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Abstract
We consider a repulsion actuator located in an n-sided convex environment full of point particles.
When the actuator is activated, all the particles move away from the actuator. We study the
problem of gathering all the particles to a point. We give an O(n2) time algorithm to compute
all the actuator locations that gather the particles to one point with one activation, and an O(n)
time algorithm to find a single such actuator location if one exists. We then provide an O(n)
time algorithm to place the optimal number of actuators whose sequential activation results in
the gathering of the particles when such a placement exists.
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1 Introduction

In this paper, we consider some basic questions about movement by repulsion. Here a point
actuator repels particles, or put another way, particles move so as to locally maximize
their distance from the actuator. This problem models magnetic repulsion, movement of
floating objects due to waves, robot movement (if robots are programmed to move away
from certain stimuli), and crowd movement in an emergency or panic situation. It is, in one
sense, the opposite of movement by attraction, which has recently been an active topic of
research [2, 3, 11, 10, 14, 9, 1, 8].

1.1 Related work
We initiate the study of repulsion in polygonal settings. The closest comparable work is the
work on attraction. Although attraction and repulsion have a similar definition, each has a
distinct character. Attraction as it has been studied is mainly a two-point relation: a point p
attracts a point q if q, moving locally to minimize distance to p, eventually reaches p. In
replusion, p cannot repulse q to itself; p must always repulse q to some other point r. Thus
repulsion is a three-point relation.

In attraction, if a particle is attracted onto an edge by a beacon, it is pulled towards the
point p where there is a perpendicular from the beacon to the line through the edge. If p is
on the edge, this creates a stable minimum at p, and particles accumulate at such mimima.
As well, particles can accumulate on some convex vertices.
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13:2 Gathering by Repulsion

In repulsion, if a particle is repelled onto an edge by a repulsion actuator, it is pushed
away from the point p with the perpendicular to the actuator. This implies that p is an
unstable maximum. We forbid particles from stopping at unstable maxima, so in repulsion
the only accumulation points will be convex vertices. We elaborate further on our model in
Subsection 1.2.

In this article, we highlight some of the similarities as well as distinctions between these
two concepts. For instance, Biro [2] designed an O(n2) time algorithm for computing the
attraction kernel of a simple n-vertex polygon P ; these are all points p ∈ P that attract all
points q ∈ P . The closest counterpart of this for repulsion which we call the repulsion kernel
of a polygon P , which is all points p ∈ P such that there exists a point r ∈ P such that
p repels all points in P to r. We give an O(n2) time algorithm to compute the repulsion
kernel of an n-vertex convex polygon, and an O(n) time algorithm to find a single-point in
the repulsion kernel or report that the kernel is empty.

Both the attraction kernel and the repulsion kernel are concerned with the problem of
gathering particles to a point. When the repulsion kernel is empty, it may be the case that
we can still gather all particles to a point using more than one repulsion actuator. In this
vein, we prove that this is impossible in a polygon with three acute angles. In a convex
polygon with at most two acute angles, two repulsion actuators are always sufficient and
sometimes necessary. We then provide an O(n) time algorithm to place the optimal number
of actuators.

1.2 The model
We start with an n-vertex convex polygon P , which includes its interior. Before the activation
of any repulsion actuator, there is a particle on every point of the polygon, including the
boundary. During and after activation, we allow many particles to be on the same point;
once two particles reach the same point, they travel identically, so we consider them to be
one particle.

We restrict the location of the repulsion actuator to points in P ; allowing the actuator
to reside outside P leads to a variation of the problem in which convex polygons are easily
dispensed.

See Figure 1 for an illustration of the following definitions. The activation of an actuator
will cause all particles to move to locally maximize their distance from the actuator. This
means that if a particle is in the interior of P , then it moves in a straight line away from the
actuator’s location. If a particle is on an edge of the polygon, then it proceeds along the
edge in the direction that will further its distance from the active actuator. Once moving,
a particle moves until it is stable and can no longer locally increase its distance from the
actuator. Stable maxima happen at vertices where neither of the two edges allows movement
away from the actuator. We call such vertices the accumulation points of the activation.

