What Makes Spatial Data Big?
A Discussion on How to Partition Spatial Data

Alberto Belussi

Department of Computer Science, University of Verona, Italy
alberto.belussi@Qunivr.it
https://orcid.org/0000-0003-3023-8020

Damiano Carra
Department of Computer Science, University of Verona, Italy

damiano.carra@Qunivr.it
https://orcid.org/0000-0002-3467-1166

Sara Migliorini

Department of Computer Science, University of Verona, Italy
sara.migliorini@Qunivr.it
https://orcid.org/0000-0003-3675-7243

Mauro Negri

Department of Electronics, Information and Bioengineering, Politecnico of Milan, Italy
mauro.negri@polimi.it

Giuseppe Pelagatti
Department of Electronics, Information and Bioengineering, Politecnico of Milan, Italy
giuseppe.pelagatti@polimi.it

—— Abstract

The amount of available spatial data has significantly increased in the last years so that traditional
analysis tools have become inappropriate to effectively manage them. Therefore, many attempts
have been made in order to define extensions of existing MapReduce tools, such as Hadoop
or Spark, with spatial capabilities in terms of data types and algorithms. Such extensions are
mainly based on the partitioning techniques implemented for textual data where the dimension
is given in terms of the number of occupied bytes. However, spatial data are characterized by
other features which describe their dimension, such as the number of vertices or the MBR size of
geometries, which greatly affect the performance of operations, like the spatial join, during data
analysis. The result is that the use of traditional partitioning techniques prevents to completely
exploit the benefit of the parallel execution provided by a MapReduce environment. This paper
extensively analyses the problem considering the spatial join operation as use case, performing
both a theoretical and an experimental analysis for it. Moreover, it provides a solution based
on a different partitioning technique, which splits complex or extensive geometries. Finally, we
validate the proposed solution by means of some experiments on synthetic and real datasets.

2012 ACM Subject Classification Information systems — Geographic information systems
Keywords and phrases Spatial join, SpatialHadoop, MapReduce, partitioning, big data
Digital Object Identifier 10.4230/LIPIcs.GIScience.2018.2

Acknowledgements This work was partially supported by the Italian National Group for Sci-
entific Computation (GNCS-INDAM). This work has been supported by “Progetto di Eccellenza”
of the Computer Science Dept., University of Verona, Italy.

© Alberto Belussi, Damiano Carra, Sara Migliorini, Mauro Negri, and Giuseppe Pelagatti;
5y

licensed under Creative Commons License CC-BY
10th International Conference on Geographic Information Science (GIScience 2018).
Editors: Stephan Winter, Amy Griffin, and Monika Sester; Article No. 2; pp. 2:1-2:15

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:alberto.belussi@univr.it
https://orcid.org/0000-0003-3023-8020
mailto:damiano.carra@univr.it
https://orcid.org/0000-0002-3467-1166
mailto:sara.migliorini@univr.it
https://orcid.org/0000-0003-3675-7243
mailto:mauro.negri@polimi.it
mailto:giuseppe.pelagatti@polimi.it
http://dx.doi.org/10.4230/LIPIcs.GIScience.2018.2
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2:2

What Makes Spatial Data Big?

(a) (b)

Figure 1 Example of unbalanced datasets between which a join has to be performed. (a) contains
few geometries with a big extent described with a restricted number of vertices, while (b) contains
many geometries with a small extent represented using several vertices.

1 Introduction

In recent years the amount of spatial data available to users have increased tremendously and
the demand of resources for performing geo-spatial analysis on them cannot be satisfied any
more by traditional GIS systems. As a consequence of this new scenario, in the last decade
many efforts have been devoted to the extension of systems for big data processing based
on the MapReduce paradigm, like Hadoop [15] or Spark [16], in order to make them able
to deal with geo-spatial data. For instance, SpatialHadoop [7] is the result of one of these
projects, it is an extension of Apache Hadoop which provides a native support for spatial
data, in terms of spatial data types, operations and indexes. In particular, it provides various
implementations of the spatial join, which is one of the most frequently used operation for
analyzing spatial datasets and discovering connections between geo-spatial objects [2].
Various spatial join variants are available in literature [10] and some adaptations to the
MapReduce context have been provided [8]. In particular, SpatialHadoop implements several
spatial join algorithms which share the use of indexes for increasing their performance and
avoiding a brute force approach that simply subdivides the Cartesian product of the two input
datasets between tasks. As regards to the indexing techniques, all kind of indexes provided
by SpatialHadoop are organized into two levels: (i) first data are physically partitioned in
different blocks (usually called splits or partitions), producing a first level of index called
global indez, then (ii) in each block a specific index is built that works only on the data of
the partition, producing a second level of index called local index. This indexing pattern
directly derives from the way usually applied for organizing data inside the HDFS (Hadoop
Distributed File System). In HDFS, a dataset is partitioned into splits whose size usually
corresponds to the HDFS block size and each split represents the input for a single map
task. This organization has been originally developed for processing large amount of mono-
dimensional (textual) data where the execution time is directly affected by the number of
bytes they occupy on the file system. This choice is justified by the observation that the
amount of work to be performed on textual data usually depends on the data size (or number
of records), thus partitioning data in blocks of the same size and assigning each block to a
map task, produces a balanced work distribution among workers. This reasoning has been
applied also to spatial data, since the physical partitioning induced by the global index uses
again considerations based on the size in bytes of the dataset. However, geo-spatial objects

