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Abstract
As Floating Car Data are becoming increasingly available, in recent years many research works
focused on leveraging them to infer road map geometry, topology and attributes. In this paper,
we present an algorithm, relying on supervised learning to detect and localize traffic signals
based on the spatial distribution of vehicle stop points. Our main contribution is to provide
a single framework to address both problems. The proposed method has been experimented
with a one-month dataset of real-world GPS traces, collected on the road network of Mitaka
(Japan). The results show that this method provides accurate results in terms of localization
and performs advantageously compared to the OpenStreetMap database in exhaustivity. Among
many potential applications, the output predictions may be used as a prior map and/or combined
with other sources of data to guide autonomous vehicles.
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1 Introduction

As one of the main supports for citizen mobility, roads are deservedly considered as a major
cartographic theme in maps. Therefore, it is not surprising that most national mapping
agencies allocate considerable amount of resources to keep road network databases as detailed,
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accurate and up-to-date as possible [14, 4]. This is generally done by stereorestitution on aerial
orthoimages [17], completed with field surveys to get details that cannot be captured in the
images. Recently, automatic detection of roads has dramatically improved, especially when
combined with machine learning algorithms [28], and now achieves very good performance
even on satellite images. However, if the whole process tends to get less expensive and less
time-consuming, it still suffers from a major drawback: road map timeliness is inevitably
limited by the frequency of aerial image release [7].

Nowadays, with the spread of connected terminal devices equipped with a Global Posi-
tioning System (GPS) receiver, an increasing number of vehicle trajectories are becoming
available. Map inference, which aims at leveraging this new source of data to extract geo-
graphic information [3], is becoming popular and tends to complement, if not completely
replace, traditional survey techniques. Among their main assets, GPS traces are recorded
on a daily basis, which allows for short-delay update capabilities. Indeed, aerial picture
campaigns are typically conducted every several years, notwithstanding an additional delay
for image preprocessing and orthorectification. This substantial delay might be critical in
applications relying on highly up-to-date reference networks, such as emergency routing or
disaster mitigation.

Contrarily, with GPS traces analysis, modifications are potentially detectable as soon as
enough traces are recorded on a suspicious point to ensure the statistical robustness of the
notification. Ultimately, with connected devices, it is foreseeable that data will be recorded
and processed by online algorithms, resulting in a much more reactive system that is capable
of detecting ephemeral events (e.g., road works, detour or accidents) in quasi real-time.
Moreover, data can be continuously recorded while drivers are commuting for example, which
makes this solution much less expensive than aerial campaigns and field surveys. More
anecdotally, since we may assume that for any consistent algorithm, the estimation is getting
closer to the reality as the number of traces increases, the dataset sampling itself serves a
logic of public utility: the most important itineraries are the most traveled, therefore those
where road map inference is the most reliable.

Initially restricted to the construction of road geometry and topology, map inference is
now getting attention for enriching pre-existing networks with attributes (number of lanes,
speed limitations...) or infrastructure (traffic signals, speed bumps, bus stops...) [24, 18].
Most of these features are not accessible through aerial images, and utilizing GPS traces
seems unavoidable. Moreover, aerial images may not be accessible in developing countries,
or available only at prohibitive cost. Instead, access to data stemming from local fleets or
collaborative transport smartphone applications, are producing large sets of GPS traces.
This surrogate source of data may be used with map inference techniques to provide a cheap
alternative solution for map construction.

An exhaustive and detailed knowledge of road infrastructure is a prerequisite to many
applications. For example, autonomous cars are expected to appear on the market in the
near future. Reliability and robustness of the information used by such vehicles to make
decisions is a big concern. It is usually more reliable to know in advance the location and
the type of object that should be detected and confirm detection with embedded sensors.
Additionally, driving-assistance devices conception, road safety, eco-driving, urban traffic
flow simulation or even accurate routing time computation are as many other examples of
fields or applications where the knowledge of a road network needs to be completed with
attributes and infrastructure [4, 26, 1].

