a function f :
([N ]
k

)
→ [M ]k that passes Test 4 with probability ε > e−cλk, denote

by δ = c
5 and α = 5λ.

Let W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
be the subsets chosen on the first two items of the test, if

PrY [f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] < ε
2η, the test rejects in Item 3 with probab-

ility at least 1− ε
2η.

Therefore, in order for f to pass the test with probability ε, the test must pass with
probability at least ε onW,X such that PrY [f(X ∪W )W = f(Y ∪W )W | Y ∩W = ∅] > ε

2η,
we call these W,X good.

Using Lemma 37, for at least (1 − 2ε2 − k2

N ) of the good W,X there exist a function
gW,X : [N ]→ [M ] such that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

Fix such W,X, let G =
{
Y ∈

([N ]
9k
10

) ∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
}
, and let g =

gX,W : [N ] → [M ]. We want to use the last query to show that this g is in fact a global
product function, i.e f(S) ≈ g(S) for about an ε fraction of S ∈

([N ]
k

)
.

For every set S, we say that S is bad if f(S)
5αk
6≈ g(S). Let p be the probability of a

uniform S to be bad, i.e. p = Pr
S∈([N]

k )

[
f(S)

5αk
6≈ g(S)

]
.

Suppose that instead of running Test 4 as is, we choose Y, V by the following process:
1. Choose a uniform S ∈

([N ]
k

)
.

2. Choose Y to be a uniform 9k
10 subset of S.

3. Set V = S \ Y and return (Y, V ).
We suppose that if the process outputs Y such that Y ∩ W 6= ∅, the test rejects. The
probability of this event is less than k2

N , and if it doesn’t happen the process generates
the test distribution. Therefore, the test on f using this distribution should success with
probability at least ε− k2

N .
In order for Test 4 to pass, two checks must hold:

1. f(X ∪W )W = f(Y ∪W )W , equivalent to Y ∈ G.
2. f(Y ∪ V )Y = f(Y ∪W )Y .

Suppose that S is bad, and we let Y ∪ V = S to be the sets used in the test. If Y /∈ G,
the test will fail. If y ∈ G, from the local structure, Lemma 37,

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ g(Y )

∣∣∣∣ Y ∈ G] ≤ 2ε2.

If we condition on S to be bad, we restrict Y and therefore the probability of this event
can increase by a factor of 1

p .

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ g(Y )

∣∣∣∣ Y ∈ G,S is bad
]
≤ 1
p

2ε2. (23)
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Since S is bad and Y is a uniform 9k
10 sized set inside S, the probability that less than

3αk out of the 5αk elements in which f(S), g(S) differ is in Y is exponentially small.

Pr
Y⊂S

[
f(S)Y

3αk
≈ g(Y )

∣∣∣∣ S is bad
]
≤ e− 1

320αk. (24)

The inequality is due to Chernoff bound, using Claim 11 (if D is the set of elements in which
f(S), g(S) differ, f(S)Y

3αk
≈ g(Y ) =⇒ |Y ∩D| ≤ 3

5 |D|, in the claim we use A = S \ Y ).
From equation (23), we know that with probability 1− 2ε2

p , f(Y ∪W )Y
3αk
≈ g(Y ). From

(24), with probability 1−e− 1
320αk, f(S)Y

3αk
6≈ g(Y ). If both holds, then f(S)Y = f(Y ∪V )Y 6=

f(Y ∪W )Y , and the test will fail. Therefore,

Pr
S

[Test passes | S is bad] ≤ e− 1
320αk + 2ε2

p
≤ 3ε2

p
. (25)

The test must pass with probability ε− k2

N ,

ε− k2

N
= Pr[Test passes] = Pr[S is bad] Pr [Test passes | S is bad]

+ Pr[S isn’t bad] Pr [Test passes | S isn’t bad]

≤p3ε2

p
+ (1− p)

Therefore p = Pr[S is bad] ≤ 1− ε+ k2

N + 3ε2, which implies that at least ε− k2

N − 3ε2 of the
test S are not bad, and for such sets f(S) 5αk

≈ g(S). We choose c = δ
5 so α = 1

5λ, and notice
that ε− 4ε2 ≤ ε− k2

N − 3ε2 which finishes the proof. J

In the introduction, we stressed that in order to extend the restricted global structure
into a global structure, the restricted global structure theorem has to be “strong”, i.e. the

probability of f(Y ∪W )Y
3αk
6≈ gX,W (Y ) should be strictly smaller than ε, it is 2ε2 in our case.

If the local structure was not strong, the bound in (25) would have been larger than ε. This
means that all the success probability of the test could come from bad sets S. From (25), we
see that almost all of the success probability of the test comes from sets that are not bad,
this we couldn’t have deduced from the restricted structure theorem of [7].

5 Global Structure for Tuples

In this section we prove our main theorem – global structure for tuples. The proof uses the
restricted global structure, Theorem 21. For convenience we copy the test and theorem from
the introduction.

I Theorem 1 (Main theorem – Global Structure for tuples). For every N,M > 1, there
exist small constants c1, c2 > 0 such that for every constant λ > 0 and large enough k, if
f : [N ]k → [M ]k is a function that passes Test 1 with probability αZ( k10 )(f) = ε ≥ e−c1λ

2k,
then there exist functions (g1, . . . gk), gi : [N ]→ [M ] such that

Pr
x∈[N ]k

[
f(x) λk≈ (g1(x1) . . . gk(xk))

]
≥ c2 · ε.

Where λk
≈ means that the strings are equal on all but at most λk coordinates.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = |B| = t.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t)(f) the success probability of f on this test.

Test 1 “Z”-test with parameter t (3-query test).

5.1 Proof Outline
Our proof of Theorem 1 relies on Theorem 21, which gives us, for many restrictions τ , a
product function gτ that is defined on a set A of 9k

10 coordinates and approximately equals f
on Vτ . In this section we show how to stitch the restricted functions gτ together into one
global function g. The proof has three parts.
1. In Section 5.2, we show that there exist an x ∈ [N ]k such that,

a. On at least Ω(ε) of the sets A, the tuple τ = (A, xA, f(x)A) is excellent, and Test 1
passes with probability at least ε

3 .
b. Taking two such sets A1, A2, their functions gτ1 , gτ2 are similar with probability Ω(ε2).
We start from picking x such that the test succeeds on it with probability Ω(ε), and that
for Ω(ε) of the sets A, τ = (A, xA, f(x)A) satisfies the first item above. We use the third
query of the test to show that each gτ approximates f on [k] \A in Ω(ε) of the inputs in
[N ]k. This implies that for many different pairs τ1, τ2, both gτ1 and gτ2 are close to f on
[k] \ {A1 ∪A2} in Ω(ε2) of the inputs, which means that gτ1 , gτ2 are similar to each other.

2. In Section 5.3 we view this situation abstractly as yet another agreement question, with
a different setting of parameters: given a set of direct product functions, each defined on
9
10k coordinates, such that each two are consistent with probability Ω(ε2), find a global
direct product function g = (g1, . . . gk) that is consistent with Ω(ε2) of these functions.
We show that such a g can be found, essentially proving an agreement testing theorem
for this setting. This may seem circular but in fact the current setting is easier than
our original problem because of the density: Since the sets are so large, every two sets
intersect.
In order to solve this agreement question, we build a graph with the functions as nodes,
and connect by an edge each two consistent functions. We connect by a “weak edge” each
two functions that are somewhat consistent, where we allow a larger difference between
the two functions. The weak and strong edges have an “almost transitive” property,
if (v1, v2) and (v2, v3) are connected by a strong edge, then almost surely (v1, v3) are
connected by a weak edge. We use this property to show that there exist a set of vertices
C of size Ω(ε2) that is almost a clique, i.e. almost every two functions in C are consistent.
We build the global function by taking the plurality over C, and show that it is close to
most functions in C.

3. Lastly, in Section 5.4, we connect the two previous items. The functions gτ for τ =
(A, x, f(x)A) from the first item are each defined on 9k

10 coordinates, and each two are
similar with probability Ω(ε2). This means that they satisfies the conditions of the second
item, and there exists a global function g defined on all [k] that is close to Ω(ε2) of them.
We recall that on Section 5.2 we showed that each gτ is close to f on Ω(ε) fraction of the
inputs, and conclude that the global function g is also close to f on Ω(ε) fraction of the
input, which finishes the proof.
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5.2 Consistency Between Restricted Global Functions
From Theorem 21, we know with probability 1− ε2 a good τ ∼ D is excellent, and for each
excellent τ there exist a local direct product function gτ = (gτ1 , . . . , gτ9k

10
) that equals f on Vτ .

I Definition 38. For every x ∈ [N ]k, let Ax be the set of subsets A ⊂ [k] of size k
10 such

that:
1. Fixing A, x, Pry,B,z [Test 1 passed] ≥ ε

3 .
2. τ = (A, xA, f(x)A) is excellent.

I Definition 39. Let τ1 = (A1, r1, γ1), τ2 = (A2, r2, γ2) be two excellent tuples, we say that
gτ1 , gτ1 are consistent if for a uniform i /∈ A1 ∪A2 and u ∈ [N ],

Pr
i,u

[gτ1i (u) 6= gτ2i (u)] ≤ 60λ.

