
The Complexity of Holant Problems over Boolean
Domain with Non-Negative Weights∗†

Jiabao Lin1 and Hanpin Wang‡2

1 Key Laboratory of High Confidence Software Technologies (MOE), School of
Electronics Engineering and Computer Science, Peking University, Beijing,
China
joblin@pku.edu.cn

2 Key Laboratory of High Confidence Software Technologies (MOE), School of
Electronics Engineering and Computer Science, Peking University, Beijing,
China
whpxhy@pku.edu.cn

Abstract
Holant problem is a general framework to study the computational complexity of counting prob-
lems. We prove a complexity dichotomy theorem for Holant problems over the Boolean domain
with non-negative weights. It is the first complete Holant dichotomy where constraint functions
are not necessarily symmetric.

Holant problems are indeed read-twice #CSPs. Intuitively, some #CSPs that are #P-hard
become tractable when restricted to read-twice instances. To capture them, we introduce the
Block-rank-one condition. It turns out that the condition leads to a clear separation. If a function
set F satisfies the condition, then F is of affine type or product type. Otherwise (a) Holant(F) is
#P-hard; or (b) every function in F is a tensor product of functions of arity at most 2; or (c) F
is transformable to a product type by some real orthogonal matrix. Holographic transformations
play an important role in both the hardness proof and the characterization of tractability.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes

Keywords and phrases counting complexity, dichotomy, Holant, #CSP

Digital Object Identifier 10.4230/LIPIcs.ICALP.2017.29

1 Introduction

There has been considerable interest in several frameworks to study the complexity of counting
problems. One natural framework is the counting Constraint Satisfaction Problem (#CSP)
[18, 2, 19, 4, 22, 3, 8, 7, 1]. Another is Graph Homomorphism (GH) [30, 27, 21, 5, 20, 25, 6, 9],
which can be seen as a special case of #CSP. Such frameworks express a large class of counting
problems in the Sum-of-Product form. It is known that if P 6= NP, then there exists a
problem that is neither in P nor NP-complete [29]. And there is an analogue of Ladner’s
Theorem for the class #P. However, for these frameworks, various beautiful dichotomy
theorems have been proved, classifying all problems in the broad class into those which are
computable in polynomial time (in P) and those which are #P-hard. A natural question is:
For how broad a class of counting problems can one prove a dichotomy theorem?

∗ A full version containing detailed proofs is available at https://arxiv.org/abs/1611.00975.
† This work was supported by the National Natural Science Foundation of China (Grants No. 61170299,

61370053 and 61572003).
‡ Hanpin Wang is the corresponding author.

EA
T

C
S

© Jiabao Lin and Hanpin Wang;
licensed under Creative Commons License CC-BY

44th International Colloquium on Automata, Languages, and Programming (ICALP 2017).
Editors: Ioannis Chatzigiannakis, Piotr Indyk, Fabian Kuhn, and Anca Muscholl;
Article No. 29; pp. 29:1–29:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.ICALP.2017.29
https://arxiv.org/abs/1611.00975
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

29:2 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

While GH can express many interesting graph parameters, Freedman, Lovász and Schrijver
[24] showed that the number of perfect matchings of a graph cannot be represented as a
homomorphism function. Inspired by holographic algorithms [32, 31], Cai, Lu and Xia [14]
proposed a more refined framework called Holant Problems. Here we give a brief introduction.
In this paper, constraint functions are defined over the Boolean domain, if not specified. Let
F denote a set of algebraic complex-valued functions. A signature grid Ω is a tuple (G,F , π)
where G = (V,E) is an undirected graph, and π is a map that maps each vertex v ∈ V to
some function fv ∈ F and its incident edges E(v) to the input variables of fv. The counting
problem on Ω is to compute

HolantΩ =
∑

σ:E→{0,1}

∏
v∈V

fv(σ|E(v)),

where σ|E(v) is the restriction of σ to E(v). All such signature grids constitute the set of
instances of the problem Holant(F). For example, consider the problem of counting perfect
matchings (#PM) on graph G. In a perfect matching, every vertex is saturated by exactly
one edge. Such constraint on a vertex of degree n can be expressed as an Exact-One
function f : {0, 1}n → {0, 1}, which takes the value 1 if and only if its input has Hamming
weight 1. If every vertex is assigned such a function, then the value HolantΩ is exactly
the number of perfect matchings. Let F denote the set of all Exact-One functions, then
Holant(F) represents the problem #PM.

The Holant framework is general enough: #CSPs can be viewed as special Holant
problems where all equality functions are available [14]. However, the very generality makes
it more difficult to prove a dichotomy. A function is symmetric if the function values only
depend on the Hamming weights of inputs, like the Exact-One functions. Satisfactory
progress has been made in the complexity classification of Holant problems specified by sets
of symmetric functions [13, 28, 26, 11, 10]. And in the process, some unexpected tractable
classes were discovered. They give many deep insights into both tractability and hardness.

It still remains open whether a complete dichotomy exists, since the definition of Holant
problems does not require that constraint functions be symmetric. Such restriction is stringent
and generally it is not imposed in #CSP. Cai, Lu and Xia [16] proved a dichotomy without
symmetry for a special family of Holant problems, called Holant∗, where all unary functions
are assumed to be available. But without this assumption, as in [11], more tractable classes
will be released, which makes the hardness proof very different.

We prove a dichotomy theorem for Holant problems with non-negative algebraic real
weights. It is the first complete Holant dichotomy where constraint functions are not
necessarily symmetric and no auxiliary function is assumed to be available. This generalizes
the results on Boolean #CSP in [18, 19], and the dichotomies in [28, 11] restricted to non-
negative case. Our proof starts with an infinitary condition, but finally obtains an explicit
criterion (Theorem 19).