In parallel, machine learning techniques are becoming all-pervasive in fields requiring
to process a large amount of data, or simply when theoretical background is insufficient to
build reliable predictive models. With this kind of approach, expert knowledge is no longer
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required, and algorithms are trained on labeled data. However, machine learning is a relevant
solution only if the two following conditions are met: firstly we must have an extensive and
representative training dataset, and secondly, we must have a natural definition of cost that
quantifies how close the generated road map is compared to the training data ground truth.
A few years ago, some authors such as Liu et al. [14], have introduced numerical measures
to assess the quality of maps produced by GPS traces, hence opening the way for a full
machine learning resolution of the problem [3]. In this vein, Zhang and Sester [27] combined
fuzzy logic and k-means clustering for incrementally inferring maps, while Fathi and Krumm
[10] proposed to train an Adaboost classifier to recognize road intersections, based on the
probability density function of trace headings. Similarly, Van Winden et al. [25] found that
Support Vector Machines (SVM) and regression trees are the most adequate algorithms
for speed limit inference. In some more sophisticated algorithms, traces are combined with
external sources of data to get better results, for example in [12] where Twitter data and
SVM are used for an automatic mining of street names. We believe that statistical learning
is especially adapted to this problem, and that it guarantees the portability of the approach
to other cities, countries and environments.

Among traffic control devices, traffic signals are unarguably the most effective to regulate
jammed intersections [23]. They have a crucial impact both on traffic flow at the city scale
and on the perceptions of individual drivers. Surprisingly, very few research works address
the problem of utilizing a collection of probe vehicle traces coupled with machine learning
algorithms to detect traffic signals. The most related research work is certainly the one of M.
Munoz-Organero et al. [19], who used machine learning algorithms to detect in real-time
several kinds of road infrastructures, based on an analysis of speed and acceleration signals,
estimated from GPS positions. Despite providing very good results, the performance scores
clearly exhibits some limitation on traffic signal detection, compared to the cases of street
crossings, and roundabouts. Besides when the only source of measurement is a GPS receiver,
speed-based analysis is only possible provided that the GPS positioning is accurate enough
(for example if equipped with a Doppler speed measurement, when used in differential mode,
or in open areas) and sampling frequency is high (over 1 point per second or so). Furthermore,
a natural extension of [19] would be to use all vehicles which traveled at a specific location to
detect infrastructure. In this work, we propose a method to detect and then localize traffic
signals through a random forest classification and regression using the spatial distribution of
stop points along the road.

We must notice that localization is an important aspect of the problem. Even though we
know that an intersection is controlled by a system of traffic lights, the positions of stop lines
on each individual streets remain uncertain, and this is especially true since road network
abstraction and generalization may introduce an additional component of uncertainty.

The remaining of the paper is structured as follows: the dataset and its preparation are
briefly described in the next section, while our methodology to create instances, train and
validate the model is detailed in section 3. Section 4 provides the results and discusses them.
Eventually, section 5 concludes the paper.

2 Data and preparation

2.1 Study area
The experimentation was conducted in Mitaka (Japan), a commuter town located approxim-
ately 20 km west of central Tokyo, and covering an extent of 16 square kilometers. This choice
was motivated by the fact that Mitaka contains a wide variety of urban aspects, ranging
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Figure 1 Mitaka city and OpenStreetMap traffic signal database.

from dense downtown to inter-urban residential districts, including motorway environments
and parks as well. Mitaka city is illustrated on figure 1, where traffic signal controlled
intersections are depicted in red.

We extracted a routable road map from the national reference. The topological graph
of a road map is often organized in such a way that a node is always located close to each
traffic signal, even when no physical intersection is involved (e.g., traffic signal associated
to pedestrian crossing in the middle of a road link). For this reason, we decided to remove
degree-2 nodes, so that it may practically be assumed that digital road network has been
created without any knowledge of traffic signal locations.

2.2 Ground truth data acquisition
As an application of machine learning, it is necessary to collect ground truth data, namely the
positions of all traffic signals in Mitaka, to train and then validate the algorithm. Throughout
this paper, a stop line is defined as the position along the road, where the front vehicle in
queue is expected to stop while waiting for the signal to turn green.

We started from a base reference extracted from OpenStreetMap (figure 1). This source of
data is not complete, and each point corresponds to an entire crossing controlled by a system
of traffic lights, but no information is provided regarding the number of streets actually
controlled by an individual signal, nor are the positions of stop lines on these streets. Using
OSM basis and multiple sources of orthoimages (produced at different dates), positions of
stop lines have been manually digitized, and then orthogonally projected onto the road
network, as depicted here after on figure 2. At the end of this process, a total of 669 stop
line positions have been digitized, which corresponds to 253 crossings controlled by traffic
signals. Out of them, 177 (70%) are reported in OSM database. For each stop line, we also
recorded a binary attribute to indicate which direction of flow is subject to stop at the traffic
signal. It takes the value 0 if the stop line is directed to vehicles traveling from source node
to target node, otherwise it is set equal to 1 (source and target node is arbitrarily defined by
the road network database provider).
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Figure 2 Ground truth data acquisition on orthoimages and reference road network.