Unstable maxima happen when a particle is on an edge where one or both directions give
no differential change of distance from the actuator; this happens only at the perpendicular
projection of the actuator onto the edge (see Figure 1c). A particle at an unstable maximum
will move off of it in a direction of no improvement and then will be able to increase the
distance from the actuator by continuing in that direction. To maintain a deterministic
model, we will assume that particles move counterclockwise around the polygon at unstable
maxima if there is a choice of two directions of no improvement. However, the choice of
counterclockwise motion is arbitrary, and does not affect our results.

We may activate actuators sequentially from several places inside the polygon. We would
like for every activation of an actuator to be from a location without particles, but the
particle-on-every-point model forbids this on the first activation. So, when we choose a
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Figure 1 (a) An activation at w drives the particle at q away from w. On reaching an edge at q′,
it will continue to move away from w, until it reaches a local maximum of distance from w at a. (b)
Accumulation points of an active actuator at w. (c) At an unstable maximum, such as q′, particles
will turn left.

location for the first actuator, we remove the particle at that location from the problem. For
subsequent activations, however, we do require that the actuator’s position be chosen from
the points of the polygon without particles.

The main question we consider is when can we place a sequence of points such that
repulsion from those points gathers all other points in the polygon to one point? When the
replusion kernel is non-empty, one point is sufficient. In general, our goal is to minimize the
number of sequential activations performed to gather all the particles to one point. If all the
particles in a polygon can be gathered to a point with k sequential activations of actuators,
we call the polygon k-gatherable. If this is not possible for any k, then we call the polygon
ungatherable.

2 Background, notation, and terminology

2.1 General notation
We will use the convention that the vertices of P are v0, v1, . . . , vn−1 in counterclockwise order
around the polygon. Vertex indices are taken modulo n, so v−1 = vn−1, v0 = vn, v1 = vn+1,
etc. Edges are denoted e0, e1, . . . en−1, with ei being the edge between vi and vi+1. The
boundary of the polygon P will be denoted ∂P , and by ∂P (p, q) we mean the part of ∂P
from p counterclockwise to q. In reference to curves, line segments, or intervals, we use the
usual parentheses to denote relatively open ends and square brackets to denote relatively
closed ends. Thus ∂P [p, q) is the boundary from p to q, including p but not q. Given three
distinct points a, b, c in the plane, by ∠abc we mean the counterclockwise angle between the
ray from b to a and the ray from b to c.

2.2 Slabs and the three regions of an edge
Consider a polygon edge with particles covering it. When an actuator is activated, depending
on its location relative to the edge, there are three possible effects on the particles: it drives
them counterclockwise over the entire edge, it drives them clockwise over the entire edge, or it
drives some of them clockwise and some of them counterclockwise (see Figure 2). In the latter
case, a perpendicular from the edge to the actuator exists, and the particles clockwise of the
perpendicular are driven clockwise, and the particles counterclockwise of the perpendicular
are driven counterclockwise. The point where the perpendicular hits the edge is called a split
point. We allow split points at the endpoint of an edge if a perpendicular from the endpoint
to the actuator exists.
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Figure 2 We use arrows in the diagrams to show the direction that the particles are driven. (a)
The activation drives the particles (on the indicated edge) clockwise. (b) The activation drives the
particles counterclockwise. (c) The activation splits the particles at s, driving some clockwise and
some counterclockwise.
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Figure 3 A flow diagram, showing the direction of particle movement, along with the accumulation
points and split points, given an actuator at w.

We divide the inner halfplane of an edge e into three regions depending on what effect
an activation in the region has on the particles on the edge. This is done by drawing
interior-facing perpendiculars to the edge at each of its vertices. The regions are Rcw(e),
where an activation drives the particles clockwise, Rccw(e), where an activation drives the
particles counterclockwise, and S(e), where an activation drives some particles clockwise and
some counterclockwise. We refer to S(e) as the slab of e. The slab is closed on its boundaries,
and Rcw(e) and Rccw(e) are open where they meet S(e).

2.3 Flow diagrams
Given a polygon P and a location w of an actuator, we may find the accumulation points
and the split points, and mark each edge (or portion of a split edge) with the direction of
particle movement along that edge, as in Figure 3. We call a diagram of this a flow diagram
for w with respect to P .

I Lemma 1. In a traversal of ∂P , accumulation and split points alternate.