A simple observation is that, Holant problems are indeed read-twice #CSPs where every
variable in an instance appears exactly twice (see subsection 2.4). Intuitively, some #CSPs
that are #P-hard become tractable when restricted to read-twice instances. To capture them,
we need insights into what makes a problem hard in #CSP. Inspired by dichotomy theorems
over general domains [5, 23, 8, 7], we introduce the Block-rank-one condition for Holant
problems (see subsection 7.1). It is known that non-block-rank-one structures imply hardness
in #CSP. So our condition is necessary for tractability since it is imposed on the functions
defined by read-twice instances. Surprisingly, on the Boolean domain, the Block-rank-one
condition is also sufficient and leads to a clear separation:

J. Lin and H. Wang 29:3

I. Function set F satisfies the condition. Then #CSP(F) is in P, and hence its subproblem
Holant(F) is also in P.

II. Function set F violates the condition. Then (a) Holant(F) is #P-hard or (b) #CSP(F)
is #P-hard but Holant(F) is tractable.
First we discuss Part II. We can prove #P-hardness directly, or further induce an

orthogonal holographic transformation. After performing the transformation, we have to
handle real-valued functions. Luckily, we can even prove a dichotomy theorem for a family
of complex-valued Holant problems (Theorem 9). And towards this theorem, we prove a
lemma (Lemma 6) on how to “extract” a function from its tensor powers. The proof is
non-constructive and the idea can simplify some existing proofs. For example, it can be shown
directly that the two problems #CSPd(F ∪{[1, 0]⊗d, [0, 1]⊗d}) and #CSPd(F ∪{[1, 0], [0, 1]})
in [28] are equivalent under polynomial-time Turing reduction.

Now consider Part I. It can be derived that F is of affine type or F is of product type,
exactly the criterion given by Dyer, Goldberg and Jerrum [19]. Dichotomies for #CSP over
general domains [1, 23, 3, 8] are very different from those over the Boolean domain [18, 19].
Our proof builds a connection between them.

The Block-rank-one condition is a little conceptual. To obtain the structure of F , we
introduce an equivalent notion, called balance, for Holant problems (see subsection 7.2). The
equivalence is simply built on the concept of vector representation in [8], which was used to
design a polynomial-time algorithm for #CSP. Back to non-negative #CSP, we find that
actually the notions of weak balance and balance (different from our version for Holant) in
[8] are equivalent, without assuming FP 6= #P. Therefore, to decide the complexity of a
problem #CSP(F), we only need to decide whether F is of weak balance.

2 Preliminaries

2.1 Functions and Signatures
Let C and R+ denote the set of algebraic complex numbers and the set of algebraic non-
negative real numbers, respectively. Throughout this paper, we refer to them simply as
complex and non-negative numbers.

Given a function f : {0, 1}n → C, we will often write it as a vector of dimension 2n
whose entries are the function values, indexed by x ∈ {0, 1}n lexicographically. This vector
is called a signature. If the values of an n-ary function only depend on the Hamming weights
of inputs, then the function is called symmetric and can be expressed as [f0, f1, ..., fn] where
fk is the function value for inputs of Hamming weight k. For example, the ternary logic OR
function has the signature [0, 1, 1, 1].

Generally, given a function f of arity n, we can express it as a 2r × 2n−r matrix
(1 ≤ r ≤ n), denoted by M[r](f). The rows and columns are indexed by x ∈ {0, 1}r and
y ∈ {0, 1}n−r respectively, and f(x,y) is the (x,y)th entry of the matrix. And the matrices
{M[r](f) | r ∈ [n]} are called the signature matrices of f . When the integer r is clear from
the context, we simply write Mf .

In most cases, if not confused, we identify functions, signatures and signature matrices.
But in section 7, we shall distinguish a function from its matrix representations.

Given an n-ary function f and a permutation π on [n], we define the function fπ : For
x1, x2, ..., xn ∈ {0, 1}, fπ(x1, x2, ..., xn) = f(xπ(1), xπ(2), ..., xπ(n)).

A function F is reducible if Fπ is a tensor product of two functions (of arity ≥ 1) for
some permutation π. Otherwise F is called irreducible. A function is called degenerate if it
is a tensor product of some unary functions. Otherwise we call it non-degenerate.

ICALP 2017

29:4 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

Given a positive integer k, we use =k to denote the k-ary equality function [1, 0, ..., 0, 1].
And we use 6=2 to denote the binary disequality function [0, 1, 0].

In the following, we define three classes of complex-valued functions. Let T denote the
set of functions that can be expressed as a tensor product of functions of arity at most 2.

The support of an n-ary function f , denoted by supp(f), is the set {x ∈ Zn2 | f(x) 6= 0}.
A Boolean relation is affine if it is the set of solutions to a system of linear equations over
the field Z2. We say that f has affine support if its support is affine.

I Definition 1. A function f of arity n is affine if its support is affine and there is a constant
λ ∈ C such that for all x ∈ supp(f), f(x) = λ · iQ(x), where i =

√
−1 and Q is a quadratic

polynomial Q(x1, ..., xn) =
∑n
i=1 aix

2
i + 2

∑
1≤i<j≤n bijxixj with ai ∈ Z4 and bij ∈ {0, 1}.

We use A to denote the set of all affine functions.

I Definition 2. A function f is of product type if it can be expressed as a product of unary
functions, binary functions of the form =2 and 6=2 (on not necessarily disjoint subsets of
variables). We use P to denote the set of all functions of product type.