Eventually, since orthoimages might suffer from local distortions, we had to check that
our ground truth dataset is accurate enough for our application. A positional accuracy
control was carried out by uniformly sampling 30 stop lines at random and surveying them
with a single phase low-cost GPS receiver [16]. This operation enabled to guarantee (with
95% confidence index) that stop line positions have been digitized with a sub-meter accuracy
(root mean square error below 90 cm).

2.3 Floating Car Data
For this experimentation, we used GPS Floating Car Data (FCD) provided by NAVITIME
JAPAN1, a private company developing navigation technologies and providing various kinds
of web application services such as route navigation, travel guidance, and other useful
information services for moving people.

The sample dataset is covering the entire Japan and has been recorded over a one-month
time span, in October 2015. Pedestrian trajectories have been priorly removed so that it
contains only vehicle navigation data. We extracted all GPS records intersecting the Mitaka
polygon shape. Each record (nominally one per second) contains the following entries: a
user identification number, a route identification number, geographic coordinates (in decimal
degrees) and a timestamp. A route is a set of records on an individual subtrip (i.e. during
a GPS receiver session). Due to privacy issues, driver identification number is modified
every day at midnight. Entries containing −1 in timestamp or coordinates (i.e. about 2% of
records, corresponding to GPS signal lost or logging failure) have been removed. Coordinates
(as well as network and traffic signal ground truth) have been converted into UTM 54N
cartographic projection system. For convenience purposes, we also transformed timestamps
into an integer number of epochs. This made computing traveled distances and elapsed time
between records much easier.

Similarly to most studies related to GPS probe vehicles, map-matching, which consists in
reconstructing the path traveled by a vehicle on a network, is an important pre-processing
step and has two, possibly combined, main advantages: providing a mapping function between
GPS positions and network links (which is necessary in our application case for updating the
network) and enhancing positional accuracy. The latter is particularly important in urban
environment, where GPS satellite signal is likely to be partially impeded by buildings. We
used an algorithm based on Hidden Markov Models, developed by Newson and Krumm [20].

1 http://corporate.navitime.co.jp/en
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Since all traces are located on the same area, it is worthwhile to compute shortest path
distances between every couple of nodes just once, then storing results in a look-up table,
before map-matching all trajectories in a batch. Following this approach enabled to speed-up
the process, and reach a pace of 10 traces map-matched per second (approximately 1500
faster than the naive solution requiring to process shortest paths online). However, for a
road network containing a number n of nodes, since the time and space complexities of the
look-up table computation are growing like O(n2), it inevitably becomes necessary to find
alternative solutions when the area of interest is large. One of them might be to use sparse
matrix notation with hashtable data structure, and save only distances which are shorter
than a predefined threshold.

Root mean square error of displacements induced by map-matching is equal to 8.3 m,
which gives some insight regarding the average quality of GPS receivers. Overall, 99% of
records have been map-matched (excluding outlier points). Eventually, we removed all traces
map-matched with Chūō expressway, which runs the south-eastern part of Mitaka and,
needless to say, does not contain any traffic light.

At the end of the pre-processing phase, a total of 11870 traces are remaining in the
dataset, which represents slightly above 7 million records, about 42000 km and 3122 hours
of driving data. The median trip runs 3 km and lasts 10 minutes. 95% of the dataset is
recorded at a frequency higher than 0.2 Hz.

3 Methodology

In this section, we describe our methodology to build training and validation instances
from GPS trajectories, then after a brief review of Random Forest algorithm, we present an
extension to aggregate individual predictions, and infer the presence of traffic signals at the
level of crossings.

