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—— Abstract

Social scientists have observed a number of irrational behaviours during emergency evacuations,
caused by a range of possible cognitive biases. One such behaviour is herding — people follow-
ing and trusting others to guide them, when they do not know where the nearest exit is. This
behaviour may lead to safety under a knowledgeable leader, but can also lead to dead-ends. We

present a method for the automatic early detection of herding behaviour to avoid suboptimal
evacuations. The method comprises three steps: (i) people clusters identification during evac-
uation, (ii) collection of clusters’ spatio-temporal information to extract features for describing
cluster behaviour, and (iii) unsupervised learning classification of clusters’ behaviour into "benign’
or ’harmful’ herding. Results using a set of different detection scores show accuracies higher than
baselines in identifying harmful behaviour; thus, laying the ground for timely irrational behaviour
detection to increase the performance of emergency evacuation systems.
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1 Introduction

Certain cognitive biases may govern the way people react and move during emergency
evacuations and may result in irrational behaviours that can hinder operations and lead
to slower evacuation times, perhaps even endangering lives. An example of a common and
well-known behaviour is herding — “when under highly uncertain and stressful situations,
an individual tends to follow others almost blindly” [19]. This behaviour sometimes helps
people exit a building safely when the leader knows the way out (benign herding), but may
otherwise lead people to dead ends (harmful herding). Early identification of such behaviour
can aid in more timely, orderly, and ultimately more successful evacuations.

Considering these benefits, this work proposes an automatic method for the early detec-
tion of harmful herding behaviour, based on features extracted from the spatio-temporal
characteristics of people’s group (cluster) movements during emergency evacuations. Figure
1 depicts snapshots of a moving cluster of people during a building evacuation at different
times, which displays harmful herding behaviour. Figure 1b shows the point in time when
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(a) Group seemingly heading towards the exit. (b) Display of harmful herding behaviour.

Figure 1 Snapshots of group behaviour at two different time steps.

the group moves into a room instead of going for the exit. This is when a human observer
with knowledge of the building layout would identify this behaviour as erratic and alert
the people. The proposed method succeeds in analysing the group’s movement trajectory
and, more importantly, the group leader’s trajectory, to make an earlier detection. The
assumption is based on the herding behaviour’s definition — people delegating wayfinding
responsibility to the group’s leader. If the leader’s past trajectory displays erratic movement,
chances that the group will head straight to the nearest exit decrease.

Our method comprises three steps. First, clusters of people traveling together are
identified. Second, information about the identified clusters is collected, such as the cluster
and cluster leader’s moving trajectories, as well as the cluster’s distance from the nearest exit.
This information is compiled into a feature vector. Third, all feature vectors are classified as
either benign or harmful behaviour, using an unsupervised learning classification method.
The method is assessed against a ground truth, and also compared to human assessment.
The ground truth knows at all times if the ultimate destination of each cluster is the exit
or a dead end. The human assessment is performed by visually inspecting the cluster’s
trajectory and determining the point of wrong going (e.g., turning away from the exit). A
set of scores is defined and used to assess the performance of the suggested method when
detecting harmful behaviour.

Experiments based on simulated emergency evacuation scenarios show favorable results,
as the method outperforms baseline cases and visual inspection in early detection of harmful
behaviour. Using different cluster feature combinations, the results also allow for some
interesting observations. For example, considering only the actual distance between the
cluster and the nearest exit in fact hurts the classification, making it resemble a random one.
Instead, the previous moving history of a cluster, rather than its mere distance from an exit,
is a better indicator of harmful behaviour. Accordingly, the main contributions of this work
are: (1) The identification of spatio-temporal cluster features that can be trusted to describe
herding behaviour as either benign or harmful, and (2) a method that uses these features to
early detect harmful herding behaviour during emergency evacuations, in an automated way.