2.2 Holographic Reductions
To introduce the holographic reductions, we define bipartite Holant problems. Holant(F | G)
denotes the Holant problem on bipartite graphs H = (U, V,E) where each vertex in U (V)
is assigned a function from F (G). A Holant problem Holant(F) can seen as the bipartite
problem Holant(=2 | F).

Let T be a 2×2 matrix and let F be a function set. Whenever we write TF , the functions
in F are viewed as column vectors and, TF = {T⊗nf | f ∈ F and n = arity(f)}. Similarly,
FT = {fT⊗n | f ∈ F and n = arity(f)} where the functions in F are expressed as row
vectors.

Let T be a matrix in GL2(C). We say there is a holographic reduction defined by T from
Holant(F | G) to Holant(F ′ | G′), if FT ⊆ F ′ and T−1G ⊆ G′. The holographic reduction
maps a signature grid Ω = (G,F | G, π) to Ω′ = (G,F ′ | G′, π′): For each vertex v of G, π′
assigns the function fvT or T−1fv to v, depending on which part v belongs to.

I Theorem 3 (Valiant’s Holant Theorem [32]). Let T be any matrix in GL2(C). Suppose
that the holographic reduction defined by T maps a signature grid Ω to Ω′. Then HolantΩ =
HolantΩ′ .

We will use ≤T to denote polynomial-time Turing reductions and use ≡T to denote the
equivalence relation under polynomial-time Turing reductions.

I Theorem 4. Let F be a function set and let H be an orthogonal matrix (HTH = I). Then
Holant(HF) ≡T Holant(F).

2.3 Realizability
Let F be a set of functions. An F-gate [15] Γ is a tuple (G,F , π) where G = (V,E,D) is a
graph with regular edges E and some dangling edges D. Other than these dangling edges,
the gate Γ is the same as a signature grid: π maps each vertex v ∈ V to some function
fv ∈ F and it incident edges (including the dangling ones) to the input variables of fv. We
denote the edges in E by 1, 2, ...,m and the dangling edges in D by m+ 1,m+ 2, ...,m+ n.
Then we can define a function f for Γ:

f(y1, y2, ..., yn) =
∑

x1,x2,...,xm∈{0,1}

F (x1, x2, ..., xm, y1, y2, ..., yn)

J. Lin and H. Wang 29:5

where (y1, y2, ..., yn) ∈ {0, 1}n is an assignment on the dangling edges and F (x,y) denotes
the product of evaluations at all vertices of V . We say the function f is realizable from the
function set F . We use S(F) to denote the set of functions realizable from F .

Given a function f , we use fxi=c to denote the function obtained by pinning the ith
input variable of f to c ∈ {0, 1}.

2.4 Weighted Counting CSP
Let F be a set of complex-valued functions. Then the problem #CSP(F) is defined as follows.
An input instance I of the problem consists of a finite set of variables V = {x1, ..., xn} and a
finite set of constraints {C1, ..., Cm}. Each Ci has the form (Fi,xi) where Fi ∈ F and xi is
a tuple of (not necessarily distinct) variables from V . The instance I defines a function FI
over x = (x1, ..., xn) ∈ {0, 1}n: FI(x) =

∏m
i=1 Fi(xi) for x ∈ {0, 1}n. The output is the sum:

Z(I) =
∑

x∈{0,1}n FI(x).
Holant problems are indeed read-twice #CSPs. Given a signature grid, we assume that

the numbering of its vertices and edges is also given. If these edges are viewed as variables,
then the signature grid is a #CSP instance where every variable appears exactly twice. So
we also say that a signature grid defines a function. And the concept of realizability can be
defined in the CSP language.

Cai, Lu and Xia [17] proved a dichotomy for complex-weighted #CSP over the Boolean
domain.

I Theorem 5 ([17]). Let F be a set of complex-valued functions. Then the problem #CSP(F)
is computable in polynomial time if F ⊆ A or F ⊆ P. Otherwise #CSP(F) is #P-hard.

3 Decomposition

In Holant problems, sometimes we are able to realize a function F = f ⊗ g, but do not know
how to realize the function f directly, which can be technically beneficial. Fortunately, under
certain conditions, if F is realizable, then we may assume that f is freely available.

In this section, we prefer to prove the lemmas in the CSP language. If not specified, the
functions we discussed are over a fixed finite domain and take complex values.

Let m be a positive integer. We use f⊗m to denote the m-th tensor power of f . f⊗m can
be seen as m copies of f : f⊗m(x1, ...,xm) = f(x1) · · · f(xm). Let I be a #CSP instance that
contains m constraints: (f,x1), (f,x2),, (f,xm). We replace these m tuples by one tuple
(f⊗m,x1,x2, ...,xm) and then obtain a new instance I ′. It is easy to see that Z(I) = Z(I ′).

I Lemma 6. For any function set F and function f , Holant(F ∪{f}) ≤T Holant(F ∪{f⊗d})
for all d ≥ 1.

Proof. Impose induction on d. Let n denote the arity of f .
The base case, d = 1, is trivial. Now suppose that the conclusion holds for all d < k (k ≥ 2).

In the problem Holant(F ∪ {f⊗k}), we may assume that the functions f⊗(mk) are freely
available for integers m > 0. There are two cases to consider:

There exists an instance I of Holant(F ∪ {f}) such that Z(I) 6= 0 and f appears p times
where p = qk + r (q ≥ 0, 0 < r < k). Let C1, ..., Cp be the p constraints that have the
form (f,xi). We replace the first qk constraints by one tuple C ′1 = (f⊗(qk),x1, ...,xqk),
and the last r constraints by one tuple C ′2 = (f⊗k,xqk+1, ...,xp,y) where y denotes a list
of new distinct variables, of length (k − r)n. After the substitution, we get a function

ICALP 2017

29:6 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

F (x,y) where x denotes the variables of the original instance I. Every variable in x
occurs twice, so by summing on them we can realize the following function:∑

x
F (x,y) =

∑
x
FI(x)f⊗(k−r)(y) = Z(I)f⊗(k−r)(y).