The main claim we prove in this section is the following,

I Claim 40. There exist x ∈ [N ]k, such that:
1. PrA [A ∈ Ax] ≥ ε

4 .
2. PrA1,A2∈Ax [gτ1 , gτ1 are consistent] ≥ ε2

32 , where the tuples are τ1 = (A1, xA1 , f(x)A1) and
τ2 = (A2, xA2 , f(x)A2).

We start from looking for a candidate x ∈ [N ]k.

I Claim 41. Let

X1 =
{
x ∈ [N ]k

∣∣∣ Pr [Test 1 passed with x] ≥ ε

4

}
,

X2 =
{
x ∈ [N ]k

∣∣∣ Pr
A

[A ∈ Ax] ≥ ε

8

}
.

Then

X1 ∩ X2 6= ∅.

Proof. Let G be the full weighted bipartite graph, with vertex sets L =
([k]

9k
10

)
and R = [N ]k.

The weight of an edge A, x equals the success probability of Test 1 given that A, x are chosen.
The expected weight of an edge is equal to the test success probability of Test 1, ε. For

each edges with weight less than ε
2 , we change its weight to 0. We removed at most half of

the total weight, so the expected weight of a uniform edge now is at least ε
2 .

All the edges that remain with positive weight are of (A, x) such that τ = (A, x, f(x)A) is
good (there may also be good tuples with weight 0, if Test 2 passed with probability larger
than ε

2 but Test 1 didn’t). We further change to 0 the weight of all the edges A, x such that
τ = (A, xA, f(x)A) is not excellent.

From Theorem 21, a random good τ ∼ D is excellent with probability 1 − ε2, and the
distribution τ ∼ D corresponds to a uniform choice of A ∈ L, x ∈ R. Therefore, changing to
0 the wight over these edges means changing to 0 the weight of at most ε2 of the edges in G.
The maximal weight of an edge is 1, we have reduced the expected weight by at most ε2.
The expected weight now is more than ε

2 − ε
2 ≥ ε

3 .
Let x be the vertex with the maximal sum of weights of neighbor edges, then

Pr [Test 1 passed given x] ≥ E
A

[ω(A, x)] ≥ ε

3 .

The inequality is because we have changed to zero the weight some edges.
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All edges (A, x) that still have positive weight satisfy A ∈ Ax,

Pr
A

[A ∈ Ax] = Pr
A

[ω(A, x) > 0] ≥ ε

3 ,

since the maximal weight an edge can have is 1.
Therefore, x ∈ X1 ∩ X2. J

In the rest of this section we fix x ∈ X1 ∩X2, denote A = Ax and gA = gτ = (gτ1 , . . . , gτ9k
10

)
for τ = (A, x, f(x)A), and prove that it fulfills the conditions of Claim 40.

I Definition 42. An input z ∈ [N ]k is consistent with a set A ∈ A if f(z)Ā
20λk
≈ gA(zĀ). Let

ZA be the set of inputs that are consistent with A.

ZA =
{
z ∈ [N ]k

∣∣∣∣ f(z)Ā
20λk
≈ gA(zĀ)

}
.

I Claim 43. For every A ∈ A, Prz [z ∈ ZA] ≥ ε
4 .

Proof. Assume towards contradiction that the claim does not hold, and fix a set A ∈ A such
that Prz [z ∈ ZA] < ε

4 .
We reach a contradiction by showing that conditioning on A, x chosen by the test,

Pry,B,z [Test 1 passes] < ε
3 contradicting the fact that A ∈ A.

We define the following events, under the assumption that yA = xA and yB = zB as in
the test.
1. E1: f(x)A = f(y)A.
2. E2: f(z)B = f(y)B .
3. E3: f(y)B

λk
≈ gA(yB).

4. E4: f(z)B
λk
≈ gA(zB).

5. E5: z /∈ ZA.
Note that since gA is a product function and yB = zB, E4 can also be written as f(z)B

λk
≈

gA(yB). We also notice that E2 ∧ E3 =⇒ E4, since we can switch f(y)B by f(z)B in E3.
By definition, Test 1 succeeds if E1, E2 both happened.

Pr
y,B

[E1 ∧ E2] ≤ Pr
y,B,z

[E1 ∧ E2 ∧ E3 ∧ E5] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E3] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ Pr
y,B,z

[E1 ∧ E4 ∧ E5] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E3] + Pr
y,B,z

[E1 ∧ E2 ∧ ¬E5]

≤ Pr
y,B,z

[E4 | E5] + Pr
y,B,z

[¬E3 | E1] + Pr
y,B,z

[¬E5] . (26)

We bound each of the three probabilities.

1. If E5 happened, z /∈ ZA so f(z)Ā
20λk
6≈ gA(zĀ), let D be the set of coordinates in which

f(z)Ā and gA(zĀ) differ

D =
{
i ∈ Ā

∣∣ f(z)i 6= gA,i(zi)
}
.

In order to satisfy E4, the set B should be such that |B ∩D| ≤ λk, since B is a random
set of size k

10 , using Claim 11

Pr
B,y,z

[E4 | E5] ≤ Pr
B

[|B ∩D| ≤ λk] ≤ e−λk60 < ε2.
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2. Since A ∈ Ax the tuple (A, xA, f(x)A) is excellent, and from Theorem 21

Pr
y,B,z

[¬E3 | E1] = Pr
y,B

[
f(y)B

λk

6≈ gA(yB)
∣∣∣∣ f(x)A = f(y)A

]
≤ ε2,

where we use the fact that B ⊆ Ā, therefore f(y)B
λk

6≈ gA(yB) implies f(y)Ā
λk

6≈ gA(yĀ).
3. From our assumption,

Pr
y,B,z

[E5] = Pr
z

[z ∈ ZA] ≤ ε

4 .

Therefore, from (26) we get

Pr
y,B,z

[Test 1 passes | x,A] = Pr
y,B,z

[E1 ∧ E2] ≤ ε2 + ε2 + ε

4 <
ε

3 ,

contradicting A ∈ A. J

In the introduction, we explained the difference between our restricted global structure, and
the result of [7]. In our result, Theorem 21, f(y)Ā ≈ gτ (y) for 1− ε2 of y ∈ Vτ , and it their
result it was much less.

I Claim 44.

Pr
A1,A2∈A

[
|ZA1 ∩ ZA2 | ≥

ε2

32N
k

]
≥ ε2

32 .

Proof. For a uniform pair A1, A2 ∈ A:

E
A1,A2

[|ZA1 ∩ ZA2 |] =
∑
z

E
A1,A2

[I(z ∈ ZA1 ∩ ZA2)] ≥
∑
z

Pr
A1

[z ∈ ZA1 ]2 (27)

where I is an indicator. The last inequality holds since A1, A2 are independent uniform sets
in A, and the square function is convex.

From Claim 43, Prz [z ∈ ZA] ≥ ε
4 for every A ∈ A. Therefore, from (27) we get

E
A1,A2

[|ZA1 ∩ ZA2 |] ≥
∑
z

Pr
A1

[z ∈ ZA1 ]2

≥

(∑
z

N−
k
2 Pr
A1

[z ∈ ZA1 ]
)2

(Cauchy Swartz)

≥
( ε

4

)2
Nk. (Claim 43)

The maximal value of |ZA1 ∩ ZA2 | is Nk, therefore by averaging

Pr
A1,A2

[
|ZA1 ∩ ZA2 | ≥

ε2

32N
k

]
≥ ε2

32 . J

I Claim 45. If A1, A2 ∈ A are such that |ZA1 ∩ ZA2 | ≥ ε2

32N
k, then gA1 , gA2 are consistent,

i.e. for a uniform i ∈ [k] \ {A1 ∪A2} and u ∈ [N ],

Pr
i,u

[gA1,i(u) 6= gA2,i(u)] ≤ 60λ.
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Proof. Let A1, A2 ∈ A be two sets such that |ZA1 ∩ ZA2 | ≥ ε2

32N
k, and let Z12 = ZA1 ∩ ZA2 .

In order to simplify the notation, denote S1 = [k] \A1, S2 = [k] \A2 and S12 = S1 ∩ S2 =
[k] \ {A1 ∪A2}. S12 is the set of coordinates that both gA1 , gA2 are defined on, |S12| ≥ 0.8k.

For each i ∈ S12, let

pi = Pr
u∈[N ]

[gA1,i(u) 6= gA2,i(u)] .

Let w ∈ [N ]S12 uniformly at random, and let Ii be indicator random variable for
gA1,i(wi) 6= gA2,i(wi). Each Ii equals 1 with probability pi independently. In this notation

E
w

[dist(gA1(w), gA2(w))] = E

[∑
i∈S12

Ii

]
.

Assume towards contradiction that Pri,b [gA1,i(u) 6= gA2,i(u)] > 60λ, this will imply that
Ew [dist(gA1(w), gA2(w))] > 60λ · 0.8k.

Using Chernoff bound:

Pr
w

[dist(gA1(w), gA2(w)) ≤ 40λk] = Pr
[∑
i∈S12

Ii ≤
5
6 E

[∑
i∈S12

Ii

]]
≤ e− 1

2λk .