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

are also embedded in a 2D or a 3D reference space and their extension in these spaces is

another dimension that can have an impact on the workload of many spatial operations.

Notice that the portion of space occupied by a geo-spatial object on the Earth surface can be

completely independent from the size in bytes of its physical representation as a file record.

On the contrary the number of bytes may partially represent the complexity of a shape, in
terms of number of vertices, but not its extent. During the execution of a spatial join, the
average extent of the geo-spatial objects in both datasets affects their mutual selectivity (i.e.,
the ratio between the effective pairs produced by the join and the total number of possible
pairs given by the Cartesian product) and thus it has an impact on the workload of the
tasks devoted to its computation. The average extent of the geometries in a dataset can be
approximated by means of the average area of the MBR (Minimum Bounding Rectangle)
containing them and this parameter can be easily computed during the index construction.

The impact of the average geometry extent on the spatial join becomes particularly
relevant when the two datasets are very unbalanced in terms of extent and size. Let us
consider the case in which one dataset contains few simple geo-spatial objects with a large
extent (possibly covering almost the whole reference space), while the other one is instead
huge and contains a large number of geo-spatial objects with a small extent. The first dataset
may be possibly stored in a single split, since only few vertices are required for describing
the shapes of all objects, while the second dataset requires more splits to accommodate the
numerous objects it contains. As a first example, let us consider the case illustrated in Fig. 1,
where dataset Dy contains only seven polygons representing the Australian States (Fig. 1.a)
while dataset D,. contains several complex linestrings representing the main road elements of
the Australian transportation network (Fig. 1.b). A generic partitioning of the two datasets
which is based only on their size in bytes will produce only one partition for Dy, since the
whole set of geometries can fit in one split, while several different partitions will be built for
D,.. In this case, a spatial join operation on them (Dg Xy, D,) can be divided into several
tasks, but each one of them will work on a split of D, and on the single global split of D,
thus the Cartesian product is computed and no pruning effect is obtained by using the index.
This means for example that all geometries in the cell with label ¢ in the Fig. 1.b will be
tested for intersection with all the states of Australia. Clearly, an efficient use of a local index
can improve the performance and avoid some useless tests, but it will not affect the number
tasks to be instantiated. Moreover, the problem worsens as the extent of the geometries in
D, enlarges, covering at the end the whole space.

The aim of this paper is to formalize and evaluate the problem discussed above and
further explained in Sect. 1.1, called here parallel execution of unbalanced spatial join, in
order to identify the characteristics that really represents the complexity of spatial data,
making them “big”. In particular, Sect.2 provides a formalization of the problem and a
discussion of the limits of the current spatial join algorithms available in SpatialHadoop when
applied to unbalanced cases. Sect. 2.4 illustrates by means of some experiments the behavior
of spatial join algorithms when applied on synthetic datasets with increasing unbalanced
characteristics. Then, Sect. 3 proposes a new approach for dealing with unbalanced spatial
join that requires the implementation of an alternative kind of repartition which is based on
the geometry extent instead of on the file size. In Sect. 4 some additional experiments show
the effectiveness of the proposed approach when applied both to synthetic and real datasets
in the execution of unbalanced spatial joins. Finally, Sect.6 summarizes the obtained results
and proposed some future work.

2:3

GlScience 2018

2:4

What Makes Spatial Data Big?

Table 1 Some metadata about two real-world datasets representing the taxonomy of the soil
usage (cv_land) inside the Basilicata region and its extent (tot_reg), respectively. The average
number of vertices and the average extent area refer to each single geometry in the dataset.