Because Z(I) 6= 0, we have Holant(F ∪ {f⊗(k−r)}) ≤T Holant(F ∪ {f⊗k}). And by
the induction hypothesis, Holant(F ∪ {f}) ≤T Holant(F ∪ {f⊗(k−r)}). Therefore, the
conclusion holds.
For all I with Z(I) 6= 0, f appears a multiple of k times. Given an instance I of Holant(F∪
{f}), we show how to compute Z(I) with the help of the oracle for Holant(F ∪ {f⊗k}).
First we check whether the number p of constraints containing f is a multiple of k. If not,
we simply output 0. Otherwise we replace all such constraints by one tuple (f⊗p,x) as
in case (1), and then obtain an instance I ′ of Holant(F ∪ {f⊗k}). Clearly Z(I) = Z(I ′),
and we can compute Z(I ′) by accessing the oracle.

In either case, there exists a polynomial-time Turing reduction. This completes the induction.
J

Note that our proof only shows the existence of polynomial-time Turing reductions, but
does not produce such reductions constructively for given function sets. Based on Lemma 6,
we can prove a more general one.

I Lemma 7. Let F be a set of functions, and f, g be two functions. Suppose that there exists
an instance I of Holant(F ∪ {f, g}) such that Z(I) 6= 0, and the number of occurrences of g
in I is greater than that of f . Then Holant(F ∪ {f, f ⊗ g}) ≤T Holant(F ∪ {f ⊗ g}).

4 When A Non-trivial Equality Function Appears

Let Holantc(F) denote the problem Holant(F∪{[1, 0], [0, 1]}). We have the following theorem:

I Theorem 8. Let λ be any nonzero complex number that is not a root of unity. For any
set F of complex-valued functions, Holantc(F ∪ {[1, 0, λ]}) is computable in polynomial time
if F ⊆ T or F ⊆ P. Otherwise the problem is #P-hard.

The conclusion still holds if we remove the unary functions [1, 0] and [0, 1]:

I Theorem 9. Let λ be any nonzero complex number that is not a root of unity. For any
set F of complex-valued functions, Holant(F ∪ {[1, 0, λ]}) is computable in polynomial time
if F ⊆ T or F ⊆ P. Otherwise the problem is #P-hard.

Proof. We can interpolate [1, 0]⊗2 and [0, 1]⊗2 using [1, 0, λ]. Then by Lemma 6, Holantc(F∪
{[1, 0, λ]}) ≤T Holant(F ∪ {[1, 0, λ]}). J

Intuitively, we can interpolate all functions of the form [a, 0, b], using the binary function
[1, 0, λ]. By connecting with these binary funtions, a function f may range arbitrarily. To
avoid #P-hardness, the structure of the support of f must be simple enough.

5 P-transformability

We start with some simple facts from linear algebra. Let M =
[
a1 a2 · · · an
b1 b2 · · · bn

]
(n ≥ 2)

be a non-negative matrix of rank 2. Then A = MMT =
[
a b

b c

]
satisfying a, c > 0. Moreover,

by Cauchy-Schwarz inequality, detA = ac− b2 > 0.

J. Lin and H. Wang 29:7

I Lemma 10. If a 6= c or b 6= 0, then A has two distinct positive eigenvalues α and β.

The following lemma is a simple case of the Spectral Theorem for real symmetric matrices.

I Lemma 11. There is an orthogonal matrix H such that HAHT =
[
α 0
0 β

]
, where α and

β are the eigenvalues of A.

Let f be a non-negative binary function. If f is non-degenerate and affine, then f =
a[1, 0, 1] or f = a[0, 1, 0] for some a > 0.

I Lemma 12. Let f = (a, b, c, d) be a non-negative function. Suppose that f is non-degenerate
and f /∈ A. Then for any function set F with f ∈ S(F), Holant(F) is #P-hard or F ⊆ T or
F ⊆ HP for some orthogonal matrix H.

Proof. Since f ∈ S(F), the symmetric matrix

A =
[
a b

c d

] [
a c

b d

]
=
[
a2 + b2 ac+ bd

ac+ bd c2 + d2

]
is also realizable. Because f is non-degenerate, a2 + b2, c2 + d2 > 0 and ac + bd ≥ 0. We
claim that ac+ bd 6= 0 or a2 + b2 6= c2 + d2. Suppose ac+ bd = 0, then ac = bd = 0 since f

is non-negative. So f =
[
a 0
0 d

]
or f =

[
0 b

c 0

]
. In both cases, as f /∈ A, a2 + b2 6= c2 + d2.

By Lemma 10 and Lemma 11, there is some orthogonal matrix H such that HAHT =[
α 0
0 β

]
, where α and β are the two distinct positive eigenvalues of A. Now we perform the

transformation H and obtain the following equivalence:

Holant({[α, 0, β]} ∪HF) ≡T Holant({A} ∪ F) ≡T Holant(F).

The latter equivalence follows from the fact A ∈ S(f) ⊆ S(F). β/α is nonzero and not a root
of unity, so if HF 6⊆ T and HF 6⊆ P, the problem is #P-hard by Theorem 9. J

6 On Special Functions of Arity 4

In this section, we consider some special functions of arity 4, and complete the preparation
for the hardness part of our dichotomy.