Proof. Note that in a flow diagram the only points of the boundary with two opposing
directions of particle movement are the accumulation points, where the movement is towards
the point, and the split points, where the movement is away from the point. Thus, between
any two consecutive split points on the boundary, there must be an accumulation point, and
between any two consecutive accumulation points, there must be a split point. This implies
the lemma. J
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I Theorem 2. A convex polygon P is 1-gatherable from w iff w lies in the slab of exactly
one of the edges of P .

Proof. A polygon is 1-gatherable from w iff an actuator at w has one accumulation point.
Since accumulation and split points alternate, this holds iff the actuator has exactly one split
point. Since an actuator has a single split point in every slab that it is in (and no others),
the result follows. J

The boundary of the slab for edge e consists of e and two rays perpendicular to e. If we
produce these two rays for each edge of P , and intersect all these rays with P , we get a set
of at most 2n chords that define a decomposition that we call the slab decomposition of P .
An example slab decomposition is shown in Figure 5. The cells of this decomposition have
the property that if two points are in a cell, then these two points are in exactly the same
set of slabs of P .

Theorem 2 then immediately implies that the repulsion kernel of P is the union of zero or
more cells of the slab decomposition of P . This gives us the basis for an O(n2) time algorithm
for finding the repulsion kernel. We start by constructing the slab decomposition. We can
use topological sweep to compute a quad-edge data structure for the slab decomposition in
O(n2) time [5, 4, 6].

I Theorem 3. The repulsion kernel of a convex polygon can be computed in O(n2) time.

Proof. We construct the slab decomposition. As we construct the decomposition, we augment
each edge with information about which slab or slabs it borders and to which side of the
edge said slabs are on. (An edge may border two slabs if the two slabs each have a defining
ray that are collinear.). Choose an arbitrary cell c of the decomposition and determine how
many slabs it is in. From this cell, perform a graph search on the dual of the decomposition.
Each time we step over an edge, from one cell to another, during this search, we update in
constant time the number slabs we are in, according to the information on the edge. We
maintain a list of all cells where this value is one. At the end of the search, this list is the
repulsion kernel. J

If we allow actuators to be located outside a polygon P , then every convex polygon is
1-gatherable.

I Lemma 4. Every convex polygon is 1-gatherable from some point in the plane.

Proof. If you go far enough away, you can always find a point that is not covered by any
slab. For this point, there is only one accumulation point. Therefore, an activation of an
actuator from this point moves all the particles to the accumulation point. J

Given the above, one may be tempted to believe that every convex polygon is 1-gatherable
when the actuators are restricted to be inside the polygon. However, this is not always the
case.

I Lemma 5. For k ≥ 2, the regular (2k + 1)-gon P2k+1 is not 1-gatherable.

Proof. Assume that the edge length of P2k+1 is 2, and that e0 is oriented with direction 0
(horizontal on the bottom of the polygon). This is illustrated in Figure 4 for P5.

By Lemma 12, we need only show that P2k+1 is not 1-gatherable from its boundary. By
symmetry, we need consider only ek+1. The edge ek+1 starts at the top center of the polygon
and proceeds downward to the left. The slab S(e0) contains the upper half of ek+1, as the
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Figure 4 (a) S(e0) covers the top half of e3. (b) S(e1) covers the bottom half.

distance c (see figure) is greater than 1. (It is 1/ sinα, to be precise, where α is half the
vertex angle, or (2k−1)π

4k+2 .) Similarly, the slab S(e1) contains the bottom half of ek+1.
Thus, each point of ek+1 is in S(ek+1) and either S(e0) or S(e1) or both. Thus, by

Theorem 2, the polygon is not 1-gatherable from any point of ek+1.
The vertices are sometimes special cases, but here the vertex vk+1 (the top vertex of

the polygon) is in S(e0), S(ek), and S(ek+1), and thus the polygon is not 1-gatherable from
there. By symmetry, it is not 1-gatherable from any vertex. J

In fact, some convex polygons may be ungatherable. It turns out that acute angles are a
major impediment to gathering.

I Lemma 6. A particle that is at an acute vertex v of P cannot be moved by an actuator
activated at any point in P \ v.

Proof. Given any point p ∈ P \ v, the acute vertex v is a local maximum with respect to
distance since any point in P that is infinitesimially close to v is closer to p than v. J

This immediately implies the following.