The remainder of this paper is organised as follows. Section 2 summarises related research
in behaviour detection including simulations, pattern recognition, and personalised evacuation
systems. Section 3 discusses the concepts and previously defined behaviours on which our
herding detection method is based. Section 4 presents the suggested methodology — clustering,
feature extraction, and unsupervised behaviour classification — as a proof of concept for
automatic herding behaviour detection. Section 5 discusses different experiments results
using various spatio-temporal cluster feature combinations. In Section 6 we present the main
findings and suggestions for future work.
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2 Related work

Research on crowd behaviour and herding is extensive. A frequent outcome in such research
is a simulation depicting more realistic behaviours. Movement patterns, such as hotspots,
that arise because of people’s biases are also analysed in both outdoor and indoor scenarios.
State-of-the-art evacuation systems can use personalised warning messaging and routing
directions. This section discusses literature in these areas.

2.1 Simulations displaying social behaviours

Most of the computer-related works that study herding behaviour have the goal of producing
simulations. A number of simulations that take into account the microscopic interactions
during an evacuation is proposed in the literature (e.g., [8]). Agent-based models are a
popular way of creating simulations that include social interactions between the agents.
Interactions such as negotiation, following, or collision avoidance can be coded to reproduce
common behaviours like herding [19], while cellular automata are frequently used in simulating
evacuations [30]. Behaviours such as “freezing by heating”, “faster is slower” and herding
behaviour are identified in simulations using a social force model [11]. Although such models
are successful in displaying social behaviours, including herding, their identification of such
behaviours is done in a visual and manual manner. That is, there is a human checking for
instances of behaviour, and papers usually include an image of the seen behaviour. Our
method goes a step further by making the behaviour detection automatic.

2.2 Movement and behaviour detection

A number of methods are used for analysis and detection of movement and behaviour patterns.
For example, trajectory prediction models using mobile data have been proposed in normal
circumstances [17], and during disasters [23]. Such prediction is done with extensive prior
knowledge about a person’s movement habits. For example, they rely on social networking
data to know a person’s usual locations. Our model relies on real time and short trajectory
knowledge for prediction, and focuses on specifically identifying irrational behaviours.

Hotspot detection is a useful mechanism for alerting stakeholders about people’s concen-
trations. Many hotspot detection mechanisms have been developed for indoor evacuations
[9] and crowd disasters [4]. While hotspot detection is useful, detection of other behaviours
is rather scarce. The current work specifically targets the detection of harmful herding
behaviour.

2.3 Personalised alert and evacuation assistants

Before the wide adoption of mobile technologies, alert systems targeted a large number of
persons through mass media. An overview of past research regarding the warning stage of a
disaster can be found in [7]. An overview of how warning response, adoption, and timing
affects people’s behaviours during disasters is given in [24]. With the rise of microblogging
services, such as Twitter, further research was conducted in message personalisation. The
proposed method aims at the wider use and integration of personalised alert messages
produced by observing the real time behaviour of people during emergency evacuations.
Personalised warning messages and assistance is a possibility due to improved research
on video tracking technologies and the use of mobile phones. A study in [3] underscores
the research needed to send localised warning messages to people’s cell phones during an
imminent hazard. Furthermore, mobile phone sensors provide grounds for context-aware
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indoor navigation. A routing system is proposed in [28] that exploits cell phone sensors in
order to have context knowledge in real-time, for example blocked exits. A robot-assisted
evacuation method is proposed in [25] improving evacuation times and is tested in a simulated
shopping mall environment. These approaches fail to take into account people’s beliefs and
biases, which may affect their successful adoption. The work in this paper takes a first step
into examining people’s behaviours, and extracts characteristics that can detect potentially
harmful herding caused by cognitive biases. Some relevant work has looked into the role of
leaders during emergencies [29]. The authors argue for the optimal number and position of
evacuation assistants. However, they only take into account formally defined leaders, rather
than leaders that naturally arise in groups of people during emergency evacuations. The
latter type of leaders and their behaviour is examined in this work.

3 Background

This section discusses the concepts inherent to herding behaviour, and describes certain
methods used in each of the three steps of our methodology: people cluster identification
in evacuations, feature extraction to describe cluster behaviour, and a learning model for
cluster classification.

