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—— Abstract

The exponential-time hypothesis (ETH) states that 3-SAT is not solvable in subexponential time,
i.e. not solvable in O(c™) time for arbitrary ¢ > 1, where n denotes the number of variables.
Problems like k-SAT can be viewed as special cases of the constraint satisfaction problem (CSP),
which is the problem of determining whether a set of constraints is satisfiable. In this paper
we study the worst-case time complexity of NP-complete CSPs. Our main interest is in the
CSP problem parameterized by a constraint language I' (CSP(I')), and how the choice of T’
affects the time complexity. It is believed that CSP(I") is either tractable or NP-complete, and
the algebraic CSP dichotomy conjecture gives a sharp delineation of these two classes based on
algebraic properties of constraint languages. Under this conjecture and the ETH, we first rule out
the existence of subexponential algorithms for finite-domain NP-complete CSP(T") problems. This
result also extends to certain infinite-domain CSPs and structurally restricted CSP(I") problems.
We then begin a study of the complexity of NP-complete CSPs where one is allowed to arbitrarily
restrict the values of individual variables, which is a very well-studied subclass of CSPs. For such
CSPs with finite domain D, we identify a relation Sp such that (1) CSP({Sp}) is NP-complete
and (2) if CSP(T") over D is NP-complete and solvable in O(c™) time, then CSP({Sp}) is solvable
in O(c") time, too. Hence, the time complexity of CSP({Sp}) is a lower bound for all CSPs of
this particular kind. We also prove that the complexity of CSP({Sp}) is decreasing when |D]|
increases, unless the ETH is false. This implies, for instance, that for every ¢ > 1 there exists a
finite-domain I" such that CSP(T") is NP-complete and solvable in O(c") time.

1998 ACM Subject Classification F.1.3 Complexity Measures and Classes, G.2.0 Discrete Math-
ematics General.

Keywords and phrases Clone Theory, Universal Algebra, Constraint Satisfaction Problems

Digital Object Identifier 10.4230/LIPIcs. MFCS.2017.17

1 Introduction

The constraint satisfaction problem over a constraint language I' (CSP(I")) is the computa-
tional decision problem of verifying whether a set of constraints over I' is satisfiable or not.
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This problem is widely studied from both a theoretical and a practical standpoint. From a
practical point of view this problem can be used to model many natural problems occurring
in real-world applications. From a more theoretical point of view the CSP problem is (among
several other things) of great interest due to its connections with universal algebra. It is
widely believed that finite-domain CSP problems admit a dichotomy between tractable and
NP-complete problems, and the so-called algebraic approach has been used to conjecture
an exact borderline between tractable and NP-complete problems [15]. This conjectured
borderline is sometimes called the algebraic CSP dichotomy conjecture. The gist of the
algebraic approach is to associate an algebra, a set of functions satisfying a certain closure
property, to each constraint language. This associated algebra is usually referred to as the
polymorphisms of a constraint language, and is known to determine the complexity of a
CSP problem up to polynomial-time many-one reductions [26]. However, the mere fact that
two CSPs are polynomial-time interreducible does not offer much insight into their relative
worst-case time complexity. For example, on the one hand, it has been conjectured that the
Boolean satisfiability problem with unrestricted clause length, SAT), is not solvable strictly
faster than O(2"), where n denotes the number of variables [23]. On the other hand, k-SAT
is known to be solvable strictly faster than O(2") for every k > 1 [22], and even more efficient
algorithms are known for severely restricted satisfiability problems such as 1-in-3-SAT [36].
This discrepancy in complexity stems from the fact that a polynomial time reduction can
change the structure of an instance and e.g. introduce a large number of fresh variables.
Hence, it is worthwhile to study the complexity of NP-complete CSPs using more fine-grained
notions of reductions. To make this a bit more precise, given a constraint language I'" we let

T(T) = inf{c | CSP(T) is solvable in time 2°"}

where n denotes the number of variables. If T(I') = 0 then CSP(T") is said to be solvable in
subexponential time, and the conjecture that 3-SAT is not solvable in subexponential time is
known as the ezponential-time hypothesis (ETH) [23]. It is worth remarking that no concrete
values of T(T') are known when CSP(T") is NP-complete. Despite this, studying properties of
the function T can still be of great interest since such properties can be used to compare
and relate the worst-case running times of NP-complete CSP problems. Moreover, for
Boolean constraint languages, several properties of the function T are known. For example,
it is known that there exists a finite Boolean constraint language I" such that CSP(I") is
NP-complete and T(I') = 0 if and only if T(I') = 0 for every Boolean constraint language
I' [27]. Hence, even though the status of the ETH is unclear at the moment, finding a
subexponential time algorithm for one NP-complete Boolean CSP problem is tantamount to
being able to solve every Boolean CSP problem in subexponential time. It is also known that
there exists a Boolean relation R such that CSP({R}) is NP-complete but T({R}) < T(T)
for every Boolean constraint language I' such that CSP(T") is NP-complete. In Jonsson
et al. [27] this problem is referred to as the easiest NP-complete Boolean CSP problem.
The existence of this relation e.g. rules out the possibility that for each Boolean constraint
language T there exists A such that T(A) < T(T") — a scenario which otherwise would have
been compatible with the ETH. These results were obtained by considering more refined
algebras than polymorphisms, so-called partial polymorphisms. We will describe this algebraic
approach in greater detail later on, but the most important property is that the partial
polymorphisms of finite constraint languages give rise to a partial order = with the property
that if ' © A, then T(I') < T(A). We remark that partial polymorphisms are not only
useful when studying CSPs with this very fine-grained notion of complexity, but have also
been used to study the classical complexity of many different computational problems where
polymorphisms are not applicable [3, 4, 11, 14, 21].
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Hence, even though no concrete values are known for T(T") when CSP(T") is NP-complete,

quite a lot is known concerning the relationship between T(T') and T(A) for Boolean I" and A.