Dataset size #splits #obj H#Hvert™ area®’ (squared meters)
cv_land | 1.5 (Gb) 12 913,428 70 10,550 (led)
tot_reg | 263 (Kb) 1 1 8,000 10,589,998,917 (1e10)

(a) (b) (c)

Figure 2 (a) Dataset cv_land with its grid. (b) A zoom on one cell of the cv_land grid. (c)
Dataset tot_reg with its grid.

1.1 Motivating Example

The problem discussed in this paper originated form a real-wold case regarding a collection
of datasets about a region in Southern Italy, called Basilicata. In particular, we consider
two datasets: the first one, called cv_land, contains several geometries representing the
taxonomy of land usage inside the region, while the second one, called tot_reg, contains one
object representing the whole territory of Basilicata. Tab. 1 reports some metadata of the
two datasets: they greatly differ on the number of objects, their complexity (average number
of vertices in each geometry), and their extents (average area of each geometry). The aim
of the original task was to perform a qualitative evaluation by verifying the satisfaction of
some spatial integrity constraints. In particular, one test has to check if the set of geometries
belonging to cv_land represents a geometric partition of the whole territory of Basilicata. As
shown in [12], the execution of this check by means of a sequence of SQL queries takes several
days when executed in a PostgreSQL-+PostGIS environment. Therefore, the introduction
of a parallel execution has become soon necessary. One of the required query in the above
cited sequence coincides with the spatial join between the two datasets. Given two datasets
Dy and D», the spatial join determines the pairs (dy,ds) € Dy X Dy with an intersecting
extent. This operation is usually performed exploiting a plane-sweep like algorithm, in order
to reduce the number of required comparisons. Clearly, the case considered in this paper is
particularly challenging, since as the extent of a geometry increases w.r.t. the other one, the
number of comparisons increases. Similarly, the complexity of each comparison increases as
the number of vertices describing each geometry becomes greater.

Fig. 2 illustrates the two datasets with the partitioning induced by the grid index of
SpatialHadoop; the number of splits only depends on the dataset size in bytes, so cv_land
is subdivided into 12 splits (Fig.2.a), while tot_reg is contained into 1 split (Fig.2.c).
Moreover, datasets cv_land contains a great number of objects (see a zoom in Fig.2.b),
while the complexity of tot_reg in given by the average number of vertices in each geometry.

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

Table 2 Comparison between the different spatial join algorithms provided by SpatialHadoop.
The number of produced pairs is 913,428. The last two algorithms make use of indexes, but their
performance are not greatly increased w.r.t. the first algorithm which works on non-indexed data.

Algorithm # maps Effective time Heap usage HDFS reads HDFS writes

(min) (MB) (MB) (MB)
DJnNI 12 92.57 21.87 1.57 243.64
Dicr 18 88.73 30.90 1.66 243.64
DJRE 18 80.06 24.77 1.66 243.64

Tab. 2 reports some data about the execution of the spatial join using the three main
algorithms provided by SpatialHadoop, the distributed join with no index (DJnI), the
distributed join with grid index (DJGr) and distributed join with repartition (DJRE), which
will be briefly discussed in Sect.2.3. Notice that the time required to perform the join is
very high and the execution does not benefit so much from the use of index.

2 Problem Statement

This section formalizes the problem presented in Sect. 1 by discussing in details how data is
traditionally partitioned in MapReduce environments (Sect.2.1) and how such techniques are
adapted in SpatialHadoop for implementing spatial indexes (Sect.2.2). Finally, we introduce
the problem of performing a spatial join and how this operation can be effected by the use of
a spatial index (Sect.2.3), anticipating some limits of a size-based partitioning technique
that will be discussed in more details in Sect. 2.4.

2.1 Data Partitioning in MapReduce

Hadoop divides the input of a MapReduce job into fixed-size pieces called splits and creates
one map task for each split. Each map task executes the user-defined (map) function on each
record in its split. The main idea behind the MapReduce paradigm is that the time required
to process each split individually is smaller than the time required to process the whole input.
Therefore, the more such computation on each individual split can be performed in parallel,
the more the process performance increases. The split size is generally set equal to the size
of an HDFS (Hadoop Distributed File System) block, which is 128 Mbytes by default.