I Lemma 13. Let f be a function of arity 4, whose signature matrix has the form

Mf =


f0000 f0001 f0010 f0011
f0100 f0101 f0110 f0111
f1000 f1001 f1010 f1011
f1100 f1101 f1110 f1111

 =


1 0 0 a

0 b c 0
0 c b 0
a 0 0 1


where a, b, c ≥ 0 and at least two of them are positive. Then Holant(f) is #P-hard if
f 6= [1, 0, 1, 0, 1].

We prove a dichotomy for function sets that contain certain functions of arity 4.

I Lemma 14. Let f be a non-negative function of arity 4. And
[
f0000 f0011
f1100 f1111

]
=
[
a b

b c

]
where b 6= 0 and ac > b2. Then for any function set F containing f , Holant(F) is #P-hard
or F ⊆ T or F ⊆ HP for some orthogonal matrix H.

Proof. We can show that Holant(F) is #P-hard by Theorem 5 and Lemma 13, or there
is some non-negative binary function f /∈ A ∪ P such that Holant(F ∪ {f}) ≤T Holant(F).
Then the conclusion follows from Lemma 12. J

ICALP 2017

29:8 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

7 The Dichotomy

7.1 The Block-rank-one Condition Captures the Dichotomy
Given a function f of arity n, we use f [t], for each t ∈ [n], to denote the function

f [t](x1, ..., xt) =
∑

xt+1,...,xn∈{0,1}

f(x1, ..., xt, xt+1, ..., xn).

Recall that Holant problems are read-twice #CSPs and every #CSP instance defines a
function (subsection 2.4). We adopt the notation in [7], defining the following set of functions
for a given F :

WF = {F [t] |F is a function defined by an instance of Holant(F) and 1 ≤ t ≤ arity of F}.

Note that the functions in WF are not necessarily realizable from F . The following two
lemmas show how WF and S(F) are related:

I Lemma 15. Let f ∈ WF be a function of arity n. Then there is a function g ∈ S(F) of
arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1}, f(x1, x2, ..., xn) = g(x1, x1, x2, x2, ..., xn, xn).

I Lemma 16. For f ∈ S(F), f2 ∈ WF .

Let M be a non-negative matrix. We say M is block-rank-one if every two rows of it are
linearly dependent or orthogonal. Given a non-negative function f of arity n, we say f is
block-rank-one if either n = 1 or the matrix M[n−1](f) is block-rank-one.

Now we impose a condition on WF :

Block-rank-one: All functions in WF are block-rank-one.

We can classify those function sets that do not satisfy this condition:

I Lemma 17. Let F be a set of non-negative functions. If F does not satisfy the Block-
rank-one condition, then Holant(F) is #P-hard or F ⊆ T or F ⊆ HP for some orthogonal
matrix H.

Proof. Let f ∈ WF be a function of arity n. Then by Lemma 15, there is a func-
tion g ∈ S(F) of arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1}, f(x1, x2, ..., xn) =
g(x1, x1, x2, x2, ..., xn, xn).

Now suppose that f is not block-rank-one. By definition, n ≥ 2 and the two columns of
M[n−1](f) are linearly independent but not orthogonal. Then the first and the last columns
of the matrix M = M[2n−2](g), gx2n−1=x2n=0 and gx2n−1=x2n=1, are also linearly independent
but not orthogonal. Let h denote the 4 × 4 matrix MTM . Then h0011 = h1100 > 0 and
h0000h1111 > h2

0011. Since g ∈ S(F), h is also realizable. Thus Holant(F∪{h}) ≤T Holant(F).
By Lemma 14, Holant(F) is #P-hard or F ⊆ T or F ⊆ HP for some orthogonal H. J

Surprisingly, the Block-rank-one condition has captured the dichotomy. We have the
crucial lemma below:

I Lemma 18. Let F be a set of non-negative functions. If F satisfies the Block-rank-one
condition, then F ⊆ A or F ⊆ P.

Therefore, if F satisfies the Block-rank-one condition, then Holant(F) is in polynomial
time. So our dichotomy is quite simple and it is decidable in polynomial time [12]:

J. Lin and H. Wang 29:9

I Theorem 19. Let F be a set of non-negative functions. The problem Holant(F) is
computable in polynomial time if F satisfies one of the following three conditions:
F ⊆ T ;
F ⊆ A;
F ⊆ HP for some real orthogonal matrix H.

Otherwise Holant(F) is #P-hard.

The remaining is to prove Lemma 18. To obtain the structure of F , it is more convenient
to consider directly the set F and the functions realizable from it. So in the next subsection,
we will introduce a notion equivalent to the Block-rank-one condition. This notion restricts
the function set S(F).

7.2 Balance
We define the notion of balance for non-negative Holant problems. The notion was introduced
for non-negative #CSP by Cai, Chen and Lu [8].

I Definition 20 (Balance). Let F be a set of non-negative functions. F is called balanced
if for any function f ∈ S(F), every signature matrix in {M[r](f) | 1 ≤ r ≤ arity(f)} is
block-rank-one. A non-negative function f is balanced if the set {f} is balanced.

Note that in the definition above, when r = arity(f), the matrix M[r](f) is a column vector
and hence trivially block-rank-one.

Balanced sets satisfy the Block-rank-one condition. Generally, we have the following
lemma.

I Lemma 21. Let F be a set of non-negative functions. Suppose that F is balanced. Then
for any f ∈ WF , every matrix in {M[r](f) | 1 ≤ r ≤ arity(f)} is block-rank-one.