In this paper we study similar properties of the function T for constraint languages defined
over arbitrary finite domains. After having introduced the necessary definitions in Section 2,
in Section 3 we consider the existence of subexponential time algorithms for NP-complete
CSP problems, in light of the ETH and the algebraic CSP dichotomy conjecture. For this
question we obtain a complete understanding and prove that, assuming the algebraic CSP
dichotomy conjecture, the ETH is false if and only if (1) there exists a finite constraint
language T" over a finite domain such that CSP(T") is NP-complete and T(I") = 0, if and only
if (2) T(T") = 0 for every finite constraint language I' defined over a finite domain. In other
words, finding a subexponential time algorithm for a single NP-complete, finite-domain CSP
problem is tantamount to being able to solve all CSP problems in subexponential time. We
also study structurally restricted CSPs where the maximum number of constraints a variable
may appear in is bounded by a constant B (CSP(T')-B). For problems of this form our results
are not as sharp, but we prove that, again assuming the algebraic CSP dichotomy conjecture,
that if CSP(T") is NP-complete and I" satisfies an additional algebraic condition, then there
exists a constant B such that CSP(I')-B is not solvable in subexponential time (unless
the ETH is false). We also remark that our proof extends to certain constraint languages
defined over infinite domain, and give several examples of infinite-domain NP-complete CSP
problems that are not solvable in subexponential time, unless the ETH is false. These results
may be interesting to compare to those of de Haan et al. [17], who study subexponential
algorithms for structurally restricted CSPs. One crucial difference to our results is that de
Haan et al. do not consider constraint language restrictions. For example, it is proven that
CSP(A)-2, where A is the set of all finitary relations of finite cardinality, is not solvable in
subexponential time unless the ETH is false. However, a result of this form tells us very little
about the complexity of CSP(I")-2 for specific constraint languages, since it does not imply
that CSP(I')-2 is not solvable in subexponential time for every NP-complete CSP(I")-2.

We have thus established that T(I') > 0 for every NP-complete, finite-domain CSP(T"),
assuming the ETH and the algebraic CSP dichotomy conjecture. This immediately raises
the question of which further insights can be gained concerning the behaviour of the function
T. For example, for a fixed finite domain, is it possible to construct an infinite chain of
NP-complete CSPs with strictly decreasing complexity such that T tends to 07 We study
such questions in Section 4 for CSPs where one in an instance is allowed to restrict the values
of individual variables arbitrarily. This restricted CSP problem is particularly well-studied,
and it is used as the definition of CSPs in many cases: see, for instance, the textbook
by Russell and Norvig [33, Section 3.7] and the handbook by Rossi et al. [32, Section 2].
This may be viewed as restricting oneself to constraint languages that contain all unary
relations. A closely related restriction (that is typically used when studying CSPs from the
algebraic viewpoint) is that every unary relation is primitively positively definable in T' (see
Section 2). Such constraint languages are known as conservative. These two restrictions are
computationally equivalent up to polynomial-time many-one reductions but it is not known
whether they are equivalent under reductions that preserve time complexity. Thus, we need
to separate them, so we say that a constraint language that contains all unary relations is
ultraconservative. We note that the algebraic CSP dichotomy conjecture has been verified to
hold for the conservative CSPs [12] so it holds for ultraconservative CSPs, too. We show that
for every finite domain D there exists a relation Sp such that CSP({Sp}) is NP-complete and
T({Sp}) = T({Sp} U2P) < T(T) for every ultraconservative and NP-complete CSP(T') over
D. This relation will be formally defined in Section 4.1, but is worth pointing out that Sp
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contains only three tuples and that CSP({Sp}) can be viewed as a higher-domain variant of
the monotone 1-in-3-SAT problem. We refer to CSP({Sp} U 2P) as the easiest NP-complete
ultraconservative CSP problem over D'. Note that the properties of the relation Sp rule
out the possibility of an infinite sequence of ultraconservative languages I'1,I's, . . . such that
each CSP(T;) is NP-complete and T(T';) tends to 0, but also have stronger implications,
since the value T({Sp}) is a conditional lower bound for the complexity of all NP-complete,
ultraconservative CSPs over D.

To prove these results we have to overcome several major obstacles. Similar to Jonsson et
al. [27]) we use partial polymorphisms instead of total polymorphisms in order to achieve more
fine-grained notions of reductions. However, the proof strategy used in Jonsson et al. [27]
does not work for arbitrary finite domains since it requires a comprehensive understanding
of the polymorphisms of constraint languages resulting in NP-complete CSPs, which is
only known for the Boolean domain [29]. Our first observation to tackle this difficulty is
that the reformulation of conservative CSP dichotomy theorem making use of primitive
positive interpretations (pp-interpretations) is useful in our context. At the moment, we
may think of a pp-interpretation as a tool which allows us to compare the expressitivity
of constraint languages defined over different domains, modulo logical formulas consisting
of existential quantification, conjunction, and equality constraints. It is well-known that
pp-interpretations can be used to obtain polynomial-time reductions between CSPs, and that
a conservative CSP(T") problem is NP-complete if and only if T pp-interprets 3-SAT [1, 12].
However, as already pointed out, such reductions are not useful when studying CSPs with
respect to the function T, and it is a priori not evident how the assumption that I'" can pp-
interpret 3-SAT can be used to show that T({Sp}) < T(T'). Using properties of conservative
constraint languages and quantifier-elimination techniques we in Section 4.1 first show that
this assumption can be used to prove there exists a relation R over D of cardinality 3 such
that (1) CSP({R}) is NP-complete and (2) T({R}) < T(I'). However, this is not enough in
order to isolate a unique easiest problem, since there for every finite domain exists a large
number of such relations. In Section 4.2, using a combination of partial clone theory and
size-preserving reductions, we show that T({Sp}) < T({R}) for every such relation R of
cardinality 3. We then analyse the time complexity of the problem CSP({Sp}) and prove
that T({Sp}) tends to 0 for increasing values of |D|. This also shows, despite the fact that
no finite-domain NP-complete CSP(T") is solvable in subexponential time (if the algebraic
CSP dichotomy conjecture and the ETH are true), that one for every ¢ > 0 can find I over
a finite domain such that CSP(I") is NP-complete and solvable in O(2°") time. When all
of these results are adjoined, they demonstrate that the function T can indeed be analysed
without an extensive knowledge of the polymorphisms related to a constraint language.