3.1 Instance computation
In most machine learning problems, there is a natural definition of an instance. For example,
in image recognition tasks, each individual image is an instance, and we may easily assume
that they are independent to each other. In our application case, there is no such definition,
since we are looking for objects located at unknown positions on a topological network.
However, considering that most traffic signals are located near intersections, we decided to
compute instances based on road segments starting from nodes. This choice was motivated by
the fact that it results in mutually independent instances, hence facilitating split process into
training and validation datasets. In turn, our algorithm will inevitably fail to detect traffic
signals located far from road intersections. Since, it may be assumed that this represents a
small proportion of all traffic signals, we believe that this choice would not have too much
negative impact. Note that, as depicted on figure 3, each network edge is generating two
instances (one starting from each node). Hence the total number of instances generated
equals at most twice the number of edges in the road network (in fact, some of them might
be empty of traces, consequently the actual number of instances is generally smaller). We
will refer to this segment as a frame hereafter.

In order to get homogenous instances, frames have been set to a fixed length L. If an
edge is longer than L, then only a portion of length L (starting from the node) is considered.
On the opposite, if it is shorter than L, the frame is padded with zeroes (X5 and X6 on
figure 3). The numerical value of L was set to 100 m, since there is no evidence to think
that events located further than 100 m from a traffic signal, might be of any help for the
detection.
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Figure 3 Left: frames generation (red dashed arrows) on the road network. Each frame is
computed based on GPS traces moving towards the intersection node (i.e. in the opposite direction
of the arrows). Right: selection of traces (see text for details).

We are interested in vehicles moving towards the intersection node, then only GPS traces
globally moving towards the node are added up to the frame. More formally, the last record
of the trace on the edge must be located closer from the intersection node than the first
record (with respect to a distance metrics computed as a curvilinear abscissa along the edge
geometry). Additionally, we required that the distance between both these extremal records
is at least half of the edge length. For example, on the right part of figure 3, only traces 2
and 4 (solid lines) are taken into account in the frame generated from intersection n1 (trace
1 is too short, while trace 3 is moving in the opposite direction). For the instance generated
from node n2, traces 1, 2 and 4 are discarded. Once traces moving towards a given node
have been identified, we can extract sequences of GPS records corresponding to vehicle stops.

I Definition 1 (Stop sequence). Given a sequence of timestamped GPS points and two
parameters: a maximal speed value vmax ∈ R+ and a minimal time duration τmin ∈ R+∗,
we define a stop sequence as a sub-sequence of consecutive records S = {(xi, ti) | p 6 i 6 q}
verifying the two following inequalities:

tq − tp > τmin and ∀ i ∈ Jp, q − 1K
|xi+1 − xi|
ti+1 − ti

6 vmax

where x is the curvilinear abscissa of GPS records along the edge. Simply put, for being
qualified as a stop sequence, a portion of trajectory must be slow enough for a sufficiently
long period of time. Also, note that p and q must be chosen in such a way that it is impossible
to add new records to the sequence without breaking the inequalities stated above.

I Definition 2 (Stop point). For a given stop sequence, a stop point is defined as the mean
position of points in the sequence, associated with the total duration of stop.

For each instance, stop points have been extracted from the selected traces according to
definitions 1 and 2 with the following parameters: vmax = 0.5 m.s−1 and τmin = 5 seconds.

Since the number of stop points is unpredictable, it is not a reasonable solution to train a
classifier with a predefined number of stop points. Indeed, this solution would fatally imply
that no prediction can be made on instances with too few stop points (for example in remote
parts of the road map). Reversely, if too many stop points occurred on a given instance,
there is no alternative but randomly selecting the appropriate number of stops to make it
fit the model of classifier. A practical solution to this issue, is to estimate the distribution
of stop durations along the road curvilinear abscissa with an adapted version of the kernel
distribution estimation (KDE) method [22].
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11:8 Random Forest Detection of Traffic Signals based on GPS Floating Car Data

● ● ● ● ●●●●●● ●●●●●● ● ● ● ● ● ● ● ●

Curvilinear abscissa

S
to

p 
ti

m
e 

de
ns

it
y

stop line

Figure 4 Weighted kernel density estimation of stop points. Orange vertical dashed line stands for
the position of the stop line associated to a traffic signal (controlling the entrance on an intersection
located on the left of the graphics). Vehicles are moving from the right to the left.