The partitioning of data into splits is a crucial operation for obtaining well balanced
map tasks [3, 14, 13]. In particular, if the splits can be analyzed in parallel, the whole job
is better balanced when the splits are small, since a faster machine will be able to process
proportionally more splits during the map execution than a slower machine, while unbalanced
tasks can frustrate the benefit of the parallelism, since a single heavy task can delay the end
of the whole job. This observation tends to produce the conclusion that the smaller are the
mappers the more the effective execution time of the job can be reduced; however, if the
splits are too small, the overhead of managing the splits and creating map tasks begins to
dominate the total job execution time. Thus, a tradeoff should be defined and the reference
size of 128 Mbytes is the usual choice. Moreover, the partitioning of data is usually applied
randomly and this might produce balanced tasks for uniformly distributed datasets, but not
in general. In order to address this problem, when spatial data are analyzed, the introduction
of auxiliary structures (indexes) is an option. Using a spatial index implies that a criteria
based on spatial properties (i.e., closeness) will be used for grouping the records in the same
split. The general structure of a spatial index is presented in the following subsection.

2:5

GlScience 2018

2:6

What Makes Spatial Data Big?

2.2 Spatial Indexes in SpatialHadoop

As discussed in the Sect. 1, SpatialHadoop has two level of indexes [5]: a global and a local
one. The global index determines how data is partitioned among nodes, while the local index
determines how data is stored inside each block. The construction of a global index g on a
input dataset D causes that D is stored as a set of data files each one containing the records
spatially belonging to one cell (or partition) of the grid g. More specifically, given a dataset
representing the input data, a directory named dataset.(indez) will be created containing
several files: _master.(indez), part-00000, part-00001, part-00002, and so on, where
(indez) denotes the kind of global index (e.g., grid, quadtree, rtree). File _master.(indez)
represents the global index and it has one row for each partition containing the boundaries of
the partition and the partition file name (e.g., -179.32, -54.93, 6.92, 71.28, part-00000). All
the other files are data files containing the data records. For a grid index, each partition file
is simply a text file containing one record for each row, conversely for a R-tree it has a more
complex structure subdivided into two sections: the first one contains the tree structure in
binary format, while the second one contains the data records.

As discussed in [5] despite the particular kind of index, the number n of desired partitions
is computed considering only the file size and the HDFS block capacity which are both
fixed for all partitioning techniques. Subsequently, the space is subdivided into n partitions
and each record in the input dataset is assigned to one or more of them. Dependently on
the fact that the index admits replication or not, geometries crossing partition boundaries
can be assigned to more than one partition or to exactly one, respectively. The number of
partitions n used for performing the subdivision is crucial in the identification of the number
of mappers that will be executed in order to produce the result. As we will see in Sect. 2.4, if
the determination of such number is computed considering only the file size and the HDF'S
capacity, we can obtain strange behaviours, as the one anticipated in Sect. 1.

2.3 Use of Spatial Indexes in Distributed Joins

SpatialHadoop provides five different alternatives of spatial join algorithm: distributed join
with no index (DJN1), distributed join with grid-based index (Diar), distributed join with
repartition (DJRE), distributed join with direct repartition (DJDR), and the MapReduce
implementation of the partition-based spatial merge join (SJMR). The main differences
between them are: (i) the use of indexed or not-indexed data, (ii) the possibility to repartition
one of the two datasets using the global index of the other, (iii) the execution of the intersection
tests on the map or on the reduce side. All operators share the use of a plane-sweep like
algorithm for checking the intersections between two list of geometries. The difference mainly
resides in the way the two lists are built by the various operators. In particular, as regards
to the map-side joins, the cardinalities of such lists and their composition directly depends
on the content and size of each partition.

Since in this paper we are interested in analyzing the impact of data partitioning (i.e.,
global index) in spatial operators, such as the spatial join, we concentrate only on the
map-side joins which exploit the use of indexes during the join computation. Therefore, in
the following section we start by considering the behaviour of DJNI and DJGI in presence
of unbalanced datasets, then we evaluate the possible positive effects of a repartition of
the smaller dataset (in size) by evaluating the behaviour of DJRE. However, in all these
algorithms, the extent of geometries and the geometry complexity (in terms of number of
vertices) are not considered during the partition process. In DJNI the partition is performed
considering only the size in bytes and the constraint of splits capacity, thus records are

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

grouped randomly in the necessary number of splits. In case of the DJGI, the datasets are
indexed (i.e., partitioned) considering again the split capacity constraint, so that partitions
have a homogeneous size in terms of bytes, but records are grouped according to their spatial
closeness, which is evaluated in the space the geometries are embedded in. In case of the
DJRE, one dataset is indexed while the one (usually the smaller in size) is repartitioned using
the grid of the bigger one. The effect is that geometries of the smaller dataset are partitioned
using the spatial closeness principle, but producing splits with potentially less records (i.e.,
size less than 128 Mbytes) and consequently reducing the cost of the map tasks.