Proof. Let f ∈ WF be a function of arity n. Then by Lemma 15, there exists a function
g ∈ S(F) of arity 2n, such that for all x1, x2, ..., xn ∈ {0, 1},

f(x1, x2, ..., xn) = g(x1, x1, x2, x2, ..., xn, xn).

Therefore, for any r ∈ [n],M[r](f) is a submatrix ofM[2r](g). Because F is balanced, M[2r](g)
is block-rank-one. Hence so is M[r](f). J

Let f be a non-negative function of arity n. And let s1, ..., sn be n non-negative unary
functions. We call (s1, ..., sn) a vector representation of f if for all x ∈ {0, 1}n, either f(x) = 0
or f(x) = s1(x1) · · · sn(xn).

I Lemma 22 ([8]). Let f be a non-negative function of arity n. If f [t] is block-rank-one for
all t ∈ [n], then f has a vector representation.

I Lemma 23. Let F be a set of non-negative functions that satisfies the Block-rank-one
condition. Then every function in S(F) has a vector representation.

Proof. Let f be a function in S(F) of arity n. By Lemma 16, f2 ∈ WF . Then f2 has
a vector representation (s1, ..., sn) by Lemma 22. Let (s′1, ..., s′n) be n non-negative unary
functions such that for all i ∈ [n], s′i(a) =

√
si(a) for a ∈ {0, 1}. Then (s′1, ..., s′n) is a vector

representation of the function f . J

Now we are able to prove the equivalence between the notion of balance and the Block-
rank-one condition.

ICALP 2017

29:10 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

I Lemma 24. Let F be a set of non-negative functions. F is balanced if and only if F
satisfies the Block-rank-one condition.

Proof. The necessity follows directly from Lemma 21. We only need to show the sufficiency.
Let f be an n-ary function in S(F), with n ≥ 2. And suppose that M = M[r](f) is

not block-rank-one for some r ∈ [n]. Then there exist two rows of M , indexed by some
x,y ∈ {0, 1}r, which are linearly independent but not orthogonal. So we can realize a
signature g = MMT. Its submatrix

h =
[
g(x,x) g(x,y)
g(y,x) g(y,y)

]
=
[
a b

b c

]
is of full rank and a, b, c > 0. But by Lemma 23, g has a vector representation (s1, ..., s2r),
such that for all u ∈ supp(g), g(u) = s1(u1) · · · s2r(u2r). Let s = s1 ⊗ · · · ⊗ sr and
t = sr+1 ⊗ · · · ⊗ s2r. Then

h =
[
s(x)t(x) s(x)t(y)
s(y)t(x) s(y)t(y)

]
,

which is singular. A contradiction. J

Having shown the equivalence, we turn to consider some properties of balanced sets.
There are two basic facts about balance. Later we will often use them but without explicit
reference.

I Lemma 25. If F ⊆ G and G is balanced, then F is also balanced.

I Lemma 26. If f ∈ S(F) and F is balanced, then F ∪ {f} is also balanced.

In Boolean #CSP, the two unary functions [1, 0] and [0, 1] can be simulated [19]. And the
function [1, 1] is the unary equality function, which is freely available. These unary functions
make it more convenient to construct certain functions. But in Holant problems, generally we
do not know how to realize or simulate them. Fortunately, we can circumvent this difficulty
by the lemma below. It follows from Lemma 28 and Lemma 30.

I Lemma 27. If F is balanced, then the set F ∪ {[1, 0], [0, 1], [1, 1]} is balanced.

I Lemma 28. If F is balanced, then F ∪ {[1, 0], [0, 1]} is balanced.

I Lemma 29. Suppose that F is a balanced set of non-negative functions. Let f be an n-ary
function in S(F) and let F denote the function f2. Then for each t ∈ [n], there exists a
constant λt > 0 such that F [t] = λt(f [t])2.

Proof. Impose induction on t. The base case t = n is trivial where λn = 1.
Suppose that F [t] = λt(f [t])2 for t = k + 1 ≤ n. Consider the case t = k. For all

x ∈ {0, 1}k,

F [k](x) = F [k+1](x, 0) + F [k+1](x, 1) = λk+1

[(
f [k+1](x, 0)

)2
+
(
f [k+1](x, 1)

)2
]
.

Note that the function F [k+1] ∈ WF since F = f2 ∈ WF . Because F is balanced, F [k+1] is
block-rank-one by Lemma 24. Thus the function f [k+1] =

√
F [k+1]/λk+1 is also block-rank-

one, which implies that the two column vectors of the matrix M[k](f [k+1]), denoted by v0
and v1, are orthogonal or linearly dependent:

J. Lin and H. Wang 29:11

v0 and v1 are orthogonal. Then for all x ∈ {0, 1}k,

F [k](x) = λk+1

[(
f [k+1](x, 0)

)2
+
(
f [k+1](x, 1)

)2
]

= λk+1

(
f [k+1](x, 0) + f [k+1](x, 1)

)2
= λk+1

(
f [k](x)

)2
.

v0 and v1 are linearly dependent. Without loss of generality, we assume that v1 = λv0
for some λ ≥ 0. Then for all x ∈ {0, 1}k,

F [k](x) = λk+1(1 + λ2)
(
f [k+1](x, 0)

)2
= λk+1

1 + λ2

(1 + λ)2

(
f [k](x)

)2
.

In either case, the conclusion holds. This completes the induction. J

I Lemma 30. If F is balanced, then F ∪ {[1, 1]} is balanced.

Proof. Suppose that [1, 1] /∈ S(F), otherwise we are done. Let g be an n-ary function in
S(F ∪ {[1, 1]}). We need to show that all the matrices in {M[r](g) | 1 ≤ r ≤ arity(g)} are
block-rank-one.