Let K be a positive, real-valued symmetric function whose integral sums up to 1. Function
K is called a kernel. Let xi ∈ [0, L] be a set of N stop point locations, associated to stop
duration times ti ∈ N (for reasons that will be detailed further, we assume that timestamps
are precise up to the second, which means that stop durations may be considered as integers).
We define the weighted kernel density estimation as :

∀ x ∈ [0, L] : f̂h(x) = 1
Nh

N∑
i=1

tiK
(x− xi

h

)
Note that this definition is slightly different from the standard KDE method, insofar as

each kernel function centered in xi is weighted by the corresponding stop duration ti. As a
consequence, f̂ is not normalized:∫ L

0
f̂h(x)dx '

∫ +∞

−∞
f̂h(x)dx = 1

N

N∑
i=1

ti

∫ +∞

−∞
K(x− xi)dx = 1

N

N∑
i=1

ti = E[t]

where E[t] is the expected stop time of all vehicles in the frame (this holds provided that
the bandwidth parameter h is small in front of the instance dimension L). Similarly, as
illusted on figure 4, the integral of f̂h over a given segment [x1, x2] is equal to a theoretical
amount of time vehicles are expected to stop between curvilinear abscissa x1 and x2. Four
examples of stop time distributions are depicted on figure 5 below.

Following a methodology inspired by [9], the resulting function is sampled at n evenly
spaced locations to form the explanatory variable vector X ∈ Rn. Eventually, target variables
are computed. Binary classification variable Y1 ∈ {0, 1} denotes the presence of a traffic
signal in the instance. If Y1 = 1, regression variable Y2 ∈ [0, L] specifies the stop line location,
measured as its distance to the intersection node (stop line abscissa on figure 4).

From a practical viewpoint, since we assumed stop durations are integer values, f̂h may
be computed with any standard KDE library, simply by oversampling data in such a way that
each point xi is present a number ti of times. Besides, given that in efficient implementations
of KDE, computation is done with Fast Fourier Transform algorithm, it makes sense to
set the numerical value of n as a power of 2. In our application case, we took n = 64.
Though it may be demonstrated that the mean integrated squared error is minimal with
Epanechnikov kernel, the choice of the kernel function is not critical. Therefore we used a
gaussian kernel. The bandwidth parameter has been set independently for each instance,
according to Silverman’s rule [22], which is optimal for normally distributed observations.
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Figure 5 Examples of stop time distributions: the top two instances are positive (dashed line
indicates traffic signal position), while the bottom two are negative. When the edge is shorter than
100 m, the thick dashed line denotes the end of the edge segment.

3.2 Training and validation
Given a set D of training instances in X ×Y , where X ⊆ Rn and Y = {0, 1} denote input and
output spaces, respectively, and a new feature vector Xu ∈ X , whose label Yu is unknown, the
task of a classifier is to estimate the probability of a traffic signal presence P(Yu = 1|Xu,D).
Xu is classified as positive whenever the estimated value is greater than 0.5. For regression
problems, Y = R, and the objective is to estimate the conditional expectation E[Yu|Xu,D].

Introduced by Breiman [6] two decades ago, Random Forests (RF) algorithm is a statistic-
ally robust version of decision trees, relying on ensemble method concept to reduce prediction
variance of individual decision trees. Given a collection of T decision trees whose posterior
probability estimate is Pt, the overall posterior estimation is calculated as an average of
predictions made by each individual tree:

P(Y |X) = 1
T

T∑
t=1

Pt(Y |X)

This makes Random Forests a simple, fast and efficient classification and regression tool,
often considered as robust to over-fitting and particularly useful in high-dimensional problems
where one has no strong reason to believe that all features will be helpful for discriminating
instances. Moreover, in his foundation paper, Breiman introduced as well parameters setting
empirical rules, which makes the tuning process quite straight-forward. For more detailed
information about RF, we recommend the complete and extensive works of Louppe [15] for
the theoretical background or Criminisi et al. [8] for a presentation of some of its capabilities
in a wide range of practical problems.

The final dataset contains 4611 instances, including 662 (14%) positive samples. While
the entire dataset is not overwhelmingly labeled as negative, this significant imbalance in
favor of negative instances may markedly penalize the training process [2]. To overcome this
issue, we tried different strategies: down-sampling (randomly suppressing negative samples
until dataset is balanced) and up-sampling (replicating positive samples: this second strategy
has the advantage of keeping all the information available from the data, at the expense
of increasing correlation between individual samples). We also tried SMOTE algorithm [5],

GISc ience 2018
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which is similar to up-sampling, but instead of replicating the minority class examples, new
examples are generated by interpolation between randomly sampled neighbor instances of
this class. We used T = 500 trees, and at each split

√
n = 8 features are taken into account.

The model was validated by 10-fold cross validation, i.e. by training the algorithm on 90 %
of the data, and validating it with the remaining 10 %, and repeating this process 10 times.