If instead of taking a completely uniform w ∈ [N ]S12 , we pick a random z ∈ Z12, and
restrict it to S12, getting w = zS12 . The probability of any event on w can increase by a
factor of at most Nk

|Z12| ≤
32
ε2 ,

Pr
z∈Z12

[dist(gA1(zS12), gA2(zS12)) ≤ 40λk] ≤ 32
ε2
e−

1
2λk <

1
2 . (28)

By the definition of ZA1 ,ZA2 , each input z ∈ Z12 satisfies both f(z)S1

20λk
≈ gA1(zS1)

and f(z)S2

20λk
≈ gA2(zS2) which implies gA1(zS12) 40λk

≈ gA2(zS12) with probability 1, which
contradicts (28). J

Combining the last two claims, we prove Claim 40.

5.3 Agreement Theorem in the Dense Case
In this section, we present and prove an abstract problem that will later be used to create
the global product function. Given a collection of local functions F = {fS}S∈( [k]

9k
10

), such that

for each S ∈
([k]

9k
10

)
, fS : S → Σ, can we deduce from the agreement of fS the existence of a

single global function g : [k]→ Σ that is close to many fS?
We need to define what exactly agreement means in the case of F , as it is not the setting

on which we previously defined agreement on. In order to do so, we assume that we have a
bounded distance measure on Σ, i.e. for every σ1, σ2 ∈ Σ, dist(σ1, σ2) ∈ [0, 1].

I Definition 46. The difference between fS1 , fS2 ∈ F , denoted by ∆(fS1 , fS2) is defined by

∆(fS1 , fS2) = E
i∈S1∩S2

[dist(fS1(i), fS1(i))].

The difference between fS ∈ F to a function g : [k]→ Σ is defined by,

∆(fS , g) = E
i∈S

[dist(fS(i), g(i))].
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Note that the difference defined above is not a distance, it may be that ∆(fS1 , fS2) = 0 for
S1 6= S2.

Now we are ready to define the agreement, notice that since we are talking on an agreement
inside a function set F , the definition is different. The general idea is the same – we check
for the agreement of two random elements in F according to some distribution.

I Definition 47. The agreement of the collection of local functions F regarding the uniform
distribution with parameter α, denoted by agreeα(F) is defined by,

agreeα(F) = Pr
fS1 ,fS2∈F

[∆(fS1 , fS2) < α].

I Theorem 48. For every small constant α ∈ (0, 1) and ν > e−
1
3α

2k, if a collection of local
functions F has agreeα(F) > ν, then there exists a global function g : [k]→ Σ such that

Pr
S∈( [k]

9k
10

)
[∆(fS , g) ≤ 300α] ≥ 1

4ν.

In order to prove the theorem, it is helpful to look at the elements S ∈
([k]

9k
10

)
as vertices in

a graph. Let G = (V, ES ∪EW ) to be the graph with the vertex set V =
([k]

9k
10

)
, and two edge

sets, weak edges and strong edges.

I Definition 49. For every two sets S1, S2 ∈ V:
1. S1, S2 are connected by a strong edge, denoted by S1 − S2, if ∆(fS1 , fS2) < α.
2. S1, S2 are connected by a weak edge, denoted by S1 ∼ S2, if ∆(fS1 , fS2) < 60α.

We want to find a subset of vertices that is close to a clique in G, such subset will allow
us to define a global function g. We start by showing that there exist many vertices of high
degree in G.

I Claim 50. Exists a set S ⊂ V of measure at least ν
2 , such that for every S ∈ S

Pr
S′∈V

[S − S′] ≥ 1
2ν.

Proof. Let

S =
{
S ⊆ V

∣∣∣∣ Pr
S′

[S − S′] ≥ 1
2ν
}
.

By averaging

ν ≤ Pr
S1,S2

[S1 − S2]

≤Pr
S1

[S1 ∈ S] Pr
S1,S2

[S1 − S2 | S1 ∈ S] + Pr
S1

[S1 /∈ S] Pr
S1,S2

[S1 − S2 | S1 /∈ S]

≤Pr
S1

[S1 ∈ S] + 1
2ν
(

1− Pr
S1

[S1 ∈ S]
)
.

Then PrS1 [S1 ∈ S] ≥ 1
2ν. J

Strong connectivity is not transitive, but we can have an “almost transitive” property by
considering both strong and weak edges.

CCC 2017
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I Claim 51. For S, S1, S2 ∈ V uniformly and independently,

Pr
S,S1,S2

[S − S1, S − S2, S1 6∼ S2] ≤ 2e−α
2k .

Proof. Fix S1, S2 ∈ V to be two vertices such that S1 6∼ S2 (if there are no such vertices,
the probability is 0 and we are done).

For every S ∈ V, we define by di, d1
i , d

2
i the following distances:

1. For each i ∈ S1 ∩ S2, di = dist(fS1(i), fS2(i)).
2. For each i ∈ S ∩ S1, d1

i = dist(fS(i), fS1(i)).
3. For each i ∈ S ∩ S2, d2

i = dist(fS(i), fS2(i)).
By the triangle inequality, for every i ∈ S ∩ S1 ∩ S2, di ≤ d1

i + d2
i , therefore for every such i,

max{d1
i , d

2
i } ≥ di

2 .
Since S1 6∼ S2, we know that Ei∈S1∩S2 [di] ≥ 60α, if we look on the sum

∑
i∈S1∩S2

di ≥
8k
10 60α (because |S1∩S2| ≥ 8

10k). If S−S1, S−S2, then max{Ei∈S∩S1 [d1
i ],Ei∈S∩S2 [d2

i ]} ≤ α,
which means that max{

∑
i∈S∩S1

d1
i ,
∑
i∈S∩S2

d2
i } ≤ 9

10αk (we switched expectation in a sum,
|S ∩ S1| ≤ 9k

10 ).

max
{ ∑
i∈S∩S1

d1
i ,
∑

i∈S∩S2

d2
i

}
≥ 1

2
∑

i∈S∩S1∩S2

max
{
d1
i , d

2
i

}
≥ 1

4
∑

i∈S∩S1∩S2

di (29)

The first inequality is since taking the maximum over every i can increase the total sum
in a factor of 2 at most from taking maximum of the sum. The second inequality is since
max{d1

i , d
2
i } ≥ di

2 .
Notice that the last expression is independent of the function fS , and depends only on the

set S. Let XS be the random variable XS = 1
4
∑
i∈S∩S1∩S2

di for a uniform S ∈ V . Since the
set S is a uniform 9k

10 sized subset of [k], ES [XS ] = 9
10
∑
i∈S1∩S2

di ≥ 9
10

8
1060αk. For S ∈ V

such that XS > αk, by (29) it means that S is not strongly connected to one of S1, S2.
To finish the proof, we need to show that XS ≤ αk for very few S ∈ V. Let D contain

the k
3 indices i ∈ S1 ∩ S2 with the largest di. Obviously

∑
i∈D di ≥

1
3
∑
i∈S1∩S2

di ≥ 16αk.
In order of XS ≤ αk, the sum over i ∈ D∩S should satisfy,

∑
i∈D∩S di ≤ 4αk. By Claim 52,

this happens with probability less than 2e−α2k.
Therefore, for every S1 6∼ S2, the probability of a uniform S ∈ V to be strongly connected

to both is at most 2e−α2k. This is true for every S1 6∼ S2, it is also true for a random
pair. J

I Claim 52 (Fixed sized Chernoff bound). For every constant α ∈ (0, 1), let k ∈ N be a large
enough integer, D ⊂ [k] a subset of size at most k

3 , and for every i ∈ D let di ∈ [0, 1] be
constants such that

∑
i∈D di > 4αk.

Let S ⊂ [k] be a random subset of size exactly 9k
10 , then

Pr
S

[ ∑
i∈S∩D

di ≤ αk

]
≤ 2e−α

2k . (30)

Proof. For a set S that is chosen by putting each i ∈ [k] in S with probability 9
10 independ-

ently, Chernoff bound gives us the required bound easily. Because S has a fixed size, we need
to work a little harder.

For each i ∈ D, let S be a uniform set in
([k]

9k
10

)
, and let Ii be,

Ii =
{
di i ∈ S
0 i /∈ S

.
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In this notation,
∑
i∈S∩D di =

∑
i∈D Ii. The random variables Ii are not independent, we

define the independent random variables Ji,

Ji =
{
di w.p 1

2

0 w.p 1
2
.

Since |D| = k
3 , and S is a uniform 9

10k sized subset of [k], even conditioning on all other
j ∈ D \ {i} to be in S, the probability of i to be in S is at least 1

2 .

Pr [Ii = di | ∀j ∈ D \ {i}, Ij > 0] ≥ Pr [Ji = di] . (31)

So a lower bound for Ji implies a lower bound for Ii.
The random variables Ji satisfies E

[∑
i∈D Ji

]
= 1

2
∑
i∈D di ≥ 2αk.

Pr
S

[ ∑
i∈S∩D

di ≤ αk

]
= Pr

Ii

[∑
i∈D

Ii ≤ αk

]

≤Pr
Ji

[∑
i∈D

Ji ≤ αk

]

≤Pr
Ji

[∣∣∣∣∣∑
i∈D

Ji − E

[∑
i∈D

Ji

]∣∣∣∣∣ ≥ αk
]

(Chernoff bound)

≤2e−α
2k. J

From the last two claims, Claim 50 and Claim 51, conclude that there is a high degree
vertex in V that its neighbors almost form a clique.

I Claim 53. There exists a set S ∈ S such that

Pr
S1,S2∈V

[S1 ∼ S2 | S1 − S, S2 − S] ≥ 1− α .