3.1 The problem with herding behaviour

Herding behaviour is a cognitive bias examined in early psychology and sociology research
[18, 5] comprising different contexts of everyday life. In the context of evacuations, herding
behaviour is exhibited when people follow others, without knowing with certainty where the
group is heading to. Although herding can successfully lead people towards a safe place, it
can also lead them to prevent successful evacuations, as evidenced by past studies in bushfires
[1] and indoor evacuations [9]. A study in [10] considers a balance between individualistic
behaviour and herding behaviour to be optimal for indoor evacuations. This research focuses
on identifying harmful herding behaviour. For language consistency, we distinguish benign
herding behaviour — when people follow others successfully to safety — from harmful herding
behaviour — when the group fails to find an exit.

3.2 Moving people clustering

The first step in our method is cluster identification during evacuation. We borrow ideas
from previous works that have studied crowd clustering [21, 20] and groups of points moving
together [14]. Clustering methods often use Euclidean distance for assigning members in
a cluster. Nevertheless, several applications, including this work, require non-traditional
distance measures, such as graph distance or similarity measures. The suggested method
clusters people in a floor setting; therefore, people separated by a wall should not be assigned
to the same cluster, even if their Euclidean distance is short. Spectral clustering takes a
similarity matrix as input for identifying clusters [15]. Such a similarity matrix can be
computed from any pair-wise distance metric of the instances — persons in our case. The
way the similarity matrix is built in this work is explained in Section 4.1.

3.3 Feature extraction for conveying herding behaviour

The second step involves the collection of spatio-temporal information from clusters previously
defined, to be encoded into a feature vector. The set of these features is used to describe the



D. Amores, M. Vasardani, and E. Tanin

harming herding behaviour that a cluster might be displaying, and is one of this work’s major
contributions. Previous work in activity recognition and anomaly detection from trajectories
provides inspiration for this model. As in many learning problems, feature engineering is a
crucial step towards an effective model. Additionally, motion information representation is
the basis in spatiotemporal analysis [13]. Consequently, several approaches encode trajectory
information (e.g. distance between objects, acceleration) into their feature vector [32, 22].

The aim of this work is to produce a feature vector that describes herding behaviour.
Relevant characteristics are:

Characteristic 1. Forming groups.

Characteristic 2. Moving towards or away from an exit.

Characteristic 3. Delegating wayfinding to the leader and then moving collectively.

Characteristic 1 is achieved by the clustering step. Characteristics 2 is encoded into the
feature vector by calculating the distance change from the cluster towards or away from
exits. For satisfying characteristic 3, the trajectory from the cluster’s leader is analysed from
previous time steps. How these features are formally obtained is explained in Section 4.

3.4 Learning model

The proposed approach uses an unsupervised learning method to identify the clusters heading
towards a dead end. Machine learning methods are now a common practice for categorising
a set of instances. Each instance comprises a set of features and may contain continuous or
discrete values. As such, learning methods are used for the detection of differing behaviours
or anomalies. Previous works for categorising trajectories and behaviours have used semi-
supervised [22] and unsupervised [32] learning models by means of different clustering
algorithms such as Gaussian mixture, or Latent Dirichlet Allocation (LDA).

The proposed method compares two different and widely used unsupervised learning
algorithms: k-means clustering and hierarchical clustering. K-means clustering finds a
centroid per cluster and uses a distance based metric to classify points based on the proximity
to the centroid. Hierarchical clustering performs better on non-linear and high-dimensional
data. Our method has high dimensionality as it uses up to 55 different features.