3.3 Inference on crossings
Given an intersection between a number n of incoming streets, each of them being classified
by RF with a probability pi of containing a traffic signal. We know that since the aggregated
prediction relies on non-independent trees, and aggregation is calculated with a sum instead
of a product, the values pi are not strictly speaking probabilities. However, using the belief
theory and Dempster-Shafer combination rule, it can be demonstrated through recurrence
on n that the total belief towards the presence of a traffic signal on the intersection is:

π(p1, p2...pn) =
n∏

i=1
pi ×

( n∏
i=1

pi +
n∏

i=1
(1− pi)

)−1

The intersection is then classified as controlled by a traffic signal when π > 1
2 . Using

this combination rule, we may aggregate predictions on individual streets into a unique
probability on the entire crossing, trading granularity for precision.

4 Results and discussion

The whole experimental process has been implemented in R with randomForest package [13]
and launched on an Intel Core(TM) i7-3770 processor (3.40 GHz RAM 8 Go). We computed
the following performance scores: specificity (or 1 - false positive rate, which corresponds to
the recall), sensitivity (or true positive rate), area under receiver operating curve (AUC),
training time (for a single fold, i.e. on 90% of the data), and overall accuracy.

Table 1 Detection performance scores for different way of balancing data.

Scores Down-sampling Up-sampling Imbalanced SMOTE
Specificity (%) 87.10 95.97 97.23 95.87
Sensitivity (%) 83.25 63.34 57.18 63.98
Accuracy (%) 86.57 91.49 91.73 91.49
AUC (%) 91.38 91.52 91.26 91.25
Training time (s) 1.35 6.98 3.83 7.18
Number of instances 1191 7108 4149 7108
OOB error rate (%) 14.46 2.00 8.23 2.36

Note that RF algorithm provides a practically unbiased error estimate during training
phase (without validation dataset), called out-of-bag (OOB) estimate. Indeed, since training
data are bootstrapped before used to grow decision trees, for a sufficiently large number of
training data, it can be demonstrated that on average, each sample is not seen by a fraction
(1− 1/n)n ∼ e−1 of trees. As a direct implication, each instance may be used as a training
data for 63 % of trees, and passed through validation with the 37 % remaining trees.

From table 1, we observe that, as expected, the time complexity of the training process is
roughly proportional to the number of training samples. Besides, area under curve (and then
the overall performance) does not seem to depend upon the method selected for balancing the
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Figure 6 Left: Receiver Operating Characteristics (ROC) curve of the classifier with 95%
confidence bands (computed with bootstrap method). Right: probability density and cumulative
distribution functions of regression errors.

data. Everything happens just as if the four classifiers above correspond to different selection
threshold of the same classifier model. Therefore, in the remaining of this section, we will
only use down-sampling since it decreases the number of instances to process, resulting
in a minimal computation time. It is worth noticing, that while OOB estimate is often
acknowledged as being quite reliable, it completely fails to provide realistic error estimate on
up-sampling and SMOTE experiments. This may be explained by the fact that with these
two balance procedures, two identical (or at least very similar) sample data may be in and
out-of-bag, which amounts to validating a model with samples partially contained in training
dataset.

Figure 6 depicts detection and localization performances for the down-sampling version
of the algorithm. Area Under Curve index of the classifier is equal to 91.8 (±1.5) % which is
considered as a fairly good result. Though specificity is not so high (compared to the number
of potential false positive that might be detected on a typical road network), the ROC curve
is remaining close to the no false positive vertical line even for decent value of true positive
rate. This observation instills confidence in the possibility of building a semi-automatic
process, achieving a satisfying recall, and entailing only few manual corrections. However, on
the other side of the ROC curve, it seems difficult to get all traffic signals, without spending
a lot of time separating true and false positive detections. From a more practical viewpoint,
it is also worth noticing that our recall may be compared with OSM (with the substantial
advantage that our algorithm performs detection on each individual traffic signal, not only
on the entire crossing).

Table 2 Localization performance scores. RMSE: root mean square error.

Scores Mean error Median error Mode of errors RMSE
Estimate (m) 6.22 3.82 2.65 9.51
Std. deviation (m) ±0.4 ±0.3 ±0.3 ±0.8
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Figure 7 Out-Of-Bag (OOB) error estimate convergence versus number of trees T .