Proof. From Claim 50, we know that if we choose S, S1, S2 ∈ V independently,

Pr
S,S1,S2

[S ∈ S, S − S1, S − S2] ≥ Pr
S

[S ∈ S] Pr
S,S1

[S − S1 | S ∈ S]2 ≥
(ν

2

)3
.

From Claim 51, on the same distribution

Pr
S,S1,S2

[S − S1, S − S2, S1 6∼ S2] ≤ 2e−α
2k .

Therefore

Pr
S,S1,S2

[S1 6∼ S2 | S ∈ S, S − S1, S − S2] ≤
(

2
ν

)3
2e−α

2k < α .

The last inequality is since log
( 1
ν

)
≤ 1

3α
2k.

From averaging, there must be S ∈ S that achieves this bound. J

Proof of Theorem 48. Let S̃ ∈ S be the vertex promised from Claim 53, and denote by C
its strong neighbors,

C =
{
S ∈

(
[k]
9k
10

) ∣∣∣∣ S − S̃} ,

CCC 2017
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since S̃ ∈ S, the measure of C is at least ν2 . From the claim we also know that PrS1,S2∈C [S1 6∼
S2] ≤ α, so almost every two sets in C have small difference.

The global function g(i) is defined to be β ∈ Σ that is closest to fS(i) over all S ∈ C that
contains i,

∀i ∈ [k], g(i) = argmin
β∈Σ

{
E

S∈C s.t. i∈S
[dist(fS(i), β)]

}
.

If there is no S ∈ C such that i ∈ S, we define g(i) to an arbitrary value.
We notice that for every i, by definition

Pr
S∈C s.t. i∈S

[dist(fS(i), g(i))] ≤ Pr
S1,S2∈C s.t. i∈S1,S2

[dist(fS1(i), fS2(i))]. (32)

We know that S1, S2 ∈ C are weakly connected with probability at least 1− α, which means
that the difference between their functions is small.

E
S1,S2∈C

[∆(fS1 , fS2)] ≤1 · Pr
S1,S2∈C

[S1 6∼ S2] + E
S1,S2∈C

[∆(fS1 , fS2) | S1 ∼ S2]

≤α+ 60α ≤ 61α.

By the definition of difference, we get that,

61α ≥ E
S1,S2∈C

[∆(fS1 , fS2)]

≥ E
S1,S2∈C,i∈S1∩S2

[dist(fS1(i), fS2(i))] . (33)

Notice that the distribution over i in this expression is not uniform, we define formally the
distributions over i that we use.
1. Let D1 : [k]→ [0, 1] be the distribution that picks S ∈ C uniformly, then i ∈ S.
2. Let D2 : [k]→ [0, 1] be the distribution that picks S1, S2 ∈ C uniformly, then i ∈ S1 ∩ S2

(as |Si| = 9k
10 there is always such i).

Using this definition, (33) can also be written as

E
i∼D2,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2] ≤ 61α. (34)

To prove the theorem, we need to prove (34) when i ∼ D1. First, we show that the
distributions D1,D2 are close to each other. In order to do so, we define the following set, D,

D =
{
i ∈ [k]

∣∣∣∣ Pr
S∈C

[i ∈ S] < 1
2

}
.

By Claim 54, the set D is small |D| ≤ 4αk. For each i /∈ D, PrS∈C [i ∈ S] ∈
[ 1

2 , 1
]
which

means that for every i /∈ D,

Pr
j∼D1

[j = i | j /∈ D] ≤ 2 Pr
j∼D2

[j = i | j /∈ D] . (35)

Using (35), (34) and (32), we show that the expected difference between g and fS for a
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random S ∈ C is small,

E
S∈C

[∆(fS , g)] = E
S∈C,i∈S

[dist(f(i), g(i))] (by definition of D1)

= E
i∼D1,S∈C

[dist(fS1(i), g(i)) | i ∈ S] (by (32))

≤ E
i∼D1,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2]

≤ Pr
i∼D1

[i ∈ D] + E
i∼D1,S1,S2∈C

[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2 \D]

(by (35))
≤4α+ 2 E

i∼D2,S1,S2∈C
[dist(fS1(i), fS2(i)) | i ∈ S1 ∩ S2 \D] (by (34))

≤4α+ 2 · 61α
1− 4α ≤ 150α. (36)

Equation (32) holds for every i ∈ [k], therefore it holds for expectation over i under any
distribution. The last inequality holds because of (34), and because if we condition on i /∈ D
we can increase the probability by a factor of at most Pri∼D2 [i /∈ D], which is small.

The only thing left now is a Markov argument, if ES∈C [∆(fS , g)] ≤ 150α, then at least
half of the sets S ∈ C satisfies ∆(fS , g) ≤ 300α, since the measure of C is ν

2 , the measure of
half of C is ν

4 and we are done. J

I Claim 54. Let C ⊂
([k]

9k
10

)
a subset of fraction size ν

2 , then the number of indices i ∈ k such
that PrS∈C [i ∈ S] ≤ 1

2 is at most 4αk.

Proof. Let D ⊂ [k] be this set of indices

D =
{
i ∈ [k]

∣∣∣∣ Pr
S∈C

[i ∈ S] ≤ 1
2

}
.

If we pick a completely uniform S′ ∈
( [k]

9
10k

)
,

E
S′

[|S′ ∩D|] = 9
10 |D| .

From Chernoff, using Claim 11 with A = [k] \ S′, (if |D| ≥ k
3 , the probability is even smaller)

Pr
S′

[
|S′ ∩D| ≤ 2

3 |D|
]
≤ e−

|D|
45 .

If we pick a uniform subset in S ∈ C, instead of a completely uniform set:

Pr
S∈C

[
|S ∩D| ≤ 2

3 |D|
]
≤ 2
ν
e−
|D|
45 .

From the definition of D, for each i ∈ D, PrS∈C [i ∈ S] ≤ 1
2 , so of course

E
S∈C

[|S ∩D|] ≤ 1
2 |D| .

From averaging

Pr
S∈C

[
|S ∩D| ≤ 2

3 |D|
]
≥ 1

4 .

This implies that 2
ν e
− |D|45 ≥ 1

4 , which means that |D| ≤ 4αk (recall that ν > e−
1

150αk) . J
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5.4 Direct Product Function Inputs
In Section 5.2 we proved Claim 40, let A = Ax for this input x. From the claim, we know
that for each A ∈ A there exists a direct product function gA such that,

Pr
A1,A2∈A

[gA1 , gA1 are consistent] ≥ ε2

32 .

We want to use Theorem 48 in order to build a global direct product function. For every
A ∈ A, the direct product function gA = (gA,1, . . . gA, 9k10

), gA,i : [N ] → [M ] can also be
written as fS : S → Σ, where S = [k] \A, and Σ = [M ]N . For every i ∈ S, fS(i) is the truth
table of gA,i. The distance measure in Σ is the normalized hamming distance between two
strings in [M ]N , i.e.

dist(σ1, σ2) = Pr
u∈[N ]

[σ1(u) 6= σ2(u)].

From the definition of consistent, for every consistent A1, A2, the functions fS1 , fS2 satisfy
∆(fS1 , fS2) < 60λ.

For every A /∈ A, we define a “fake” function fS for S = [k] \ A, and assume that
its outputs are at distance 1 from any other outputs, i.e. for every S′ ∈

([N ]
k

)
, i ∈ S ∩ S′,

dist(fS(i), fS′(i)) = 1.
Let F be the collection of local functions {fS}S∈([N]

k ) that we have just defined, let

α = 60λ and ν =
(
ε
4
)2 ε2

32 = ε4

512 .

agreeα(F) = Pr
A1,A2

[A1, A2 ∈ A, A1, A2 are consistent] ≥
( ε

4

)2 ε2

32 = ν.

In order of the theorem to hold, we need ν = ε4

32 = 1
32e
−4c1λ2k to satisfy ν > e−

1
3α

2k =
e−

1
3 (60λ)2k, this holds for a small enough c1.
By Theorem 48, there exists a product function g′ : [k]→ Σ which is close to ν

4 of the
functions fS . Translating it back to our setting, we can write g′ as g = (g1, . . . gk), gi : [N ]→
[M ], and a set A∗ of size ν

4 = 1
2048ε

4, such that for each A ∈ A∗,

Pr
i∈Ā,u∈[N ]

[gi(ui) 6= gA,i(ui)] ≤ 300α = 18000λ.

For simplicity of notations, let δ = 300α. Notice that by our definition, for each A /∈ A
the function gA never agrees with any other function, therefore A∗ ⊂ A.

I Definition 55. An input z is consistent with a set A ∈ A∗ with respect to the product
function g, denoted by z ∈ Z

g
A, if z ∈ ZA, and gA(zĀ) 2δk

≈ g(z)Ā.

I Claim 56. For each A ∈ A∗,

Pr
z∈[N ]k

[z ∈ Z
g
A] ≥ ε

8 .

Proof. Fix A ∈ A∗, for each i ∈ Ā, denote by pi the probability of g, gA to differ on the ith
coordinate, pi = Pru∈[N ] [gA,i(u) 6= gi(u)], from Theorem 48 Ei∈Ā [pi] ≤ δ.