2 Preliminaries

2.1 Constraint Languages and the Constraint Satisfaction Problem

A k-ary relation R over a set D is a subset of D¥  and we write ar(R) = k to denote its
arity. A finite set of relations I' over a set D is called a constraint language. Given two

tuples s and ¢t we let s™t denote the concatenation of s and ¢, i.e., if s = (s1,...,5sk,)
and t = (t1,...,tk,) then st = (s1,...,8k,,t1,...,tk,). If tis an n-ary tuple we let t[i]
denote its ith element and Proj;, ; (t) = (t[i1],...,t[in]), n’ < n, denote the projection

L Note that 2 is the set of all unary relations over D.
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of t on the coordinates iy,...,i, € {1,...,n}. Similarly, if R is an n-ary relation we
let Proj;, . (R) = {Proj;, ., (t) |t € R}. We write Eqp for the equality relation
{(z,z) | = € D}. If there is no risk for confusion we omit the subscript and simply write
Eq. For each d € D we write R? for the unary, constant relation {(d)}. We will occasionally

represent relations by first-order formulas, and if (1, ..., 2) is a first-order formula with
free variables x1, ...,z then we write R(x1,...,2) = ¢(z1,...,2) to define the relation
R={(f(z1),...,f(zx)) | f is a model of p(z1,...,2,)}. As a graphical representation, we
will sometimes view a k-ary relation R = {¢,...,t,} as an m x k matrix where the columns

of the matrix enumerate the arguments of the relation (in some fixed ordering). For example,
(8981) represents the relation {(0,0,1,1),(0,1,0,1)}.

The constraint satisfaction problem over a constraint language I' over D (CSP(T")) is the
computational decision problem defined as follows.

INSTANCE: A set V of variables and a set C' of constraint applications R(x1,...,x) where
ReTl,ar(R)=k,and z1,...,z, € V.

QUESTION: Does there exist f : V. — D such that (f(z1),...,f(zx)) € R for each
R(J?l, ce ,l‘k) in C?

If T' = {R} is singleton then we write CSP(R) instead of CSP({R}), and if I" is Boolean
we typically write SAT(I") instead of CSP(I'). We let B = {0,1}. For example, let
R ={(0,0,1,1,1,0,0,1),(0,1,0,1,0,1,0,1),(1,0,0,0,1,1,0,1)}. The SAT problem
over RY77"" can be seen as a variant of 1-in-3-SAT where each variable in each constraint has
a complementary variable. We will return to this SAT problem several times in the sequel.
For each k > 3 let I'%,,. be the constraint language which for every ¢t € B* contains the

SAT
relation B¥ \ {t}. Hence, SAT(T'%,,) can be viewed as an alternative formulation of k-SAT.

2.2 Primitive Positive Definitions and Interpretations

Let I" be a constraint language. A k-ary relation R is said to have a primitive positive
definition (pp-definition) over I' if R(x1,...,2x) = Jy1,.- ., Y - R1(X1) Ao oo A R (X)),
where each R; € I' U {Eq} and each x; is an ar(R;)-ary tuple of variables over z1, ..., z,
Y1, -- -, Y- In addition, if the primitive positive formula does not contain any existentially
quantified variables, we say that it is a quantifier-free primitive positive formula (qfpp), and if
it does not contain any equality constraints we say that it is a equality-free primitive positive
formula (efpp). For example, the reader can verify that the textbook reduction from k-SAT
to (k — 1)-SAT, where a clause of length k is replaced by clauses of length k& — 1 making use
of one fresh variable, can be formulated as a pp-definition but not as a qfpp-definition. We
write (I') (respectively (I')z) to denote the smallest set of relations containing I'" and which
is closed under pp-definitions (respectively qfpp-definitions). If I' = {R} is singleton then we
instead write (R) and (R)z. Note that (I') is closed under projections, in the sense that if
R € (T) then Proj, ; (R) € (T') for all iy,...,4, € {1,...,ar(R)}, but that this does not
necessarily hold for (I')3. Jeavons [25] proved the following important result.

» Theorem 1. If T is a constraint language and A is a finite subset of (I'), then CSP(A) is
polynomial-time reducible to CSP(T).

Theorem 1 naturally holds also for relations defined by qfpp- or efpp-formulas. However,
there are additional advantages of these more restricted ways of defining relations and we
will return to them later on. We are now ready to define the concept of primitive positive
interpretations.
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» Definition 2. Let D and E be two domains and let I' and A be two constraint languages
over D and E, respectively. A primitive positive interpretation (pp-interpretation) of A
over I' consists of a d-ary relation F C D¢ and a surjective function f : F — E such that
F, f~Y(Eqg) € (I') and f~1(R) € (') for every R € A, where f~!(R), ar(R) = k, denotes
the (k - d)-ary relation

{(3;‘171, s Xy s TR Ty ,xk,d) € Dkd | (f(xl}l,...,ml}d), .. .,f(.’L'k’l, . ,xk,d)) S R}

The main purpose of pp-interpretations is to relate constraint languages which might be
incomparable with respect to pp-definitions. For an example, let us consider the relation
R: = {(z,y) € {0,1,2}? | = # y}, and observe that CSP({R.}) corresponds to the 3-
coloring problem. We invite the reader to verify that the standard reduction from 3-coloring
to 3-SAT can be phrased as a pp-interpretation of R+ over I', ., but that this reduction
cannot be expressed via pp-definitions due to the different domains. Hence, pp-interpretations
are generalizations of pp-definitions, and can be used to obtain polynomial-time reductions

between CSPs.