I Theorem 7. A convex polygon with three acute vertices is not k-gatherable for any k > 0.

For the remainder of the paper, we only consider convex polygons with at most two acute
vertices.

3 1-Gatherability

We have shown so far that not all convex polygons are 1-gatherable. We have also given
a complete characterization of when a convex polygon is 1-gatherable by computing the
repulsion kernel of a polygon in O(n2) time. This begs the question whether it is possible
to find a point from which the polygon is 1-gatherable more efficiently, without having to
compute the repulsion kernel. We answer this question in the affirmative by providing an
O(n) time algorithm. Before presenting the algorithm, we highlight some useful geometric
properties.

I Lemma 8. Let a be an accumulation point of an actuator activated at w in P . The line L
that goes through a and is perpendicular to wa is a line of support of the polygon.

Proof. Since a is an accumulation point, it is a local maximum of distance from w. Thus,
the circle C with center w and radius aw encloses the polygon in the neighborhood of a. The
line L is tangent to (outside of) C at a and thus locally supports the polygon at a. Since the
polygon is convex, L also globally supports the polygon. J
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We now show that we can restrict our attention to particles starting only on the boundary
of P .

I Lemma 9. An actuator in P that 1-gathers all the particles on ∂P also 1-gathers all
particles in P .

Proof. The activation of an actuator in P forces a particle p in the interior of P to move
directly away from the actuator until it hits the boundary at some point b. Since there was
a particle p′ whose initial position is b, the particle p will follow the path of p′ and stop at
the same place p′ stops. Thus, the location of p will always be accounted for by the position
of p′. In other words, p is redundant and can be removed from the problem. J

We can take this a step further and show that particles located on the interior of edges
are redundant.

I Lemma 10. An actuator in P that 1-gathers all the particles on the vertices P also
1-gathers all particles on ∂P .

Proof. The activation of an actuator in P forces a particle p in the interior of an edge of P
to move along along the edge until it reaches a vertex v. There was a particle p′ that started
at v, and we can follow the proof of Lemma 9. J

The above lemmas show that particle movement can be restricted to the boundary. In
fact, to solve the general problem, we only need to consider the problem where particles are
only on vertices. We show a relationship between self-approaching paths and the path on the
boundary followed by a particle under the influence of an actuator. Recall that a directed
path Π is self-approaching if for any three consecutive points x, y, z on the path, we have the
property that |xz| ≥ |yz| [7].

I Lemma 11. If ∂P (x, y) is self-approaching from x to y then activating an actuator at y
sends all the particles on ∂P (x, y) to x along the boundary.

Proof. Let z be an arbitrary point on ∂P (x, y). We observed that activating an actuator at
y will move z along the boundary. We need to establish in which direction the particle will
move. Since ∂P (x, y) is self-approaching from x to y, we have that |yz| ≤ |yx|. Therefore,
the particle z will move to x since particles move in a direction to increase their distance
from an actuator. J

Next, we show that if the repulsion kernel is not empty, then there is at least one point
on the boundary that is in the repulsion kernel.

I Lemma 12. Let P be a convex polygon that is 1-gatherable from a point w in the interior
of P , and let a be the accumulation point for w. Let R be the ray from a through w, not
including the point a. Then P is 1-gatherable from the point w′ = R ∩ ∂P , with a as its
accumulation point (see Figure 5).

Proof. By Theorem 2, the point of gatherability w is in one edge e’s perpendicular slab.
Without loss of generality, we assume that e is horizontal at or below w (by rotation), that a
is not to the right of w (by reflection), and that e is e0 = v0v1(by labelling). Let m be such
that a = vm. See Figure 6. Let p be the point on e which has a perpendicular through w.
Note that p is a split point for w.

To show that P is 1-gatherable from the point w′ on ∂P , by Lemma 10, it suffices to
show that the particles located on the vertices of P move to one accumulation point with
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Figure 6 Some relevant points on the polygon.

the activation of an actuator at w′. We will show that this accumulation point is a. We
assume without loss of generality that w′ is located on the edge ek = [vkvk+1). Recall that if
w′ happens to be on vk, then the placement of the actuator on w′ means the particle located
at w′ is removed from consideration.