Let Ii be the indicator random variable that equals 1 with probability pi independently
for each i. For a uniform z ∈ [N ]k,

E
z∈[N ]k

[dist(gA(z), g(z)Ā)] =
∑
i∈Ā

Ii .
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Using Chernoff

Pr
z

[
gA(zĀ)

2δk
6≈ g(z)Ā

]
≤ Pr

 ∑
i∈[k]\A

Ii ≥ 2E

 ∑
i∈[k]\A

Ii

 ≤ e− 1
9 δk ≤ ε

8 .

We know that A ∈ A, therefore Prz [z ∈ ZA] ≥ ε
4 , therefore

Pr
z

[z ∈ Z
g
A] ≥ Pr

z

[
z ∈ ZA, gA(zĀ) 2δk

≈ g(z)Ā
]
≥ ε

4 −
ε

8 ≥
ε

8 .

J

I Claim 57. If z ∈ [N ]k is satisfies z ∈ Z
g
A for more than ε

16 fraction of the sets A ∈ A∗,
then f(z) 3δk

≈ g(z).

Proof. Fix z ∈ [N ]k such that z ∈ Z
g
A for more than ε

16 fraction of the sets A ∈ A∗.

Assume towards contradiction that f(z)
3δk
6≈ g(z), and denote by D ⊂ [k] the set of

coordinates in which they differ

D = {i ∈ [k] | f(z)i 6= g(z)i} .

For each A such that z ∈ Z
g
A, by definition g(z)Ā

2δk
≈ gA(zĀ). Since z ∈ ZA, we also know

that gA(zĀ) 20λk
≈ f(z)Ā. Using both,

g(z)Ā
2δk+20λk
≈ f(z)Ā.

By the definition of D, this implies that |Ā ∩D| ≤ 2δk + 20λk ≤ 2.1δk, the rest of D must
be in A, |A ∩D| ≥ |D| − 2.1δk. According to our assumption, |D| ≥ 3δk, which implies that
|A ∩D| ≥ 1

4 |D|.
From the previous paragraph, all sets A such that z ∈ Z

g
A satisfies |A ∩D| ≥ 1

4 |D|, and
there are ε

16 |A
∗| such sets.

From Claim 11, we know that for a random set A ⊂ [k] of size 1
10k,

Pr
A

[
|D ∩A| ≥ 1

4 |D|
]
≤ e−150λk.

The set A∗ has measure ε4

2048 ,in order to satisfy the requirements ε
16

ε4

2048 < e−150λk, and
we reach a contradiction. J

The previous claims practically finishes the proof

Proof of Theorem 1. From Claim 56, each A ∈ A∗ satisfies |ZgA| ≥ ε
8N

k, therefore

E
z

[|{A ∈ A∗ | z ∈ Z
g
A}|] =

∑
A∈A∗

E
z

[I(z ∈ Z
g
A)] = 1

8ε|A
∗| .

From averaging, a uniform z ∈ [N ]k satisfies |{A ∈ A∗ | z ∈ Z
g
A}| ≥

1
16ε|A

∗| with prob-
ability at least 1

16ε. Using Claim 57, each such input z satisfies f(z) 3δk
≈ g(z). We chose

δ = 300α = 18000λ, in order to get that f(z) λ
′k
≈ g(z) we just need to choose small enough

c1, and substitute λ′ = 1
18000λ in the proof. J
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6 Lower Bounds for Approximate Equality

Our direct product theorem states that if a function f : [N ]k → [M ]k passes Test 1 with
t = k

10 with probability ε > e−c1λ
2k, i.e. αZ( k10 )(f) > e−c1λ

2k, then there exists a direct
product function g = (g1, . . . gk) such that

Pr
x∈[N ]k

[
f(x) λk≈ g(x)

]
≥ Ω(ε).

Ideally, we want the stronger conclusion that

Pr
x∈[N ]k

[f(x) = g(x)] ≥ Ω(ε).

i.e., replacing approximate equality with equality.
In the introduction there is an example explaining why approximate equality is necessary

for f such that αZ( k10 )(f) ≥ e−δk. In this section, we show two extensions.
1. We generalize Test 1 with intersection size t to Test 5 with two intersection parameters

t1, t2 ∈ N, t1 + t2 ≤ k, and show a lower bound for Test 5 with every such t1, t2 (Test 5
with t1 = t2 is equivalent to Test 1).

2. We analyze the triangle test, Test 6, and give a lower bound for this test.

I Definition 58. We say that functions f1, f2 : [N ]k → [M ]k are (ε, δ) close, if

Pr
x∈[N ]k

[
f1(x) δk≈ f2(x)

]
≥ ε.

A function f : [N ]k → [M ]k is (ε, δ) far from direct product, if there is no direct product
function g = (g1, . . . , gk) : [N ]k → [M ]k that is (ε, δ) close to f .

Recall w t
≈ w′ if w,w′ are equal in all but t of the coordinates.

In this notation, Theorem 1 states that if αZ( k10 )(f) = ε > e−c1λ
2k, then f is (Ω(ε), λ)

close to a direct product function. We are interested to know if it is possible to have a direct
product theorem such that f is (Ω(ε), 0) close to a direct product function.

Let h be the function from Example 3 in the introduction, it satisfies αZ( k10 )(h) = ε >

e−c1λ
2k, but is (c · ε, λ)-far from a direct product function for any constant c. Therefore, it is

not true that αZ( k10 )(h) > e−c1λ
2k implies (Ω(ε), 0) close to a direct product function.

h is a direct product function with noise, on each input x ∈ [N ]k, h(x) is corrupted on λk
coordinates. The direct product test with t = k

10 does not check all the coordinates of each
input, so with probability e−λδk, non of the corrupted coordinates are checked. However, if
we change the parameters of the test from t = k

10 to t = k
2 , in which all coordinates of the

input y are checked, the function h no longer passes the test.
Is it possible to prove (Ω(ε), 0) close for Test 1 with t = 1

2? the answer is no. For
m = {0, 1} we don’t know the answer, and it remains an open question.

I Claim 59. For every constant δ > 0 and t1, t2 ∈ N, t1 + t2 ≤ k, there exist a constant
β > 0 and a function f : [N ]k → [M ]k for N,M � k, such that αZ(t1,t2)(f) = ε ≥ e−δk, but
f is (ε2, β

log k ) far from any direct product function.

Proof. Test 5 is symmetric with respect to t1, t2, so we can assume wlog that t1 ≥ t2. We
choose N,M ≥ ek2 such that M ≤

√
N . We divide the proof into two cases, depending on

t1. For each of the two cases we construct a function with ` corrupted coordinates, such
that αZ(t1,t2)(f) = ε ≥ e−δk, and show that both these functions are (ε2, `2k ) far from direct
product function.
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1. Choose A,B,C to be a random partition of [k],
such that |A| = t1, |B| = t2.

2. Choose uniformly at random x, y, z ∈ [N ]k such
that xA = yA and yB = zB .

3. Reject if f(x)A 6= f(y)A or f(z)B 6= f(y)B, else
accept.

A C B

x

y

z

Denote by αZ(t1,t2)(f) the success probability of f on this test.

Test 5 “Z”-test with parameters t1, t2 (3-query test).

If t1 ≤ 0.4k

This case is similar to Example 3, and we provide here a detailed analysis. Let f : [N ]k → [M ]k
be the constant function 1, i.e. f(x) = 1, . . . 1 for every x ∈ [N ]k, but for every x ∈ [N ]k we
corrupt f(x) on ` ≤ 1

10k random coordinates i(1)
x , . . . i

(`)
x to random values in [M ] \ {1}. The

number of corrupted coordinates ` is decided later.
Let A,B,C, x, y, z the sets and inputs chosen in Test 5, since t2 ≤ t1 ≤ 0.4k, |C| ≥ 0.2k.

If all the corrupted coordinates of x, y, z are not in A and all the corrupted coordinates of
y, z not in B, the output of f on all of the corrupted coordinates is not checked and the test
passes.

Pr [Test passes] ≥ Pr
[
i(1)
x , . . . i(`)x /∈ A, i(1)

y , . . . i(`)y /∈ A ∪B, i(1)
z , . . . i(`)z /∈ B

]
≥ 0.13`.

The last inequality is because the corrupted coordinates on x, y, z are independent. For input
x and i(1)

x , . . . i
(`)
x , even conditioning on i(1)

x , . . . i
(`−1)
x ∈ C, the probability of i(`)x to be in C

is at least 0.1 (since ` ≤ 0.1k), same for y, z.
We choose ` = βk for a constant β, such that 0.13` ≥ e−δk, this means that f satisfies

αZ(t1,t2)(f) = ε ≥ e−δk.
We now show that f is (ε2, `2k )-far from every direct product function. We do it by

describing a property of f , showing that our function satisfies it with high probability and
that this property implies (ε2, `2k )-far from direct product function.

For every i ∈ [k], b ∈ [N ] let Gi,b be

Gi,b =
{
x ∈ [N ]k

∣∣ xi = b
}
.

The function f is called balanced if for every i ∈ [k], b ∈ [N ], a ∈ [M ] \ {1},

Pr
x∈Gi,b

[f(x)i = a] ≤ 2k
M
.

We show that our random function f is balanced with probability almost 1. Fix i ∈
[k], b ∈ [N ], a ∈ [M ] \ {1}. By the definition of f , Prx,∈Gi,b [f(x)i = a] ≤ 1

M , and this is
independent for each x ∈ Gi,b, therefore using Chernoff bound

Pr

 ∑
x∈Gi,b

I(f(x)i = a) ≥ 2
M
Nk−1

 ≤ e− 1
3MNk−1

.