3.5 Data sources and simulation

The proposed method assumes known coordinate positions of each person for the duration
of the emergency evacuation. As real data of this type are scarce, a simulation instead is
used, while current complementary research efforts are developing technologies for real-time
monitoring of evacuees [6]. Also, in order to focus on examining herding behaviour, the
effects of indoor landmarks on way finding, or the limits of maximum evacuation times
and multi-level building complexities are left for future consideration. The simulation is
built based on the general guidelines provided in [19]. In that work, the authors construct
a simulation that displays different “nonadaptive crowd behaviours”, including herding
behaviour. They build an agent-based model in which agents display social interactions, such
as negotiation or people-following. They define a set of possible actions and different types
of profiles. The simulation used in this paper uses a subset of those actions and profiles for
displaying the expected behaviour (herding). The following set of possible actions is used:
(i) Random walk - heads towards a random direction in sight, (ii) Seek - if the exit is
known, heads to the exit; otherwise, keep looking for the exit by going towards doors, and
(iii) Target following - follow the nearest group of people.
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(a) Floor layout. Black means (b) Grid on top of floor layout. (c) Graph G representing the
walls, white empty space. floor layout.

Figure 2 A 7x7 floor layout discretization.

Table 1 Similarity matrix of sample pair distances.

pl 0 4 | -9
p2 | 4 0 -5
p3| -9 | -5 0

Accordingly, three profiles are used for agents. The exact probabilities are not provided
in [19], so they are based on evacuation behaviour findings in [31] and [16]. Each profile
contains the probabilities for the actions it can take (probabilities must sum up to 1).

Adult: random_ walk = 0.2, seek = 0.4, target__ following = 0.4

Child: random_walk = 0.3, seek = 0.2, target__ following = 0.5

Elderly: random__walk = 0.0, seek = 0.7, target__following = 0.3

4 Method

The methodology used to detect harmful herding behaviour comprises three steps. The
purpose of detecting herding behaviour is to know if people may be headed towards a
dead-end, or taking a much longer evacuation route. In this case, the behaviour belongs to a
group of people rather than to individuals. As such, the method first identifies clusters at
each time step. A feature vector is extracted from each of these clusters and an unsupervised
learning method is used to predict the ones displaying herding behaviour. The following
subsections describe each step in the methodology.

4.1 Clustering

The floor layout is discretised into a grid and represented by a graph G. Each grid cell that
is not a wall is a node of G. Figure 2a shows a sample 7x7 floor layout, figure 2b shows a
grid on top of it, and figure 2c shows the respective graph G. Black dots represent people,
and each vertex in G is connected to the nodes up, down, left and right.

At each time step, each person is located at a node of G (as in Figure 2¢) and the
distances between each pair of persons is computed into a similarity matriz. The sample
persons in Figure 2 are located at (4,5), (2,3), and (5,1), and we call them p1, ps, and ps
respectively. The similarity matriz for the sample 3 persons is shown in Table 1.

The similarity matrix contains the distance of each pair of points multiplied by —1, to
represent a similarity rather than dissimilarity. Computing shortest paths in a graph at
each time step can be time consuming. Therefore, the paths are pre-computed and stored
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in a hash table PATHS in memory, such that for pair p; and ps we can obtain its graph
distance by calling PATHS(p1,p2). An additional variable, EXITS stores distances from
each person to the nearest exit (e.g., EXITS(p1)).

The similarity matriz is then input to the spectral clustering algorithm for cluster
identification. The clustering step represents virtually the whole method’s time complexity
as O(n?), while next steps run in linear time or less. When clustering is performed at every
time step, it might produce temporal errors. For example, people passing each other in
opposite directions could temporarily be close together but shouldn’t be considered part of
the same cluster. To address this, we use a parameter 7 that represents the number of time
steps required for a group of people to be considered as ’traveling together’.

Over time, clusters may add members, lose members, split, or even completely dissolve.
Therefore, identifying a cluster over time requires some flexibility about its members. Thus,
we define the equivalence between cluster C from time step ¢ and cluster Co from time step
t+1,if |C1NCy| > 2 = C7 = Oy, and we define the age of cluster C as Te = |Cy, ..., Criy |
where C; = C;11Vi € {ilt <i <t+n}. With that, the age constraint for cluster C to be
considered herding is T > 7. For the experiments described in Section 5, a visual inspection
of the moving clusters showed a 7 value of 5 ensures a group of people are moving together.
This paper doesn’t cover the effect that varying values of 7 can have on the discovery of
moving clusters. For more thorough techniques on this area the reader is referred to [12].