» Theorem 3 (cf. Theorem 5.5.6 in Bodirsky [5]). If ', A are constraint languages and there
is a pp-interpretation of A over T', then CSP(A) is polynomial-time reducible to CSP(T).

2.3 Polymorphisms and Partial Polymorphisms

Let f be a k-ary function over a finite domain D. We say that f is a polymorphism of an
n-ary relation R over D if f(t1,...,tx) € R for each k-ary sequence of tuples t1,...,tx € R.
Here, and in the sequel, we use f(t1,...,t;) to denote the componentwise application of
the function f to the tuples t,...,t, i.e., f(t1,...,t;) is a shorthand for the n-ary tuple
(f(ta[1], ... t[1]), ..., f(ti[n], ..., tk[n])). Similarly, if f is a partial function over D, we say
that f is a partial polymorphism of an n-ary relation R over D if f(¢1,...,tx) € R for every
sequence t1,...,t; such that f(¢1,...,t) is defined for each componentwise application. If
f is a polymorphism or a partial polymorphism of a relation R then we occasionally also say
that R is énvariant under f. We let Pol(R) and pPol(R) denote the set of all polymorphisms,
respectively partial polymorphisms, of the relation R. Similarly, for a constraint language T,
we write Pol(I") for the set (), Pol(R), and pPol(I") for the set (). pPol(R). We write
Inv(F') to denote the set of all relations invariant under the set of total or partial functions F'.
It is known that Inv(Pol(I")) = (I') and that Inv(pPol(T")) = (I') 3, giving rise to the following
Galois connections.

» Theorem 4 ([9, 10, 19, 31]). Let T and I be two constraint languages. Then T' C (I') if
and only if Pol(I") C Pol(T') and T" C (I)3 if and only if pPol(I”) C pPol(T").

2.4 Time Complexity and Size-Preserving Reductions

Given a constraint language I' we let T(T") = inf{c | CSP(T) is solvable in time 2"} where
n denotes the number of variables in a given instance. If T(I') = 0 then CSP(T") is said to
be solvable in subexponential time. The conjecture that SAT(T'2,,) > 0 is known as the
exponential-time hypothesis (ETH) [24]. We now introduce a type of reduction useful for
studying the complexity of CSPs with respect to the function T.

» Definition 5. Let I' and A be two constraint languages. The function f from the instances
of CSP(T") to the instances of CSP(A) is a many-one linear variable reduction (LV-reduction)
with parameter d > 0 if (1) f is a polynomial-time many-one reduction from CSP(T) to
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CSP(A) and (2) |V'| =d-|V|+ O(1) where V, V' are the set of variables in I and f(I),
respectively.

The term CV-reduction, short for constant variable reduction, is used to denote LV-
reductions with parameter 1, and we write CSP(I') <®V CSP(A) when CSP(T") has a
CV-reduction to CSP(A). It follows that if CSP(T') <¢V CSP(A) then T(I') < T(A), and if
CSP(T") LV-reduces to CSP(A) then T(T') = 0 if T(A) = 0. We have the following theorem
from Jonsson et al. [27], relating the partial polymorphisms of constraint languages with the
existence of CV-reductions.

» Theorem 6 ([27]). Let D be a finite domain and let T' and A be two constraint languages
over D. If pPol(A) C pPol(T") then CSP(T') <¢V CSP(A).

We remark that the original proof only concerned Boolean constraint languages but that the
same proof also works for arbitrary finite domains. Using Theorem 6 and algebraic techniques
from Schnoor and Schnoor [35], Jonsson et al. [27] proved that T({R7;”*'}) < T(I') for
any finite " such that SAT(T") is NP-complete. This problem was referred to as the easiest
NP-complete SAT problem. We will not go into the details but remark that the proof idea
does not work for arbitrary finite domains since it requires a characterisation of every Pol(T")
such that CSP(I") is NP-complete. Such a list is known for the Boolean domain due to
Post [29] and Schaefer [34], but not for larger domains.

2.5 Complexity of CSP

Let I be a constraint language over a finite domain D. We say that I' is idempotent if
R € (T) for every d € D, conservative if 2P C (T'), and ultraconservative if 2P C T. A
unary function f € Pol(T) is said to be an endomorphism, and if f in addition is bijective it
is said to be an automorphism. A constraint language I' is a core if every endomorphism is
an automorphism. The following theorem is well-known, see e.g. Barto [1], but is usually
expressed in term of polynomial-time many-one reductions instead of CV-reductions.

» Theorem 7. Let I’ be a core constraint language over the domain {do,...,dx—1}. Then
CSP(TU{R%, ..., R¥-1}) <V CSP(T).

If T is a constraint language over D = {dy,...,dx_1}, then T U{R% ... R¥-1} is both
idempotent and a core since its only endomorphism is the identity function on D. The CSP
dichotomy conjecture states that for any I' over a finite domain, CSP(T") is either tractable
or NP-complete [18]. This conjecture was later refined by Bulatov et al. [15] to also induce a
sharp characterization of the tractable and intractable cases, expressed in terms of algebraic
properties of the constraint language, and is usually called the algebraic CSP dichotomy
conjecture. We will use the following variant of the conjecture which is expressed in terms of
pp-interpretations.