Preforming union bound over all i ∈ [k], b ∈ [N ], a ∈ [M ], the probability that f is balanced
is at least 1− kNMe−

1
3MNk−1 ≥ 1− e−N .
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Given that f is balanced and has exactly ` corrupted coordinates per input, we show
it is (ε2, `2k )-far from direct product function. Let f be such function, and assume to-
wards contradiction that there exist g = (g1, . . . , gk) that is (ε2, `2k ) close to f . Let

F =
{
x ∈ [N ]k

∣∣∣∣ f(x) `−1
≈ g(x)

}
, by our assumption |F | ≥ ε2Nk.

Let Fi,b ⊆ Gi,b be the set

Fi,b = {x ∈ F | xi = b, gi(xi) = f(x)i 6= 1} .

Every x ∈ F has ` coordinates i ∈ [k] in which f(x)i 6= 1. For every x ∈ F , f(x) `−1
≈ g(x), so

there must be i ∈ [k] such that f(x)i = gi(xi) 6= 1. Therefore, every x ∈ F must be in at
least one Fi,b, and the sets {Fi,b}i∈[k],b∈[N ] must cover F , i.e. F ⊆

⋃
i∈[k],b∈[N ] Fi,b.

By definition, all x ∈ Fi,b satisfies f(x)i = gi(b) ∈ [M ] \ {1}, since f is balanced,
|Fi,b| ≤ 2k

M |Gi,b| ≤
2k
MNk−1.

|F | ≤
∑

i∈[k],b∈[N ]

|Fi,b| ≤ Nk ·
2k
M
Nk−1 ≤ 2k2

M
Nk � ε2Nk

and we reached a contradiction to the assumption |F | ≥ ε2Nk.

If t1 > 0.4k

In this case, we can’t simply corrupt coordinates to random values, because it is possible
that t1 + t2 = t, and all coordinates of f(y) are checked. Instead, we corrupt coordinates in
a more subtle way. We start by constructing a function f : [N ]k → [M ]k that has a single
corrupted coordinate per input, and αZ(t1,t2)(f) = Ω( 1

k2 ).
Let f : [N ]k → [M ]k be the constant 1 function (i.e. f(x) = 1, . . . 1 for all x), and for

every b ∈ [N ], let pb : [N ]→ [M ] \ {1} be a random function. For every input x ∈ [N ]k, we
choose two random coordinates ix 6= jx ∈ [k], ix is the corrupted coordinate, and jx is the
master coordinate. We corrupt f(x) by setting b = xjx and

f(x)ix = pb(xix).

Let A,B, x, y, z be the sets and inputs chosen in the test, if ix = iy, jx = jy and ix, jx ∈ A,
then f(x)A = f(y)A (because the corrupted coordinates are corrupted to the same value).
If in addition iz /∈ B, then also f(z)B = f(y)B (because y, z don’t have any corrupted
coordinates on B).

The probability of ix = iy and jx = jy is 1
k2 , as they are both random indices in [k]. The

probability of ix, jx ∈ A, iz /∈ B is at least 0.33, therefore αZ(t1,t2)(f) = Ω( 1
k2 ).

Instead of corrupting a single coordinate per input, we can corrupt ` ≤ 0.1k different
coordinates, by choosing different i(1)

x , . . . , i
(`)
x and j

(1)
x , . . . , j

(`)
x for every x ∈ [N ]k, and

continue as before. A similar probabilistic argument shows that that this function f

has αZ(t1,t2)(f) = Ω( 1
k2` ) (conditioning on all other i(1)

x , . . . i
(`)
x , j

(1)
x , . . . , j

(`−1)
x ∈ A, the

probability of j(`)
x ∈ A is at least 0.2).

Fix a constant δ > 0, in order of the function f to pass the test with probability e−δk,
the number of corrupted coordinates ` should satisfy c

k2` > e−δk, which means that we can
choose ` = β k

log k for some constant β > 0.
The constant function 1 is (1, `k ) close to f , we show that any direct product function

g = (g1, . . . , gk) is (ε2, `2k )-far from f . Intuitively, it is true because the corrupted coordinates
are corrupted to N different random functions, receiving values in M , for k � N,M . More
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1. Choose disjoint W,X, Y ⊂ [N ] of size k
2 .

2. Reject if f(X∪W )W 6= f(Y ∪W )W , f(X∪Y )Y 6=
f(Y ∪ W )Y or f(X ∪ W )X 6= f(X ∪ Y )X , else
accept. X

W Y

Denote by αTset(f) the success probability of f on this test.

Test 6 Triangle test (3-query test, for even k).

formally, we show that with high probability the function f is also balanced, and use the
proof of the previous case.

In the previous case, we showed that f is balanced with high probability by Chernoff
bound over the inputs in Gi,b. This is not possible to do in our case, because for x, y ∈ Gi,b,
there is a dependence between the values of the corrupted coordinates of x and y. Instead,
we look at the random set of functions {pb}b∈[N ].

The function set {pb}b∈[N ] is called balanced, if for every b′ ∈ [N ], a ∈ [M ] \ {1},
Prb∈[N ][pb(b′) = a] ≤ 2 1

M .
Fix b′ ∈ [N ], a ∈ [M ] \ {1}, a random function set {pb}b∈[N ] satisfies for every b ∈ [N ],

Prpb [pb(b′) = a] = 1
M−1 , independently for each function pb. Therefore using Chernoff bound,

Pr
{pb}

∑
b∈[N ]

I(pb(b′) = a) > 2N
M

 ≤ e− N
4M ≤ e−

√
N
4 .

Preforming union bound over all b′ ∈ [N ], a ∈ [M ] \ {1}, a random function set {pb}b∈[N ] is
balanced with probability at least 1−NMe−

√
N
4 .

We now show that a balanced function set {pb}b∈[N ] implies a balanced function f . Fix
i ∈ [k], b′ ∈ [N ], a ∈ [M ] , and let A = {b ∈ [N ] | pb(b′) = a}, if {pb}b∈[N ] is balanced, then
|A| ≤ 2

MN . The set Gi,b′ is a subcube of dimension k − 1, so its coordinates are uniform in
[N ], and by union bound

Pr
x∈Gb′,i

[∃j ∈ [k] \ {i} s.t xj ∈ A] ≤ 2k
M
.

If there is no j such that xj ∈ A, it is impossible that f(x)i = a, because f(x)i is either 1, or
pxj (b′) for some j ∈ [k] \ {i}. Therefore, at most 2k

M of x ∈ Gi,b′ can satisfy f(x)i = a, and
such f is balanced with probability 1.

The function f is balanced with ` corrupted coordinates per input, so by the previous
case, f is (ε2, `2k )-far from direct product. J

Notice that in the proof, the range of t1 ≤ 0.4k has a lower bound of ` = βk, whereas in
the second case, the lower bound is only ` = βk

log k .
The example in the proof can easily be transformed into a function on sets f :

([N ]
k

)
→ [M ]k,

which gives a bound on Test 4. This is done by choosing for each set S ∈
([N ]
k

)
` elements in

S to corrupt and ` master elements (instead of coordinates) .
In Test 5 with t1 + t2 = k, we compare f(y) on all coordinates, but only part of the

coordinates of f(x), f(z). What if we compare all coordinates of all three inputs? This brings
us to the triangle test, ,Test 6, for functions over sets. In this test, every two out of the three
inputs share a joint subset of size k

2 , for this test we must assume that k is even.
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X

W Y

a1 b1

a2

b2

Figure 2 The set S2 = X ∪ Y is marked in yellow.

I Claim 60. For every constant δ > 0, there exist a constant β > 0 and a function
f :

([N ]
k

)
→ [M ]k with N,M � k, such that αTset(f) = ε > e−δk , and f is (ε2, β

log k ) far
from direct product function.

Proof. The function f that we describe in this proof is similar to the function from the
previous proof, we only need to modify it slightly such that there is the same number of
corrupted elements in each half of the inputs. We start by describing a function with two
corrupted elements per input.

Let f :
([N ]
k

)
→ [M ]k be the constant function 1, i.e. f(S) = 1, . . . 1 for every set S, and

for every b ∈ [N ] we choose a random function pb : [N ]→ [M ] \ {1}. For every S ∈
([N ]
k

)
, we

choose two elements to corrupt a1, a2 ∈ S and two master elements b1, b2 ∈ S. Then, we set
f(S)a1 = pb1(a1) and f(S)a2 = pb2(a2).

Suppose W,X, Y are the sets chosen in Test 6, fix a1, b1 ∈ X, a2, b2 ∈ Y and a3, b3 ∈W .
If the following three events hold, the test passes, see Figure 2.

1. In the set S2 = X ∪ Y the elements chosen to corrupt are a1, a2 with the master elements
b1, b2 respectively.

2. In the set S1 = X ∪W the elements chosen to corrupt are a1, a3 with the master elements
b1 b3 respectively.

3. In the set S3 = Y ∪W the elements chosen to corrupt are a2, a3 with the master elements
b2, b3 respectively.

If the three events hold, then on every check of the test, both the corrupted element and its
master element are the same in both inputs, so they are corrupted to the same value and the
check passes.