4.2 Behaviour Definition and Feature Vector

Once the clusters of people traveling together are identified, a cluster feature vector is
extracted from each. The method relies on the group’s leader past trajectory as one of the
most important features for behaviour description. So before listing the feature candidates,
a formal spatio-temporal definition for ’leader’ is provided.

Leader identification

In plain terms, the leader is the person guiding the group. However, that definition is not
enough for identifying the leader in spatio-temporal data. A simple definition of cluster
leader is used where the leader is considered the most salient point in the cluster’s moving
orientation, as depicted in Figure 3b. More elaborate methods for leader identification fall
out of the scope of this study, but the interested reader is directed to [2].

To obtain the cluster’s orientation, a 12-direction discretised space is used (Figure
3a). The discretised angle of point m, is Zm. Then, given a cluster C with n members
mg, ..., My, the orientation of C is defined as the mode of the discretised angles of its members:
ZC = Mo(Zmy, ..., Zmy,). Once ZC' is computed, a plane rotation of ZC' is performed, as
shown in Figure 3¢, and every member m; is projected into the x-axis. From there, leader [,
is the member with the p-largest projection in the x-axis.

Feature candidates

In order to comply with the characteristics of herding behaviour listed in Section 3.3, three

kinds of feature candidates (F'C) are extracted from cluster C' with members my, ..., my:
FC, - Cluster’s distance to exit (dist_to_exit) — The average shortest distance to
the closest exit for each member m of C. Distances from m to the nearest exit are stored
in the EXITS hash table. So dist_to_exit(C) determines this feature’s value.
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(a) 12-direction discretised (b) Cluster movement. Darker (c) Projection of cluster mem-
space. dots are points at time ¢, lighter bers into a rotated x-axis for
ones are the same points at time finding the leader.
t—1.

Figure 3 Graphical definitions of orientation and cluster leader.

FC, - Cluster’s distance change towards exit (dist_change_¢) — The change in
the average shortest distance from the ¢ previous time steps to the current one. If the
change is negative it means the cluster is getting closer to the exit. This is computed
by checking the positions of the members in the previous time step and using the stored
distances in the FXITS hash table.

FCj3 - Leader’s trajectory (leader [ _away_steps_i) — This field refers to the number
of steps the group leader [ has taken away from the exit in the last ¢ time steps. For
instance, leader 1 _away_steps 5 (i.e., [ = 1 and ¢ = 5) counts how many of the previous
5 steps leader | took away from the exit. The value would range from 0 to 5 in this
example, and from 0 to 4 in general.

At every time step, clusters are identified and features extracted. The set of features
to use can be the full set described, or a subset of it. The experiments in Section 5 use
different subsets of the features explained here. Every feature set is stored and used in the
unsupervised learning method explained in the next subsection.

4.3 Unsupervised Learning

The final step of the method is applying a learning algorithm for classifying clusters displaying
benign or harmful herding behaviour. Thus, two classes are defined: benign and harmful. As
mentioned in Section 3.4, two unsupervised learning algorithms are used: k-means (KM) and
hierarchical clustering (HC). Additionally, three baselines are used for thorough comparison:
Zero rule: Classifies every instance as the most popular one. In this case, it will classify
everything as harmful.
Random: Classifies each instance randomly as either harmful or benign.
Random with distribution: Classifies similar to the Random baseline but uses prior
knowledge about the distribution of harmful and benign instances.

Comparing to a "dumb rule" classifier, such as Zero rule, ensures the proposed method
meets minimum requirements, while comparing to the random baselines ensures it does not
perform randomly. Comparisons with baselines ascertain credibility and robustness.

4.4 Evaluation Method

To evaluate the suggested method, every instance is associated with a label — benign or
harmful — describing its behaviour. An instance refers to a cluster from its identification
until its dissolution. Figure 4 shows a cluster in different stages of its lifespan.
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(a) Identification. (b) Harmful herding. (c) Dissolution.