We begin with the claim that an accumulation point for w′ is a. If this were not the
case, then there would be a way to increase the distance from w′ on the boundary in the
neighborhood of a. By Lemma 8, there is a line L perpendicular to wa that is a line of
support of P at a. By construction, L is perpendicular to w′a. Therefore, a is a local
maximum with respect to w′, and thus is an accumulation point for w′. We will now show
that particles located at all other vertices move to a when an actuator is activated at w′.

Since p is a split point for w, we have that upon activation of w, the particles on the
vertices on ∂P (a, p) move clockwise along the boundary to a. Similarly, the particles on the
vertices on ∂P (p, a) move counterclockwise along the boundary to a. By Theorem 2, this
means that w is in all of the regions Rccw(e1), Rccw(e1), . . . , Rccw(em−1) and w is in Rcw(em),
Rcw(em+1), . . . , Rcw(en−1). See Figure 8.
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Figure 7 w is in the regions Rccw(e0) to Rccw(em−1).
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Figure 8 w is in the regions Rcw(em) to Rcw(en).

Since all of the slabs S(em), S(em+1), . . . , S(en−1) cross the chord aw′ between a and w, we
have that w′ is also in Rcw(em), Rcw(em+1), . . . , Rcw(en−1). Thus, the vertices vm+1, . . . , vn
move in a clockwise direction to a.

Now, we must show that the particles on vertices v1, . . . , vm−1 also move to a. We first
consider the vertices vk+1, . . . , vm−1. Again, since these vertices move counterclockwise
when the actuator is activated at w, the slabs S(ej) for k ≤ j ≤ m − 1 cross the chord
aw′ between a and w. Therefore, none of them can contain w′. This implies that w′ is in
Rccw(ek+1), . . . , Rccw(em−1).

We now show that the vertices v1, . . . , vk move in a clockwise direction to a. Consider the
circle C centered at w and going through w′. This circle contains ∂P [v1, vk] since particles
on v1, v2, . . . , vk move in a counterclockwise direction to a when an actuator is activated at
w. It is strict containment as the particles always move away from w. Now consider the
circle C ′ that has the chord aw′ as diameter. Since a is the accumulation point for w, it is
the farthest point from w. This implies that the the center c of C ′ lies on the segment aw,
with radius |cw′|. C ′ contains C since |cw′| > |ww′|. (Figure 9).

Let q be an arbitrary point in ∂P (p, w′). Since q is in the interior of C, we have that
∠w′qa > π/2. By convexity, we have that ∠w′qp > ∠w′qa. Consider the cone formed by the
ray from q to w′ and the ray at q that is an extension of the line through a and q. Since
∠w′qp > π/2, we have that the angle formed at this ray is strictly less than π/2 and ∂P [q, w′)
is contained in the cone. Lemma 3 in [7] states that when ∂P [q, w′) is contained in a cone
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Figure 9 The circle C′ contains the circle C and thus contains the boundary from p to w′.

at q with angle at most π/2 for every q ∈ ∂P (p, w′) then ∂P (p, w′) is self-approaching from
p to w′. By Lemma 11, we have that an activation of an actuator at w′ sends q clockwise
around the boundary to p since |pw′| ≥ |qw′|. Therefore, the vertices v1, . . . , vk move in a
clockwise direction to a.

We have now shown the polygon is 1-gatherable from w′. J

As a consequence of the previous lemma, in order to tell if a polygon is 1-gatherable, it
suffices to determine if it is 1-gatherable from the boundary. To do this in linear time, we
employ an approach that resembles the rotating calipers algorithm to compute the diameter
of a convex polygon [13]. In essence, for every point x on ∂P , we want to compute the first
clockwise and first counterclockwise accumulation point. We do this in two steps. We compute
all the counterclockwise accumulation points then compute the clockwise accumulation points.
The algorithm to compute the counterclockwise accumulation points proceeds as follows.
We start at the lowest point x of P and place the first horizontal caliper at x. We then
walk around the boundary in counterclockwise direction until we find the counterclockwise
accumulation point y for x. We place the second caliper at y such that it is perpendicular to
xy. As x moves counterclockwise around P , there are two types of events. Either x moves
to a new vertex or the caliper at y becomes coincident to an edge of P in which case y
moves from one vertex to the next. There are a linear number of events that occur and
by recording these events, when the calipers returns to its starting positions, we know the
counterclockwise accumulation point for every point on the boundary of P . By repeating
this in the clockwise direction, we find the clockwise accumulation points. For any point on
the boundary of P , if its clockwise accumulation point is the same as its counterclockwise
accumulation point, then the polygon is 1-gatherable from that point. We conclude this
section with the following:

I Theorem 13. We can determine if a convex n-vertex polygon is 1-gatherable in O(n) time.