» Conjecture 8. [1, 15] Let T be an idempotent constraint language over a finite domain.
Then CSP(T') is NP-complete if T pp-interprets '3, and tractable otherwise.

SAT

It is worth remarking that if I" pp-interprets I'?, . then I' can pp-interpret every finite-

SAT
domain relation [5, Theorem 5.5.17].

3 Subexponential Time Complexity

For Boolean constraint languages it has been proven that SAT(I'3,.) is solvable in subex-
ponential time if and only if there exists a finite Boolean constraint language I" such that
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SAT(T') is NP-complete and solvable in subexponential time [27]. We will strengthen this
result to arbitrary domains and prove that CSP(T') is never solvable in subexponential time
if I' can pp-interpret I'?, ., unless the ETH is false. The result can also be extended to
certain structurally restricted CSPs. The degree of a variable 2 € V' of an instance (V, C) of
CSP(T) is the number of constraints in C' containing x. We let CSP(T")-B, B > 1, denote
the restricted CSP(T") problem where each variable occurring in an instance has degree at
most B. We then obtain the following theorem, whose proof can be found in the extended
preprint [28].

» Theorem 9. Assume that the ETH is true and let T be a finite constraint language over a
domain D such that T' pp-interprets T'2,,.. Then CSP(T') is not solvable in subexponential
time, and if I efpp-defines Eqp then there exists a constant B, depending only on I, such

that CSP(T')-B is not solvable in subexponential time.

We have now obtained a complete understanding of subexponential solvability of finite-
domain CSPs modulo the ETH.

» Corollary 10. Assume that the algebraic CSP dichotomy conjecture is true. Then the
following statements are equivalent: (1) the ETH is false, (2), CSP(T') is solvable in subex-
ponential time for every finite T over a finite domain, and (3) there exists a finite constraint
language T over a finite domain D such that CSP(T) is NP-complete and subexponential.

Proof. The implication from (1) to (2) follows from Impagliazzo et al. [24, Theorem 3]. The
implication from (2) to (3) is trivial. For the implication from (3) to (1), we first note that
CSP(T¢) <®V CSP(T"), where I'“ is the core of ' [1, Theorem 3.5]. If I'® is expanded with
all constants, then Theorem 7 shows that the complexity does not change, and, last, this
language can pp-interpret I'2,.., due to the assumption that the algebraic CSP dichotomy

SAT)
conjecture is true, which via Theorem 9 implies that 3-SAT is solvable in subexponential
time, and thus that the ETH is false. |

For CSP(T')-B our results are not as precise since we need the additional assumption that
the equality relation is efpp-definable. This is not surprising since the most powerful dichotomy
results for CSPs are usually concerned with either constraint language restrictions [12, 15],
structural restrictions [17, 20], but rarely both simultaneously. However, in the Boolean
domain there are plenty of examples which illustrates how the equality relation may be
efpp-defined [16, 27], suggesting that similar techniques may also exist for larger domains.

Theorem 9 also applies to many interesting classes of infinite-domain CSPs. For example,
if we consider T' such that each R € I has a first-order definition over the structure (Q; <),
it is known that CSP(I") is NP-complete if and only if I" can pp-interpret I'? .. [5, 7]. Hence,
Theorem 9 is applicable, implying that if CSP(T") is not solvable in subexponential time if it is
NP-complete, unless the ETH fails. More examples of infinite-domain CSPs where Theorem 9
is applicable includes graph satisfiability problems [8] and phylogeny constraints [6]. Note
that all of these results hold independently of whether the algebraic CSP dichotomy is true
or not. We also remark that the intractable cases of the CSP dichotomy conjecture for
certain infinite-domain CSPs are all based on pp-interpretability of I'?, . [2]. If this conjecture
is correct, Theorem 9 and the ETH implies that none of these problems are solvable in

subexponential time.

4 The Easiest NP-Complete Ultraconservative CSP Problem

The results from Section 3, assuming the algebraic CSP dichotomy conjecture and the ETH,
implies that T(I') > 0 for any finite-domain and NP-complete CSP(T"). However, it is safe to
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say that very little is known about the behaviour of the function T in more general terms.
For example, is there for an arbitrary NP-complete CSP(T") possible to find an NP-complete
CSP(A) such that T(A) < T(T')? Such a scenario would be compatible with the consequences
of Theorem 9. We will show that this is unlikely, and prove that there for every finite domain
D exists a relation Sp such that CSP(Sp) is NP-complete but T({Sp}) < T(T') for any
ultraconservative I over D such that CSP(T") is NP-complete. To prove this we have divided
this section into two parts. In Section 4.1 we show that if T is ultraconservative and CSP(T')
is NP-complete, then there exists a relation R € (I')z which shares certain properties with
the relation R77”*'. In Section 4.2 we use properties of these relations in order to prove
that there for every finite domain D is possible to find a relation Sp such that CSP(Sp) is
CV-reducible to any other NP-complete and ultraconservative CSP(T") problem.

4.1 Sy-Extensions

The columns of the matrix representation of the relation R}7”"" from Jonsson et al. [27]
(resulting in the easiest NP-complete SAT problem) enumerates all Boolean ternary tuples.
We generalize this relation to arbitrary finite domains as follows.

» Definition 11. For each finite D let Sp = {t1,t2,t3} denote the |D|3-ary relation such that
there for every (dy,da,ds) € D? exists 1 <14 < |D|? such that (t1[i], t2[i], t3[i]) = (dy, d2, d3).