The probability of each event is at least 1
k4 , and the event are independent, since the

choice of which elements to corrupt is done independently for each S ∈
([N ]
k

)
. Therefore the

function f passes Test 6 with probability at least 1
k12 . It is possible to do a more careful

analysis and get a higher success probability bound, but it is not important in our case.
If we corrupt 2` elements per set S ∈

([N ]
k

)
, similar analysis shows that f satisfies

αTset(f) = Ω( 1
k12` ). Setting ` = βk

log k for some constant β, we get f such that αTset(f) ≥ e−δk.
We show that f with 2` corrupted coordinates is (ε2, `2k )-far from direct product function

in a very similar way to the previous proof. As we have seen in the proof of Claim 59, the
random function set {pb}b∈[N ] is balanced with probability at least 1−MNe−

1
4
√
N .

For every b ∈ [N ], let Gb = {S ⊂ [N ] | |S| = k, b ∈ S}, we say that the function f :([N ]
k

)
→ [M ]k is balanced if for every b′ ∈ [N ], a ∈ [M ] \ {1},

Pr
S∈Gb′

[f(S)b′ = a] ≤ 2k
M
.
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We show that every f with a balanced function set {pb}b∈[N ] is balanced. Fix b′ ∈
[N ], a ∈ [M ], and let A = {b ∈ [N ] | pb(b′) = a}, for a balanced function set, |A| ≤ 2M

N . Like
previously, the set Gb′ is actually equivalent to all subset of size k−1 of elements in [N ]\{b′},
therefore a uniform S ∈ Gb′ contains b ∈ A with probability at most 2k

M , and f is balanced.
Assume towards contradiction that f is (ε2, `2k ) close to a direct product function g :

[N ]→ [M ], and let F be set set of inputs in which f(S) `−1
≈ g(S). Similar to the previous

proof, for every b ∈ [N ] let Fb = {S ∈ F | b ∈ S, f(S)b = g(b) 6= 1}.
Since g approximated F up to `−1 elements, and f has ` corrupted elements, every S ∈ F

is in some Fb′ , and F ⊆ ∪b′∈[N ]Fb′ . Since f is balanced, for every b′ ∈ [N ], |Fb′ | ≤ 2k
M |Gb′ |,

|F | ≤
∑
b′∈[N ]

|Fb′ | ≤ N
2k
M
|Gb′ | ≤

2k2

M

∣∣∣∣([N ]
k

)∣∣∣∣ .
The last inequality, is because each S ∈

([N ]
k

)
is in at most k sets Gb′ . This is a contradiction

of |F | ≥ ε2
∣∣∣([N ]

k

)∣∣∣. J
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A Chernoff and Hypercontractivity Proofs

Proof of Claim 11. For each element i ∈ D, we define the indicator random variable Ii to
indicate that i ∈ A. In this notation

|A ∩D| =
∑
i∈D

Ii.

We want to use Chernoff bound on Ii, but since A is of fixed size, the indicator variables
are not independent. Instead, we define for each i the new random variables Ji that are
independent.

For (2), let

Ji =
{

1 w.p 3
20

0 w.p 1− 3
20
.

For every i ∈ D and every fixed value b ∈ {0, 1}|D| of the indicators {Il, l 6= i} ,
Pr [Ii = 1 | ∀l 6= i, Il = bl] ≤ Pr [Ji = 1]. In the worse case, they are all set to 0 (none is in
A), and Pr[Ii = 1] = 3

20 . Therefore, we can use Chernoff bound on the random variables Ji
and get a result for Ii:

Pr
A

[∑
i∈D

Ii ≥
1
5 |D|

]
≤ Pr

J

[∑
i∈D

Ji ≥
1
5 |D|

]
≤ e− 1

320 |D|

For (3), we define

Ji =
{

1 w.p 1
15

0 w.p 1− 1
15
.

In this case, for every i ∈ D and fixed value b ∈ {0, 1}|D|, Pr [Ii = 1 | ∀l 6= i, Il = bl] ≥
Pr [Ji = 1], and

Pr
A

[∑
i∈D

Ii ≤
1
20 |D|

]
≤ Pr

J

[∑
i∈D

Ji ≤
1
20 |D|

]
≤ e− 1

60 |D| . J

Proof of Corollary 15. |A| ≥ |B| implies a ≤ b, we know that

e−
ρab

2(1−ρ) ≥ e−
ρb2

2(1−ρ) = Pr
x∈[N ]k

[x ∈ B]
ρ

1−ρ .

Similarly

e−
(2−ρ)(a2+b2)

4(1−ρ) = e
2−ρ

2(1−ρ) ·
(
− a2

2 −
b2
2

)
= e

(
1+ ρ

2(1−ρ)

)
·
(
− a2

2 −
b2
2

)
=

Pr
x∈[N ]k

[x ∈ B]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ A]1+ ρ

2(1−ρ)

Together we get

Pr
x,y

[x ∈ A, y ∈ B] ≥ Pr
x∈[N ]k

[x ∈ A]1+ ρ
2(1−ρ) Pr

x∈[N ]k
[x ∈ B]1+ 3ρ

2(1−ρ) . J
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Proof of Claim 16. We notice that regardless which of the sets G,L is the largest, by
Corollary 15,

Pr
w∈[N ]k,(v,J)∈N 3

4
(w)

[w ∈ L, v ∈ G] ≥
(

Pr
w

[w ∈ L]
) 11

2
ν

11
2 .

By the definition of L,

Pr
w∈[N ]k,(v,J)∈Nρ(w)

[w ∈ L, v ∈ G] ≤ Pr
w

[w ∈ L]η.

Therefore

Pr
w

[w ∈ L] 9
2 ≤ ν− 11

2 η. J

B Tuples to Sets Local Structure Proof

In this section we prove Lemma 37, restricted global structure for sets, we restate it bellow.

I Lemma 37. There exist a small constants δ > 0, such that for every constant λ > 0 and
large enough k ∈ N such that N > k2e10δλk, the following holds,

For every function f :
([N ]
k

)
→ [M ]k, if αZset( k10 )(f) = ε > e−δλk, then at least (1−ε2− k2

N )
of the good pairs W ∈

([N ]
k
10

)
, X ∈

([N ]
9k
10

)
are DP pairs, i.e. there exist gX,W : [N ]→ [M ] such

that

Pr
Y

[
f(Y ∪W )Y

3αk
6≈ gX,W (Y )

∣∣∣∣ Y ∩W = ∅, f(X ∪W )W = f(Y ∪W )W
]
≤ 2ε2.

In order to prove the lemma, for every function f :
([N ]
k

)
→ [M ]k we define a function

f ′ : [N ]k → [M ]k ∪ ⊥. For every S ⊂ [N ], we assume that the output of f(S) is ordered in
an ascending order over the elements or S.

In order to simplify the notation, for every string x ∈ [N ]k, we define U(x) = 1 if x has
unique coordinates, i.e there is no i 6= j such that xi = xj , else U(x) = 0.

I Definition 61. Given a function f :
([N ]
k

)
→ [M ]k, let f ′ : [N ]k → [M ]k ∪ ⊥ be defined as

follows. For every x ∈ [N ]k let X be the set of elements in x,

f ′(x) =
{
π(f(X)) U(x) = 1

⊥ U(x) = 0
.

Where π ∈ Sk is the permutation from the ascending order over the elements of X to x.

For a set S ⊂ [N ] of size k and a permutation π ∈ Sk, we denote by π(S) ∈ [N ]k the string
generated by applying π on the elements of S ordered in an ascending order. Therefore, for
every X ∈

([N ]
k

)
, f ′(π(X)) = π(f(X)).

I Definition 62. Let D :
([N ]
k
10

)
×
([N ]

9k
10

)
×
([N ]

9k
10

)
→ [0, 1] be the following distribution:

1. Choose W ⊂ [N ] of size k
10 .

2. Choose X ⊂ [N ] of size 9k
10 such that X ∩W = ∅.

3. Choose Y ⊂ [N ] of size 9k
10 such that Y ∩W = ∅.

Let D′ :
([k]
k
10

)
× [N ]k × [N ]k → [0, 1] be the following distribution:

1. Choose a set A ⊂ [k] of size k
10 .
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2. Choose x ∈ [N ]k such that U(x) = 1.
3. Choose y ∈ [N ]k such that xA = yA and U(y) = 1.
Fixing a set A ⊂ [k] and x ∈ [N ]k such that U(x) = 1, we denote by D′|A, x the distribution
over y, conditioning on A, x being already chosen. Similarly for W,X ⊂ [N ], we define
D|W,X the distribution over Y .

We can easily see that if we pick (W,X, Y ) ∼ D, then choose a random set A and random
permutations π1 ∈ S k

10
, π2, π3 ∈ S k

10
, and set x = (π1(W )A, π2(X)Ā),y = (π1(W )A, π3(Y )Ā),

we get (A, x, y) ∼ D′.
For each two sets W,X, let x = (π1(W )A, π2(X)Ā) for an arbitrary A ⊂ [k] and π1, π2,

then the distribution y ∼ D′|A, x is the same distribution as (π1(W )A, π3(Y )Ā) for Y ∼
D|W,X and uniform π3 ∈ S 9k

10
.

We further notice that the distribution (W,X, Y ) ∼ D is the distribution used in Test 4.
The distribution (A, x, y) ∼ D′ is the distribution of Test 2 with t = k

10 conditioning on
U(x) = U(y) = 1.