Let Γ denote the gate that realizes g. If there is an isolated vertex with a dangling
edge in Γ, assigned the function [1, 1], then we remove this vertex; If there are two adjacent
vertices, both assigned the function [1, 1], then we delete the pair. Repeat removing until
no such vertices. Finally we obtain a new gate Γ′. If Γ′ has no dangling edges, then we are
done. Suppose not. Let h denote the function that Γ′ realizes. And for all x1, ..., xn ∈ {0, 1},
g(x1, ..., xn) = 2sh(xi1 , ..., xit) where 1 ≤ i1 < · · · < it ≤ n and s denotes the number of
pairs we delete. It suffices to prove that the signature matrices of h are all block-rank-one.

Note that h = f [t] for some f ∈ S(F) and 1 ≤ t ≤ arity(f). Let F denote the function f2.
Then by Lemma 29, there is a constant λt > 0 such that F [t] = λt(f [t])2. Therefore, for any
r ∈ [t], the two matrices M[r](f [t]) and M[r](F [t]) are both block-rank-one or neither. Since
F [t] ∈ WF , all of its signature matrices are block-rank-one by Lemma 21. Thus every matrix
in {M[r](f [t]) | 1 ≤ r ≤ t} is block-rank-one. J

With these unary functions, we are able to prove two more lemmas:

I Lemma 31. Let F be a set of non-negative functions and let g = [1, 0, 1, 0]. If F ∪ {g} is
balanced, then F ⊆ A.

I Lemma 32. Let F be a set of non-negative functions and let g = [a, 0, ..., 0, b] be a general
equality function where arity(g) ≥ 3 and a, b > 0. If F ∪ {g} is balanced, then F ⊆ A or
F ⊆ P.

7.3 Proof Sketch of Lemma 18
Suppose that a function set F satisfies the Block-rank-one condition. Then the set G =
F ∪ {[1, 0], [0, 1], [1, 1]} is balanced. So it suffices to prove that G ⊆ A or G ⊆ P.

First we consider the case G ⊆ T . In this case, every nondegenerate binary function in
S(G) has the form [a, 0, b] or (0, a, b, 0). Thus all of them are of product type. Since the set
P is closed under tensor product, G ⊆ P.

Now suppose that G 6⊆ T . Then there is an irreducible function f ∈ S(G) of arity n ≥ 3.
For 1 ≤ i < j ≤ n and a, b ∈ {0, 1}, we use fabij denote the column vector M[n−2](fxi=a,xj=b).
And we define the 2n−2 × 22 matrices Mij = (f00

ij , f
01
ij , f

10
ij , f

11
ij).

ICALP 2017

29:12 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

Since f is irreducible and G is balanced, any two elements of the support of f differ at
two or more bits. Thus we have:〈

f00
ij , f

01
ij

〉
= 0,

〈
f00
ij , f

10
ij

〉
= 0,〈

f11
ij , f

01
ij

〉
= 0,

〈
f11
ij , f

10
ij

〉
= 0,

where 〈·, ·〉 denotes the inner product. Therefore, for every pair (i, j), the 4 × 4 matrix
Bij = (Mij)TMij has the form

a 0 0 b

0 x y 0
0 y z 0
b 0 0 c

 .
By Cauchy-Schwarz inequality, ac ≥ b2 and xz ≥ y2. If for all 1 ≤ i < j ≤ n, Bij is diagonal,
then there exists a function g = [a, 0, ..., 0, b] ∈ S(G) where arity(g) ≥ 3 and a, b > 0. If some
Bij is not diagonal, then Bij = a[1, 0, 1, 0, 1] for some a > 0 due to the balance of G. In this
case, we can further realize the function a[1, 0, 1, 0]. According to Lemma 32 or Lemma 31,
G ⊆ A or G ⊆ P.

8 Conclusion

To determine the complexity of a problem Holant(F), the proofs of previous Holant di-
chotomies often start with a non-trivial function in F . This works well for symmetric
functions, but the structure of an asymmetric one can be very intricate. In [16], we have al-
ready seen that asymmetry poses great challenges in arity reduction and gadget construction,
even assuming the presence of all unary functions. In fact, similar difficulty arises on higher
domains, where it is tough to obtain an explicit dichotomy. The #CSP dichotomies over
general domains [23, 8, 7] are more abstract than those over the Boolean domain, but they
offer great insights into sum-of-product computation. Inspired by them, we introduce the
Block-rank-one condition for Holant problems, which leads to a clear classification. At the
beginning of our work, we were not sure whether the condition is sufficient for tractability.
Lemma 24 and Lemma 27 make it possible to absorb the results in [19] and reach the
destination.

Acknowledgements. The authors are grateful to Jin-Yi Cai for his careful reading of an
earlier version of this paper.

References
1 Andrei A. Bulatov. The complexity of the counting constraint satisfaction problem. J.

ACM, 60(5):34, 2013.
2 Andrei A. Bulatov and Víctor Dalmau. Towards a dichotomy theorem for the counting

constraint satisfaction problem. Inf. Comput., 205(5):651–678, 2007.
3 Andrei A. Bulatov, Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, Mark Jerrum,

and David Richerby. The complexity of weighted and unweighted #CSP. J. Comput. Syst.
Sci., 78(2):681–688, 2012.

4 Andrei A. Bulatov, Martin E. Dyer, Leslie A. Goldberg, Markus Jalsenius, and David
Richerby. The complexity of weighted Boolean #CSP with mixed signs. Theor. Comput.
Sci., 410(38-40):3949–3961, 2009.