Hence, similar to R}77"", the columns of the matrix representation of Sp enumerates
all ternary tuples over D. For each D the relation Sp is unique up to permutation of
arguments, and although we will usually not be concerned with the exact ordering, we
sometimes assume that Sg = R7/,”" and that Proj; _(Sp) = Sg. The notation Sp is a
mnemonic for saturated, and the reason behind this will become evident in Section 4.2.1. For
example, for {0, 1,2} we obtain a relation {¢;,ts,t3} with 27 distinct arguments such that
(t1[d], t2[d], t3]i]) € {0,1,2}3 for each 1 <4 < 27. Jonsson et al. [27] proved that Sp € (I')y
for every Boolean and idempotent constraint language I' such that SAT(T') is NP-complete.
This is not true for arbitrary finite domains, and in order to prove an analogous result we
will need the following definition.

» Definition 12. Let R be an n-ary relation of cardinality 3 over a domain D, |D| > 2. Let
a,b € D be two distinct values. If there exists i1,...,ig € {1,...,n} such that

Proj;, (R) ={(a,a,b,b,b,a,a,b), (a,b,a,b,a,b,a,b), (b,a,a,a,b,b,a,b)},
then we say that R is an Sg-extension.

For example, Sp is an Sg-extension for every domain D. Note that CSP(R) is always
NP-complete when R is an Sg-extension. We will now prove that if CSP(I") is NP-complete
and I' is ultraconservative, then I' can pp-define an Sg-extension.

» Lemma 13. Let T" be an ultraconservative constraint language over a finite domain D such
that CSP(T") is NP-complete. Then there exists a relation R € (T') which is an Sg-extension.

Proof. Since CSP(T") is NP-complete and I is ultraconservative, I' can pp-interpret every
Boolean relation. Therefore let f : ' — B, ' C D? denote the parameters in the pp-
interpretation of Sg, and note that f~1(Sg) € (I'), but that f~!(Sg) is not necessarily an
Sp-extension since it could be the case that |f~1(Sg)| > 3. Pick two tuples s and ¢ in F
such that f(s) =0 and f(¢) = 1. Such tuples must exist since f is surjective. Now consider
the relation Fy(z1,...,2q4) = F(z1,...,2q4) N {(s[1]), t[1])}(z1) A ... A {(s[d], t[d])}(zq).

17:9
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This relation is pp-definable over T since T' is ultraconservative and since F € (I'). By
construction, it is clear that s,¢ € Fy. Assume furthermore than |Fy| > 2, i.e., that there
exists u € Fy \ {s,t}. Assume without loss of generality that f(u) = 0, and observe that
there for each i € {1,...,d} holds that u[i] € {s[¢],¢[{]}. We claim that there exists some
i € {1,...,d} such that u[i] = t[i] # s[i]. To see this, observe that there must exist ¢ such
that w[i] # s[i], since otherwise u = s, and it then follows that w[i] = ¢[i]. Construct the
relation Fy(21,...,24) = Fi(x1,...,2q) A{(u[l]), G[1])}(z1) A ... A{(u[d]), (t[d]) }zq), and
note that F» C Fy since s ¢ Fy. By repeating this procedure we will obtain a relation F/ C F'
such that F’ = {sp, s1} and such that f(sg) =0, f(s1) = 1. Using F’ we can then pp-define

R(ILl, ey Tl dy ey Ty e ,x&d) Efil(S[gg)(JCLl, B A Y R 7 1 R ,1‘8755)/\
F/(xl,lv - 7$1,d) VAN F/(.Tg)l, . ,.Tg)d).

Clearly, if (a1,1,--.,01,d,---,08,1,---,a84) € R, then (a;1,...,a;4) € {s0,51} for each 1 <
i < 8 and (fler1,---,014)s.--,f(as1,...,a84)) € Sg if and only if
(@11, ,a1.dy---,081,---,a84) € f~1(Sg). Since R C f~(Sg), this implies that
(f(aLl, N ,a17d), ey f(ag,l, ey a&d)) S SB if and only if ((11717 cee, Q1 dy - -50A815 - - - ,(l&d) S
R and each (a;1,...,a;4) € {S0,51}. In other words each element f(a;1,...,a;q) in a tuple
of Sg uniquely correponds to d arguments a; 1, ..., a; q in the corresponding tuple of R, since
(am, e ,a@d) = S0 if f(am, e ,a@d) = 0, and (am, ce ,ai,d) = 851 if f(am, ce ,ai,d) =11t
follows that

AN N N A~~~ o~ e N N N PN e N N PN

and therefore also that R is an Sg-extension. |

Observe that the existence of an Sg-extension R € (I') does not imply that CSP(R) <V
CSP(I"). To accomplish this, we need to show that I" can also gfpp-define an Sg-extension.
The proof is available in the extended preprint [28].

» Lemma 14. Let T' be an ultraconservative constraint language over a finite domain D such
that CSP(T") is NP-complete. Then there exists a relation in (I')z which is an Sg-extension.

4.2 Properties of and Reductions between Si-Extensions

By Lemma 14, we can completely concentrate on Sg-extensions. We will prove that T({Sp}) <
T(T') for every ultraconservative I" over D such that CSP(I") is NP-complete. To prove
this, we begin in Section 4.2.1 by investigating properties of Sg-extensions, which we use
to simplify the total number of distinct cases we need to consider. With the help of these
results we in Section 4.2.2 develop techniques in order to show that CSP(Sp) <®V CSP(R)
for every Sp-extension over D.

4.2.1 Saturated Si-Extensions

In this section we simplify the number of cases we need to consider in Section 4.2.2. First note
that if R = {t1,t2,t3} over D is a relation with ar(R) > |D|? then there exists i and j such
that (¢1[4], ta[d], ts[i]) = (t1[7], t2[7], t3[j]). We say that the jth argument is redundant, and it
is possible to get rid of this by identifying the ith and jth argument with the gfpp-definition

/ —
R(1‘1,...,.731',...,$j_1,$j+1,...71‘7L) :R(a:l,...,xi,...,:cj_l,xi,xj+1,...,a:n).
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This procedure can be repeated until no redundant arguments exist, and we will therefore
always implicitly assume that ar(R) < |D|? and that R has no redundant arguments. If R is
an n-ary Sp-extension then the argument ¢ € {1,...,n} is said to be I-choice, or constant, if
|Proj,(R)| = 1, 2-choice if |Proj;(R)| = 2, and 3-choice if |Proj;(R)| = 3.