Let p1 = Prx∈[N ]k [U(x) = 0]. For every x ∈ [N ]k such that U(x) = 1 and a set A ⊂ [k],
let p2 = Pry [U(y) = 0 | yA = xA] (p2 is the same for every A, x such that U(x) = 1). We
bound the probabilities p1, p2.

Choosing a uniform x ∈ [N ]k can be done coordinate by coordinate. For each coordinate
i, the probability that xi = xj for j < i is less than i−1

N , therefore

p1 = Pr
x∈[N ]k

[U(x) = 0] ≤
k∑
i=1

i− 1
N
≤ k2

2N .

Similarly, we can think of picking y given A, x as starting with the fixed yA (which doesn’t
contain two identical coordinates as U(x) = 1) and choosing coordinates one by one.

p2 = Pr
y

[U(y) = 0 | yA = xA] ≤
k∑

i= k
10

i− 1
N
≤ k2

2N .

I Claim 63. For every function f :
([N ]
k

)
→ [M ]k , the function f ′ : [N ]k → [M ]k from

Definition 61 satisfies

αV ( k10 )(f ′) = (1− p1)(1− p2) Pr[f passes Item3 of Test 4] .

Proof. Fix a function f :
([N ]
k

)
→ [M ]k, and let f ′ : [N ]k → [M ]k be the function from

Definition 61.
If either U(x) = 0 or U(y) = 0, by definition f ′ outputs ⊥ and the test fails. If we

condition on U(x) = U(y) = 1, the test distribution equals D′. Let W be the set of elements
of xA, X of xĀ and Y of yĀ, then (W,X, Y ) ∼ D.

For every A, x, y such that U(x) = U(y) = 1 and xA = yA, the permutation π1 ∈ S k
10

from the ascending order in W to the order of xA satisfies f ′(x)A = π1(f(X,W )W ), and
f ′(y)A = π1(f(Y,W )W ). Therefore, f ′(x)A = f ′(y)A ⇐⇒ f(X,W )W = f(Y,W )W .

This implies that

Pr[f ′ passes Test 2] = Pr
A,x,y

[f ′(x)A = f ′(y)A | xA = yA]

= Pr
A,x,y

[U(x) = U(y) = 1 | xA = yA] Pr
(A,x,y)∼D′

[f ′(x)A = f ′(y)A]

=(1− p1)(1− p2) Pr
(W,X,Y )∼D

[f(X,W )W = f(Y,W )W ]

=(1− p1)(1− p2) Pr[f passes Item3 of Test 4].
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Where PrA,x,y [U(x) = U(y) = 1 | xA = yA] = (1− p1)(1− p2) by the definition of p1, p2. J

I Claim 64. For every function on sets f :
([N ]
k

)
→ [M ]k, the function f ′ : [N ]k → [M ]k from

Definition 61 satisfies the following. For every disjoint W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
, every set A ⊂

[k], |A| = k
10 and every permutations π1 ∈ S k

10
, π2 ∈ S 9k

10
, the pair (A, x = (π1(W )A, π2(X)Ā))

satisfies

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = (1− p2) Pr
Y∼D|W,X

[f(X ∪W )W = f(Y ∪W )W ] .

Proof. Fix a function f :
([N ]
k

)
→ [M ]k, and let f ′ : [N ]k → [M ]k be the function from

Definition 61. Fix two disjoint subsets W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
, a subset A ⊂ [k], |A| = k

10 ,
and permutations π1 ∈ S k

10
, π2 ∈ S 9k

10
. Set x = (π1(W )A, π2(X)Ā), since X,W are disjoint,

U(x) = 1. By the definition of f ′, f ′(x)A = π1(f(X,W )W ).
Let y ∈ [N ]k be a random string such that xA = yA, if U(y) = 0, then f ′(y) = ⊥ and

f ′(x)A 6= f ′(y)A. By definition, p2 = Pry[U(y) = 0|xA = yA]. If we condition on U(y) = 1,
the distribution over y is D′|A, x. If we take Y to be the elements of yĀ, then the distribution
over Y is D|W,X.

For y such that U(y) = 1, by the definition of f ′, f ′(y)A = π1(f(Y,W )W ), and therefore
f ′(x)A = f ′(y)A ⇐⇒ f(X,W )W = f(Y,W )W .

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = Pr
y

[U(y) = 0 | xA = yA] Pr
y∼D′|A,x

[f ′(x)A = f ′(y)A]

=(1− p2) Pr
Y∼D|W,X

[f(X ∪W )W = f(Y ∪W )W ] . J

Proof of Lemma 37. Let f :
([N ]
k

)
→ [M ]k be the function such that αZset( k10 )(f) = ε >

e−δλk, and let f ′ : [N ]k → [M ]k be the function from Definition 61. By Claim 63, f ′ passes
Test 2 with probability ε′ = (1− p1)(1− p2)ε, therefore, Theorem 21 holds for the function
f ′.

By Claim 64, for every disjoint W ∈
([N ]
k
10

)
, X ∈

([N ]
9k
10

)
,

Pr
y

[f ′(x)A = f ′(y)A | yA = xA] = (1− p2) Pr
Y∼DW,X

[f(X ∪W )W = f(Y ∪W )W ] .

Setting η = 1− p1, this means that if X,W satisfies PrY [f(X ∪W )W = f(Y ∪W )W ] ≥
η ε2 , then for every set A ⊂ [k] and permutations π1, π2, the pair (A, x = (π1(W )A, π2(X)Ā))
satisfies Pry [f ′(x)A = f ′(y)A | yA = xA] ≥ ε′

2 .
Theorem 21 implies that with probability 1 − ε′2 a good τ ∼ D (equivalent to A, x

that satisfies Pry [f ′(x)A = f ′(y)A | yA = xA] ≥ ε′

2 ) is a DP-restriction. Since every W,X
corresponds for the same number of (A, x), for at least (1− ε′2) ≥ (1− ε2 − k2

N ) of the sets
W,X, there exist at least one set A and permutations π1, π2 such that τ = (A, x, f ′(x)A) is
a DP restriction, for x = (π1(W )A, π2(X)Ā).

Let W,X be such sets, i.e. there exist A ⊂ [k] and permutations π1, π2 such that
τ = (A, x, f ′(x)A) is a DP-restriction, for x = (π1(W )A, π2(X)Ā). We show that (W,X) are
a DP-pair. Let gτ = gτ1 , . . . g

τ
9k
10
, gτi : [N ] → [M ] be the direct product function of τ . We

define gW,X : [N ]→ [M ] to be the following function, for every a ∈ [N ], gW,X(a) is the most
frequent value gτi (a), among all i ∈ 9k

10 .
We recall that Vτ =

{
w ∈ [N ]Ā

∣∣∣ f ′(xA, w)A = f ′(x)A
}

and denote by VW,X the analog
in sets,

VW,X =
{
Y ∈

(
[N ]
9k
10

) ∣∣∣∣ Y ∩W = ∅, f(Y,W )W = f(X,W )W
}
.
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We notice that for every w ∈ Vτ , f ′(xA, w) 6= ⊥, so it has unique coordinates, U(xA, w) = 1.

In these notations, Theorem 21 implies Prw∈Vτ
[
f ′(xA, w)Ā

αk

6≈ gτ (w)
]
≤ ε′2, and we need

to prove the analog statement for Y ∈ VW,X .
We describe the following random process: for every Y ∈ VW,X , we choose a random

permutation π3 and set w = π3(Y ). We notice that for every Y ∈ VW,X , f(Y,W )W =
f(X,W )W , and by the definition of f ′ this implies that f ′(xA, w)A = f ′(x)A, so w ∈ Vτ .
Moreover, for every w ∈ Vτ exists exactly one Y ∈ VW,X and permutation π3 such that
w = π3(Y ).

Suppose Y ∈ VW,X such that gW,X(Y )
3αk
6≈ f(Y ∪W )Y , and let B ⊂ Y be the set of

elements that gW,X(Y ), f(Y ∪W )Y differ on, i.e. for every b ∈ B, gW,X(b) 6= f(Y ∪W )b.
Since gW,X is the most frequent value among gτi (b), for at least half of the locations i,
gτi (b) 6= f(Y ∪W )b.

For a random permutation π3, each b ∈ B has probability of at least 1
2 to fall into a

“bad location”, i.e i such that gτi (b) 6= f(Y ∪W )b. Since α is a very small constant, even
conditioning on αk of b ∈ B to be in a bad location, the probability of b′ ∈ B to fall into a
bad location is at least 2

5 . By Chernoff bound, with probability larger than 1− e− 1
100αk, π3

is such that at least 1
3 of b ∈ B are in a “bad location”. By the definition of f ′, this implies

that f ′(xA, w)Ā
αk

6≈ gτ (w).
Therefore, we get that

Pr
Y ∈VW,X

[
gW,X(Y )

3αk
6≈ f(Y ∪W )Y

](
1− e− 1

100αk
)
≤ Pr
w∈Vτ

[
f ′(xA, w)Ā

αk

6≈ gτ (w)
]
≤ ε′2.

Which implies that

Pr
Y ∈VW,X

[
gW,X(Y )

3αk
6≈ f(Y ∪W )Y

]
≤ ε′2 + e−

1
100αk ≤ 2ε2. J
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