J. Lin and H. Wang 29:13

5 Andrei A. Bulatov and Martin Grohe. The complexity of partition functions. Theor.
Comput. Sci., 348(2):148–186, 2005.

6 Jin-Yi Cai and Xi Chen. A decidable dichotomy theorem on directed graph homomorphisms
with non-negative weights. In Proceedings of 51th Annual IEEE Symposium on Foundations
of Computer Science, pages 437–446, 2010.

7 Jin-Yi Cai and Xi Chen. Complexity of counting CSP with complex weights. In Proceedings
of the 44th Symposium on Theory of Computing, pages 909–920, 2012.

8 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Non-negatively weighted #CSP: An effective com-
plexity dichotomy. In Proceedings of the 26th Annual IEEE Conference on Computational
Complexity, pages 45–54, 2011.

9 Jin-Yi Cai, Xi Chen, and Pinyan Lu. Graph homomorphisms with complex values: A
dichotomy theorem. SIAM J. Comput., 42(3):934–1029, 2013.

10 Jin-Yi Cai, Zhiguo Fu, Heng Guo, and Tyson Williams. A Holant dichotomy: Is the
FKT algorithm universal? In IEEE 56th Annual Symposium on Foundations of Computer
Science, pages 1259–1276, 2015.

11 Jin-Yi Cai, Heng Guo, and Tyson Williams. A complete dichotomy rises from the cap-
ture of vanishing signatures: Extended abstract. In Proceedings of the 45th Annual ACM
Symposium on Theory of Computing, pages 635–644, 2013.

12 Jin-Yi Cai, Heng Guo, and Tyson Williams. Holographic algorithms beyond matchgates.
In Proceedings of ICALP, pages 271–282, 2014.

13 Jin-Yi Cai, Sangxia Huang, and Pinyan Lu. From Holant to #CSP and back: Dichotomy
for Holantc problems. Algorithmica, 64(3):511–533, 2012.

14 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Holant problems and counting CSP. In Proceedings
of the 41st Annual ACM Symposium on Theory of Computing, pages 715–724, 2009.

15 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Computational complexity of Holant problems.
SIAM J. Comput., 40(4):1101–1132, 2011.

16 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. Dichotomy for Holant∗ problems of Boolean
domain. In Proceedings of the Twenty-second Annual ACM-SIAM Symposium on Discrete
Algorithms, pages 1714–1728, 2011.

17 Jin-Yi Cai, Pinyan Lu, and Mingji Xia. The complexity of complex weighted Boolean
#CSP. J. Comput. Syst. Sci., 80(1):217–236, 2014.

18 Nadia Creignou and Miki Hermann. Complexity of generalized satisfiability counting prob-
lems. Inf. Comput., 125(1):1–12, 1996.

19 Martin E. Dyer, Leslie A. Goldberg, and Mark Jerrum. The complexity of weighted Boolean
#CSP. SIAM J. Comput., 38(5):1970–1986, 2009.

20 Martin E. Dyer, Leslie A. Goldberg, and Mike Paterson. On counting homomorphisms to
directed acyclic graphs. J. ACM, 54(6), 2007.

21 Martin E. Dyer and Catherine S. Greenhill. The complexity of counting graph homomor-
phisms. Random Struct. Algorithms, 17(3-4):260–289, 2000.

22 Martin E. Dyer and David Richerby. On the complexity of #CSP. In Proceedings of the
42nd ACM Symposium on Theory of Computing, pages 725–734, 2010.

23 Martin E. Dyer and David Richerby. An effective dichotomy for the counting constraint
satisfaction problem. SIAM J. Comput., 42(3):1245–1274, 2013.

24 Michael Freedman, László Lovász, and Alexander Schrijver. Reflection positivity, rank
connectivity, and homomorphism of graphs. J. Amer. Math. Soc., 20(1):37–51, 2007.

25 Leslie A. Goldberg, Martin Grohe, Mark Jerrum, and Marc Thurley. A complexity di-
chotomy for partition functions with mixed signs. SIAM J. Comput., 39(7):3336–3402,
2010.

26 Heng Guo, Pinyan Lu, and Leslie G. Valiant. The complexity of symmetric Boolean parity
Holant problems. SIAM J. Comput., 42(1):324–356, 2013.

ICALP 2017

29:14 Complexity of Holant Problems over Boolean Domain with Non-Negative Weights

27 Pavol Hell and Jaroslav Nešetřil. On the complexity of H-coloring. J. Comb. Theory Ser.
B, 48(1):92–110, 1990.

28 Sangxia Huang and Pinyan Lu. A dichotomy for real weighted Holant problems. In Pro-
ceedings of the 27th Conference on Computational Complexity, pages 96–106, 2012.

29 Richard E. Ladner. On the structure of polynomial time reducibility. J. ACM, 22(1):155–
171, 1975.

30 László Lovász. Operations with structures. Acta Math. Hung., 18(3-4):321–328, 1967.
31 Leslie G. Valiant. Accidental algorithms. In Proceedings of 47th Annual IEEE Symposium

on Foundations of Computer Science, pages 509–517, 2006.
32 Leslie G. Valiant. Holographic algorithms. SIAM J. Comput., 37(5):1565–1594, 2008.

	Introduction
	Preliminaries
	Functions and Signatures
	Holographic Reductions
	Realizability
	Weighted Counting CSP

	Decomposition
	When A Non-trivial Equality Function Appears
	P-transformability
	On Special Functions of Arity 4
	The Dichotomy
	The Block-rank-one Condition Captures the Dichotomy
	Balance
	Proof Sketch of Lemma 18

	Conclusion