» Definition 15. An n-ary Sg-extension R = {{1,t9,t3} is said to be saturated if there for
each 1 < i < n and every function 7 : {1,2,3} — {1,2,3}, exists 1 < j < n such that
(t'r(l) [Z] ’ tT(2) [Z}v t‘r(3) [7’]) = (tl []]7 to [.ﬂv t3 []])

» Example 16. The relation Sp is saturated for every D, but if we consider the relations R
) . 0011100012 0011100012 ) i
and R’ defined by the matrices (0101010012) and (010101101 2) then neither relation
1000112012 1000112012

is saturated. First, R is not saturated since its matrix representation, for example, does not
contain the column (0,2,0). Second, R is not saturated due to the 3-choice argument in
position 7.

We will now see that we without loss of generality may assume that an Sg-extension is
saturated (see the extended preprint for proof [28]).

» Lemma 17. Let R be an Sg-extension. Then there exists a saturated Sg-extension

R € <R>3
» Example 18. If R is the relation from Example 16 then the saturated relation R’ in (R)z
o , 001110002220012
from Lemma 17 is given by R’ = (010101020202012).
100011200022012

4.2.2 Reductions Between Si-Extensions

The main result of this section (Theorem 23 and Theorem 24) show that T({Sp}) =
T({Sp}U2P) < T(I') whenever T is an ultraconservative constraint language over D such
that CSP(I") is NP-complete. The result is proven by a series of CV-reductions that we
present in Lemmas 19-22. Due to space constraints, we only present the proof of Lemma 20
which illustrates several useful techniques, and the remaining proofs can be found in the
extended preprint [28]. Before we begin, we note that if R is an Sg-extension over D then
{R} is not necessarily a core. For a simple counterexample, {Sg} is not a core over {0, 1,2}
since the endomorphism e(0) = 0, e(1) = 1, e(2) = 0, is not an automorphism. However, if R
is an Sp-extension and E = {dy,...,dn} the set [, <;<,,(g) Proj;(R), every endomorphism
e: F — FE of R must be an automorphism. Hence, Theorem 7 is applicable, and we conclude
that CSP({R, R%,..., R¥m}) <®V CSP(R). When working with reductions between Sg-
extensions we may therefore freely make use of constant relations. Given an instance (V,C)
of CSP(R), where R is an Sg-extension, we say that a variable x € V occurring in a k-choice
position in a constraint in C, 1 < k < 3, is a k-choice variable.

» Lemma 19. Let R be a saturated Sp-extension. Then there exists a C'V-reduction f from
CSP(R) to CSP(R) such that for every instance I of CSP(R), each variable in f(I) occurs
as a 3-choice variable in at most one constraint.

» Lemma 20. Let R be a saturated Sg-extension and let R’ be R with one or more 3-choice
arguments removed, such that R' is still saturated. Then CSP(R) <®V CSP(R’).

Proof. Let R = {t1,t2,t3}, n = ar(R), ' = ar(R’'), and assume that Proj; .. (R) = R'. Let
I = (V,C) be an instance of CSP(R). First apply Lemma 19 in order to obtain an instance
I, = (V4,C4) of CSP(R) such that each 3-choice variable only occurs in a 3-choice position
in a single constraint. Assume there exists z € V; and two distinct constraints ¢, ¢’ € C

17:11
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such that = occurs in positions ¢ € {n’ + 1,...,n} in ¢ and in a 1- or 2-choice position
Jj€{l,...;n} in ¢. Let S = Proj;(R) N Proj;(R), and note that |S| < 2. Assume first
that |S| = 2, let S = {d1,ds}, and assume without loss of generality that t;[i] = t1[j] = d1,
to[i] = t2[j] = da, and that t3[i] # t3[j] (the other cases can be treated similarly). Since R
is saturated there exists a 2-choice argument ¢’ € {1,...,n} such that t;[i'] = ¢1[i] = t1[j],
to[i'] = ta]i] = t2[j], and such that t3[i’] # t3[é]. Let y be the variable occurring in the i’'th
position of ¢. Create a fresh variable &, replace x in position 7 with £, and for each constraint
where = occurs as a 1- or 2-choice variable, replace x with y. Repeat this procedure until
every 3-choice variable occurring in position n’ + 1,...,n only occurs in a single constraint,
and let Iy = (Va, Cy) be the resulting instance. Assume there exists x € V2 and a constraint
¢ € Cy such that x occurs as a 3-choice variable in position ¢ € {n’ 4+ 1,...,n} and also in a
distinct position j € {1,...,n} inc. Let L = {¢, | 1 <r < 3,t,.[i] = ¢-[j]}. Since R does not
have any redundant arguments it must be the case that |L| < 3. If |L| = 0 then the instance
is unsatisfiable, in which case we output an arbitrary unsatisfiable instance, and if |L| =1 it
is easy to see that any variable occurring in ¢ can be assigned a fixed value, and the constraint
may be removed. Therefore, assume that |L| = 2, and e.g. that L = {t1,¢2}. Since R is
saturated there exists a 2-choice argument j’ € {1,...,n} such that t;[j'] = ta[j’] # ts[j’]-
Let y be the variable occurring in position j’ in ¢ and add the constraint R**V l](y). Repeat
this for every variable occurring in position n’ + 1,...,n in a constraint in Cs, and then
replace each constraint R(x1,...,2},...,2,) by R'(z1,...,2,). Note that any variable &
introduced in the previous step of this reduction will be removed. Hence, the reduction is a
CV-reduction. |

» Lemma 21. Let R be an Sg-extension and let R’ be an Sg-extension obtained by adding
additional 2-choice arguments to R. Then CSP(R') <®V CSP(R).