Besides, as depicted on the cumulative distribution function of regression errors, 82 % of
errors are below 10 m, 60 % below 5 m, and 14 % as precise as 1 m. The root mean square
error equals 9.51 (±0.8) m, (which is to be put in perspective to the 20 m of the standard
deviation of the explained variable before regression), while mean, median and mode values
are much lower, indicating that the distribution is significantly right-skewed. This calls for a
more general discussion over what detection means. It might be more reasonable to count
outliers as undetected (a stop line detected with 50 m inaccuracy cannot be legitimately
considered as detected), as a result, the recall would decrease slightly by 4 % and as a reward,
the RMSE of localization drops to 6 m, and mean error to 4 m.

Similarly to many ensemble method algorithms, RF is robust to overfitting, and while
there is no guidelines for selecting an adequate number of trees, it is admitted that an
excessive number is not harmful to the prediction (at the expense of an additional burden in
computation time at training and inference steps). Figure 7 depicts the evolution of the OOB
error estimate as trees are grown in the model. It may be observed that the convergence of
predictions has been reached with approximately 100 trees.

Detailed inspection of the results revealed that many false detections occurred on places
where very few vehicles traveled, which implies that the algorithm has not reached convergence
as far as the number of vehicles is concerned. With a more extensive dataset we could
certainly get better results. It would be interesting, in future works, to study the impact of
the number of traces on the prediction scores.

A limitation of our work is that, as stated in section 3.1, our choice of frame, located near
the intersection node, makes it impossible to detect traffic signals located in the middle of
edges. Indeed, a relatively important number of errors occurred on traffic signals activated by
pedestrians push button. An interesting proposition to solve this issue would be to up-sample
the network by creating artificially dummy nodes evenly spaced on long edges. This approach
may be successful to capture the remaining traffic signals. Another strong limitation of this
work is that only information extracted from GPS traces upstream of the intersection is used
to create the features, although the behavior of drivers downstream of a traffic signal may
exhibit some very specific pattern that could help discriminate from stop signs at jammed
intersections.

Based on the posterior probability values estimated by the RF, and combining them with
the method proposed in section 3.3, we classified crossings into two categories, depending
on whether they are controlled by a system of traffic lights. This made sensitivity and
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specificity increase to 87.9 % and 96.2 %, respectively, which is more than 8 % improvement
in comparison to the per individual traffic light detection. This compares advantageously
to OSM traffic signal database, particularly in terms of recall. Yet, specificity is not high
enough to ensure fully automatic process without human supervision or post-processing
corrections. Future research will try to leverage this correlation to improve results, even at
the level of individual traffic signals. This can be done through relational learning techniques
[21] and probabilistic graphical models [11], especially since we have a natural definition of
network: the road map.

Apart from tuning more thoroughly the model parameters and the choice of features
(additional data would preclude from over-fitting), among the main perspectives of improve-
ment, we may attempt to use functional data analysis to decompose time distribution on
an ad hoc basis of functions (e.g., wavelets, Karhunen-Loève transform...), in an attempt to
minimize correlation between features. Extracting some other physical parameters such as
speeds, accelerations, jerks... may also help discriminating traffic signals, as well as localizing
it more precisely. This is possible, provided that GPS data speed profiles are smooth enough.
Eventually, we may consider building spatio-temporal feature vectors, with a bi-dimensional
kernel density estimation, where one dimension is the stop time and the second dimension is
the stop position along the road axis.

5 Conclusion

Floating Car Data have been used so far in a wide variety of applications to infer the road
network and its attributes. However, to the best of our knowledge, the method proposed in
this paper is the first attempt to use multiple probe vehicle GPS traces along with statistical
learning techniques to detect and localize traffic signals. Learning on a weighted-time
distribution of stop points can reach up to 85 % detection scores, and approximately 5 m
in positional accuracy. These results are promising for the future development but it is not
yet sufficient at the moment to be used as a fully automatic detection system. Nonetheless,
this algorithm might find some applications as it is, as a semi-automatic map inference
algorithm with human post-process corrections, or when combined with other sources of
data (e.g., sensors, embedded cameras, aerial images...) to provide a refined estimation with
multi-source data fusion techniques. Future works will aim at improving detection scores
by extracting more features from the data, and at extending this approach to other kinds
of infrastructure elements. In the long run, one of the main prospects for this research is
unquestionably autonomous cars, which, in addition to self-driving, would be self-mapping
their environment and sharing information in a completely autonomous loop.
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