Proof. Follows from Lemma 12 and the discussion above. J
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4 2-Gatherability

In this section we prove that a convex polygon with at most two acute vertices is 2-gatherable.
We then give an O(n) algorithm to determine the location of the two actuators and the
sequence of activation.

I Theorem 14. If a convex polygon has two or fewer acute vertices, then it is 2-gatherable.

Proof. Let D(P ) be the smallest disk enclosing polygon P with centre c. Either there are two
vertices vi and vj of P that form a diameter of D(P ) or there are three vertices vi, vj , and vk
on ∂D(P ) such that c is in the interior of the triangle formed by the three vertices [12, 15].
We consider each case separately. Recall that by Lemma 9, we can assume that the particles
are only located on the boundary of P .

Case 1: Two vertices vi and vj of P form a diameter of D(P ). In this case, we show that an
actuator activated at vertex vi results in all particles accumulating at vj . Assume, without
loss of generality, that vi and vj lie on a vertical line L with vi below vj . The two vertices
partition the polygon boundary into two chains, ∂P [vi, vj ] which is to the right of L and
∂P [vj , vi] which is to the left. We also assume that each chain consists of at least two edges,
since otherwise, one of the chains is the edge vivj and trivially any particle on this edge
moves to vj when an actuator at vi is activated. To complete the proof in this case, by
Lemma 11, it suffices to show that both ∂P [vi, vj ] and ∂P [vj , vi] are self-approaching curves
from vj to vi.

Consider any point x ∈ ∂P (vi, vj). Since x is in D(P ) strictly to the right of L we have
that π > ∠vjxvi ≥ π/2. Consider the cone formed by the intersection of the half-space
bounded by the line through vj and x that contains vi and the half-space bounded by the
line through vi and x that does not contain vj . This cone has angle at most π/2 and contains
∂P [vi, x]. Since x is an arbitrary point on ∂P (vi, vj), by Lemma 3 in [7], we have that
∂P [vi, vj ] is self-approaching from vj to vi. A similar argument shows that ∂P [vj , vi] is also
self-approaching from vj to vi.

Case 2: There are three vertices vi, vj , and vk appearing in counter-clockwise order on
∂D(P ) such that c is in the interior of the triangle formed by the three vertices. Since there
are at most two acute vertices, without loss of generality, assume that vj is a polygon vertex
with interior angle at least π/2. Reorient the polygon such that vi is the lowest point. The
polygonal chains ∂P [vi, vj ], ∂P [vj , vk] and ∂P [vk, vi] are self-approaching from vj to vi, vk
to vj and vk to vi, respectively, by the same argument as the one used in Case 1. In fact,
since c is strictly in the interior of the triangle formed by the three vertices, we have that
the cones used to prove that the chains are self-approaching have an angle that is strictly
less than π/2.

By placing a first active actuator on vi, we have that all the particles on ∂P (vi, vj ] and all
the particles on ∂P [vk, vi) move onto ∂P [vj , vk]. Since ∂P [vj , vk] is self-approaching from vk
to vj , if we activated a second actuator at vj then all the particles on this chain move to vj ’s
accumulation point which would complete the proof. However, even though vj is not acute,
it may be the case that vj is the counterclockwise accumulation point for vi. This would
prevent us from placing an actuator on vj since after the activation of the first actuator on
vi, particles have accumulated on vj . Recall that all subsequent placements of actuators
must be on points in P that are free of particles. Since for every point x on ∂P (vj , vk),
∠vjxvk > π/2, there must exist a point y on the edge vjvj−1 infinitessimally close to vj such
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that the ∠yzvk is still strictly greather than π/2 for every z ∈ ∂P [vj , vk). This implies that
∂P [y, vk] is self-approaching from vk to y. Thus, by Lemma 11, activating a second actuator
at y, which is free of particles after the first activation, moves all the particles that have
accumulated on ∂P [vj , vk] to the counterclockwise accumulation point of y. J
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