Figure 4 Three stages in the lifespan of a cluster of 6 persons: (a) the group is identified as such,
(b) the human annotator identifies the group is taking the wrong turn, (c) the cluster dissolves after
an exit is not found.

The ground truth holds every instance’s label based on the ultimate cluster’s destination.
That is, if the cluster ends up in a dead-end or clearly goes in the wrong direction, it is
labeled as harmful, whereas if it ends up exiting the building or closer to the exit, it is
labeled as benign. The suggested method is evaluated on its ability to detect harmful herding
behaviour but also on detection timeliness, as it is expected to make detections early on.
Therefore, three checkpoints along the lifespan of a cluster are defined (Figure 4):

Checkpoint 1 (CP1) — At cluster identification. This is when the cluster is identified

by the clustering method defined in Section 4.1 (Figure 4a).

Checkpoint 2 (CP2) — At human detection point. That is, when the human tester

first realises that the cluster is headed towards the wrong direction (Figure 4b).

Checkpoint 3 (CP3) — At cluster dissolution. This is when the clustering method

defined in Section 4.1 stops identifying the former cluster members as one (Figure 4c).

Then, to assess detection timeliness, five scores — called detection scores — are defined
using the checkpoints:

Early detection (ED) — Number of harmful instances detected before CP1.

Detection (D) — Number of harmful instances detected between CP1 and CP2.

Late detection (LD) — Number of harmful instances detected between CP2 and CP3.

No detection (VD) — Number of harmful instances not detected at all.

False warnings (FW) — Number of benign instances detected as harmful at any time.

Additionally, unified scores, allowing a comparison between the method’s detection
times and the visual inspection (VI), are defined:

Before VI (BVI) — The number of harmful instances detected before CP3 (faster
than VI), plus the number of benign instances not identified as harmful. Formally,
BVI=ED+ D+ (TB— FW), where TB is the total number of benign instances in the
ground truth.

After VI (AVI) — The number of harmful instances detected after CP3 (slower than VI),
plus the non-detected instances, plus the false warnings. Formally, AVI = LD+ND+FW

It is worth noting that false warnings tend to be sensitive, as a single harmful detection in
a whole benign trajectory would yield a false warning. For that reason, a tolerance variable
is introduced. Each of the detection scores checks for at least one harmful prediction. Using
the tolerance variable ¢, the detection scores have to check for at least ¢t harmful predictions,
before classifying it as harmful.

The manual labeling is performed visually by a human observer. Although not optimal,
this labeling allows for performing a proof-of-concept evaluation method against human
judgment. In the future, a more thorough labeling mechanism such as domain expert labeling,
or labeling from multiple annotators can be used.
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Figure 5 Initial setup of the simulation.

5 Experiments

Data for the experiments are generated by running the simulation described in Section 3.5.
Location data for each agent at each time step are recorded in a text file. The text file is
used as the input to the suggested method. The simulation is realised using the GAMA!
simulation software. In the simulation, 50 agents are placed on a 50x50 grid. The layout of
the grid resembles a building layout with walls and exit doors. Figure 5 shows the initial
setting for the simulation to run.

Having obtained the simulation data, the main objective of these experiments is to test
which features in the cluster feature vector describe best the herding behaviour. Feature sets
are built using feature candidates (F'C;_3) described in Section 4.2, as follows:

Feature set 1 (F'S7) — The information this feature set contains is the cluster’s distance to

the exit (F'Cy), the cluster’s previous movements (FCy with ¢ = 5), and the trajectories

of 3 leaders (F'C3 with | = 3 and ¢ = 20).

Feature set 2 (F'S3) — In this feature set, distance to the exit (F'C1) is not used, for

checking its relevance. Considered are: cluster movement (FCy with ¢ = 5) and leader

trajectory (F'Cs with [ =1 and i = 20).

Feature set 3 (F'S3) — Leader information (F'Cs) is not considered, to check its relevance.