» Lemma 22. Let R be a saturated Sg-extension over D with 3-choice arguments. Then
CSP(Sp) <€V CSP(R).

We have thus proved the main result of this section.

» Theorem 23. Let D be a finite domain and let " be a finite, ultraconservative constraint
language over D. If CSP(T') is NP-complete then T({Sp}) < T(T).

Proof. We first observe that if R is an Sp-extension over a finite domain D, then
CSP(Sp) <€V CSP(R). By Lemma 17 we may assume that R is saturated. If R does
not contain any 3-choice arguments we use Lemma 20 together with Lemma 21 and ob-
tain a CV-reduction from CSP(Sp) to CSP(R). Hence, assume that R contains one or
more 3-choice arguments. In this case we use Lemma 22 and obtain a CV-reduction from
CSP(Sp) to CSP(R). By Lemma 14 there exists an Sg-extension R € (I')z, implying that
CSP(R) <®V CSP(I') via Theorem 6, and we know that CSP(Sp) <V CSP(R). We
conclude that T({Sp}) < T({R}) < T(T). <

Clearly, {Sp} is not an ultraconservative constraint language but the complexity of
CSP(Sp) does not change when we expand the language by adding all unary relations over
D (the proof can be found in the extended preprint [28]).

» Theorem 24. Let D be a finite domain. Then T({Sp}) = T({Sp}uU2P).

Thus, no NP-complete CSP over an ultraconservative constraint language over D is
solvable strictly faster than CSP(Sp), and, in particular, T({Sp'}) < T({Sp}) whenever
D’ O D. This raises the question of whether T(Sp) = T(Sp/) for all D, D’ D {0, 1}, or if
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it is possible to find D and D’ such that T({Sp-}) < T({Sp}). As the following theorem
shows, this is indeed the case, unless T({Sp}) = 0 for every finite D and the ETH fails.

» Theorem 25. inf{T({Sp}) | D finite and |D| > 2} = 0.

Proof. Let Dy = {0,...,k — 1}, k > 5. We will analyse a simple algorithm for CSP(Sp, ).

Let I = (V,C) be an arbitrary instance of CSP(Sp, ). Extend the instance with variables
Z ={z0,...,2,—1} and the constraints R%(z;), 0 <14 < k — 1. Arbitrarily choose a constraint
¢ = Sp,(x1,...,243) and let X = {z1,...,z43}. Tt is straightforward to verify that if a

variable x appears in k% + 1 or more positions, then ¢ cannot be satisfied. Thus, |X| > k.

If X NZ = (), then we branch on the three tuples in Sp, and in each branch at least k
variables in V' \ Z will be given fixed values. If a variable, say x;, is given the fixed value
d, then we identify z; with z4. Thus, at least k variables in V' \ Z are removed. Assume
to the contrary that X N Z # (). If a variable z € Z occurs in a 3-choice position, then
the variables in X \ Z can be assigned fixed values and no branching is needed. If no
variable z € Z occurs in a 3-choice position, then there are k(k — 1)(k — 2) 3-choice positions
in Sp, and they are all covered by variables in V' \ Z. Thus, we perform three branches
based on the tuples in Sp,. Recall that a variable can occur in at most k2 positions in the
constraint ¢ since c is otherwise not satisfiable. This implies that at least LWJ >1

variables in V' \ Z are given fixed values (and are removed from V' \ Z) in each branch.

When there are no Sp, constraints left, we check whether the remaining set of unary
constraints are satisfiable or not. It is straightforward to perform this test in polynomial
time. A recursive equation that gives an upper bound on the time complexity of this
algorithm is thus T(1) = poly(||1]]), T(n) = 3T(n — [ EE=DE=2) |y 4 poly(||1]])) (where n
denotes the number of variables and ||I]| the number of bits required to represent I) so
T(n) € O(3"Wik*2> -poly(||1]])). The function ﬁ;k&) obviously tends to 0 with
increasing k so the infimum of the set {T({Sp}) | D is finite and |D| > 2} is equal to 0. <«

5 Concluding Remarks and Future Research

In this paper we have studied the time complexity of NP-complete CSPs. Assuming the
algebraic CSP dichotomy conjecture, we have ruled out subexponential time algorithms
for NP-complete, finite-domain CSPs, unless the ETH is false. This proof also extends to
degree-bounded CSPs and many classes of CSPs over infinite domains. We then proceeded to
study the time complexity of CSPs over ultraconservative constraint languages, and proved
that no such NP-complete CSP is solvable strictly faster than T({Sp}). These results raise
several directions for future research.

First, Theorem 9 shows that the algebraic approach is viable for analysing the existence
of subexponential algorithms for certain structurally restricted CSP(T') problems. An
interesting continuation would be to determine which of the structurally (but not constraint
language) restricted CSPs investigated by de Haan et al. [17] could be used to prove similar
results. For example, is it the case that CSP(T') is not solvable in subexponential time
whenever CSP(T") is NP-complete and the primal treewidth of an instance is bounded by
Q(n), unless the ETH fails?

Second, Several independent solutions to the algebraic CSP dichotomy conjecture have
recently been announced [13, 30, 37]. If any of these proposed proofs is correct, it is tempting
to extend Theorem 23 to constraint languages that are not necessarily ultraconservative or
conservative. As a starting point, one could try to strengthen the results in Section 4.1, in
order to prove that (I')z contains an Sp-extension whenever CSP(T") is NP-complete and T’
is conservative (but not ultraconservative).
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