Considered are only distance to exit (F'C1) and cluster movement (F'Cy with ¢ = 5).

The values for the number [ of leaders and number 4 of steps to check from past trajectory
were chosen based on the behaviour definition and by performing several preliminary tests of
the method with a number of combinations. Three experiments are performed, summarised
in Table 2. Every experiment runs the classification step using both k-means (KM) and
hierarchical clustering (HC):

Experiment 1 sets the tolerance value to 1, the number of instances to 31 and all three

feature sets are compared.

Experiment 2 is similar to Experiment 1, but using a tolerance value of 2.

Experiment 3 is used to check whether the algorithm would benefit from having more

instances to cluster by increasing the number IV of instances and using the best performing

feature set — F'Sy as seen later — with tolerance ¢ = 1.

! http://gama-platform.org/
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Table 2 Parameters used in every experiment.

Experiment 1 Experiment 2 Experiment 3
tolerance = 1 tolerance = 2 tolerance = 1
FSi | FSy | FSs | FSi1 | FSy | FSs FS,
N =31 N =31 N=21 | N=31| N=52

Table 3 Results of Experiment 1, using tolerance ¢ = 1. Showing detection scores (ED, D,
LD, ND), false warnings (FW), and unified scores (BVI, AVI) of k-means (KM) and hierarchical
clustering (HC) using different feature sets (F'S;). Baselines are shown beside them for comparison

FS, FSs FSs3 Baselines

KM | HC | KM | HC KM HC ZR R RD
ED 48% | 52% | 57% 76% 100% | 100% | 100% 86% 81%

D 24% | 33% | 43% | 24% 0% 0% 0% 14% 19%
LD | 19% | 10% 0% 0% 0% 0% 0% 0% 0%
ND | 10% | 5% 0% 0% 0% 0% 0% 0% 0%
FW | 36% | 55% | 36% | 55% | 100% | 100% | 100% | 100% | 100%
BVI | 69% | 72% | 88% | 81% | 66% 66% 66% 66% 66%
AVI | 31% | 28% | 12% | 19% 34% 34% 34% 34% 34%

6  Results Analysis

Tables 3 and 4 show the complete results of Experiment 1 and 2, respectively. The tables
contain detection and unified scores (Section 4.4) for a thorough comparison. The tables
present the results of k-means and hierarchical clustering for all three feature sets (F'S1, F'Sa,
F'S3). The three baselines defined in Section 4.3 — Zero Rule (ZR), Random (R), Random
with distribution (Rd) — are placed next to the results for comparison.

Ideally, a method would detect every harmful herding behaviour early on (ED = 100%).
Even though the baselines have a perfect or near-perfect ED score — since ZR classifies
everything as harming (ED = 100%) — they also have a 100% false warning rate (FW),
which renders these baselines unreliable. Hence, the consolidated BV'I score is a better
indicator of overall performance, as it penalises either low detection, or high false warning
rates. Figures 6 and 7 show the BV'I score in Experiments 1 and 3, respectively, while the
main findings of the analysis are as follows:

Leader trajectory is the best herding predictor. Overall, the best performing feature set
is F'Sy with either k-means, or hierarchical clustering with a BV I = 838% and BV I = 81%
with ¢ = 1 (Figure 6) respectively, and BVI = 81% and BVI = 84% with ¢t = 2. These
algorithms all perform well above the baselines. These positive results suggest the features

chosen, namely the leader trajectory and the recent cluster movement, were appropriate.

When comparing Experiments 1 and 2, as tolerance increases, the F'W score decreases as
expected, but the overall BV I is not improved.

Distance to exit is not meaningful. Low results of F'S3 suggest the distance to the exit
(the feature not present in F'Ss) is not a trusting feature, as it makes the classifier act
randomly. This is probably the reason for the lower performance of F'S; compared to F'Ss, as
it contains the dist__to_ exit feature. This observation is reasonable, given that long distance
from the exit does not necessarily mean the group is lost or not heading towards the exit.

1:11
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Table 4 Results of Experiment 2, using tolerance ¢ = 2. Showing detection scores (ED, D,
LD, ND), false warnings (FW), and unified scores (BVI, AVI) of k-means (KM) and hierarchical
clustering (HC) using different feature sets (F'S;). Baselines are shown beside them for comparison.

FS, FSy FSs Baselines

KM | HC | KM | HC KM HC ZR R RD
ED 33% | 38% | 29% 43% 62% 62% 62% 52% 57%

D 24% | 29% | 57% | 52% 33% 33% 33% 38% 33%
LD 29% | 24% 14% 5% 5% 5% 5% 10% 2%
ND | 14% | 10% 0% 0% 0% 0% 0% 0% 0%
FW | 36% | 36% | 27% | 36% | 100% | 100% | 100% | 100% | 100%
BVI | 59% | 66% | 81% | 84% 62% 62% 62% 59% 59%
AVI | 41% | 34% 19% 16% 38% 38% 38% 41% 41%

Figure 6 Experiment 1 results summary. BV I score is displayed comparing the suggested method
to the baselines.

Increasing number of instances improves performance. Figure 7 shows the results of
Experiment 3, depicting how the scores change given an increasing number N of cluster
instances. BV'T score increases as N increases (except for k-means in N = 31), implying
that the suggested method benefits from a higher number of instances. F'Ss is used in this
experiment as it was the best performing feature set in the previous experiments.

7 Conclusions and future work

This paper presents a method for automatic, early detection of harmful herding behaviour
using spatio-temporal information from clusters of people. The method comprises three
steps. First, groups of people moving together are identified using clustering algorithms with
added constraints. Second, relevant spatio-temporal information from the identified clusters
is collected. Second, the extracted features are combined to spatially and temporally describe
a herding behaviour. To achieve this, the position changes of the cluster and the cluster
leader’s movement trajectory are examined. The method assumes the leader’s trajectory to
be a most relevant feature for identifying the behaviour. Third, the observed clusters are
classified as displaying either benign or harmful herding behaviour, using an unsupervised
learning method.

The experimental results show promise towards advancing the understanding of herding
behaviour effects. Seven different scores are defined to assess the method’s ability to detect
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Figure 7 Experiment 3 results. F'S2 is used with an increasing number N of instances.

harmful behaviours and compare it to a human observer. In every experiment run, both

algorithms (k-means and hierarchical clustering) are superior to the three baselines used.

Different combinations of features were tested. The major findings are:

1. Features regarding leader trajectory and recent distance changes from the cluster to the
exit best predict harmful herding behaviour, yielding above 80% of the BV I unified score
in the experimens.

2. Distance to the exit (without considering movement) harms the prediction when added
into the feature set, making it classify randomly.

3. Even though increasing the method’s tolerance does not produce better results overall,
it does decrease the amount of false warnings. This is useful in systems where issuing
warnings is expensive, so additional confidence is needed.

4. The method benefits from large cluster instances in the data, which means that it scales
well in environments with big crowds that need to evacuate in an emergency situation.
Higher values of N, however, mean more time-consuming manual labeling for evaluation.

The harmful herding behaviour identification method can be further improved. Different
graphs can be used, such as the visibility graph [26] or a bigraph [27] in the clustering step.
The features extracted from the clusters can be improved by looking into more in-depth
analysis of who the leader of a group is, rather than identifying the topmost one as such. A
supervised learning method for behaviour classification can be compared to its unsupervised
counterpart. An approach that would replace both learning approaches is a rules-based one
where, given thorough domain knowledge, strict rules can be placed for the prediction of
the harmful herding behaviour. Pertaining to the evaluation method, perhaps the most
immediate step forward is the use of a real evacuation scenario datasets. Finally, herding
is only one of several behaviours elicited by cognitive biases during disasters. Other biases
such as the normalcy bias, confirmation bias, planning fallacy [1], may lead to equally
harming behaviours during emergency evacuations. Consequently, future work may focus
on identifying other behaviours, or even providing a bigger unified framework for irrational
behaviour detection.
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