All these spatial join variants perform the join inside the map tasks: each map receives a
combined split built by a special reader that matches a split of the first dataset with a split
of the second one. Moreover, in DJGI and DJRE a combined split is built combining only
pairs of input splits that intersect (through the use of a filter). Therefore, the number of map
tasks which will be instantiated is equal for DJGI to the number of intersecting partitions of
the two global indexes, while for DJRE it is equal to the number of partitions of the bigger
datasets that intersect the smaller one. Given a combined split, each mapper initially split its
content into two lists (one for each dataset) and then executes a plane-sweep like algorithm
on them in order to identify the pairs of intersecting geometries.

As discussed in [1], the cost of this plane-sweep phase depends on three factors: (i) the
cardinality of the two lists (which depends on the partition size), (ii) the mutual dataset
selectivity (which depends on the average extent/MBR of the geometries in the two datasets),
and (iii) the average number of vertices of the geometries in the two datasets.

» Definition 1 (Plane-sweep cost). Given two lists of geometries n;, € D; and n; C D;
coming from two input datasets D; and D;, whose geometries have an average number of
vertices equal to v; and vj, respectively, and a selectivity o(A) computed w.r.t. a certain
reference space A, the complexity of the plain-sweep phase can be formulated as:

ps(ng, nj,v;,v5, A) = n;log(n;) + njlog(n;) + (v; +v;) log(vi + v5) - ns - nyj - o(A) (1)

where the first two components represent the sorting the two input lists, while the last

component is due to the intersection test between pairs of geometries with intersecting MBRs.

The selectivity o(A) can be estimated by applying the following formula, proposed in [10]:

1
o) = ;- (arealsg, (D) + areatsf (D;) + len2™(Dy)lens(Dy) + len(Dy)lens(Dy)) (2)
Eq. 2 requires that some estimates about the datasets content are available, in particular: the
average area of the MBR of the geometries belonging to D, (area .y (D.) and the average

length on the axis and y axis of the same MBRs (len;" (D), len,™ (D).

Introducing the necessary coefficients of proportionality for each operation, Eq. 1 provides
an estimate of the cost of each mapper involved in the spatial join computation. Let us
analyze the case of a sequential execution (“one task” case) and compare it with the three
map-side spatial join algorithms provided by SpatialHadoop, DiN1, DGl and DJRE. We can
conclude that the benefits induced by the application of one of the MapReduce spatial join
derive not only from the parallel execution of different portions of the whole job, but also as
a consequence of the non linear behavior of the plane-sweep algorithm.

» Observation 1 (Benefits of parallel execution of spatial join with DiNI). Given two datasets
D; and D; in the reference space of area A, with cardinality N; and N; and an average
number of vertices equal to V; and V}, respectively. The cost of a “one task” execution of the
spatial join can be estimated using Eq. 1. Conversely, by applying algorithm DJNI having s;

2:7

GlScience 2018

2:8

What Makes Spatial Data Big?

and s; number of splits for D; and D; respectively, we obtain from Eq. 1 the estimate of the
cost of each map task as follows, where a1 e ay are the coefficients that are necessary for
taking into account the cost of comparing two MBRs during the ordering phase and the cost
of testing a geometry intersection during the last phase, respectively:

N; N, N; N; N, N
PSDiNt <S’ J7V;u‘/j7A) :alflog () + al%log (j> +

i 55 S; i 55 S5
(Vi + V) log(Vi + V) - 24 20 o)
S; Sj
Notice that o(A) does not change w.r.t the “one task” case, since the geometries in each
split are randomly chosen, thus they cover the whole reference space. The cost of a map task
is obviously reduced compared to the single process, in particular: (i) the ordering phases
are reduced proportionally w.r.t. the input reduction with an additional cut of: a; N; log(s;)
(or a1 N;log(s;)), (ii) the intersection testing phase is reduced by a significant factor: s; x s,
since the number of pairs considered each map task is a subset of the total amount of
geometries. The total cost of DINI is pspyy - (S; X §;), where s; X s; represents the number
of mappers produced by DJNI. This is a greater cost compared to the “one task” case since
the ordering phase of a split of D; is replicated s; times. However, under the hypothesis that
we can execute in parallel all the map tasks, we can obtain a significant reduction of the
effective time. Indeed, in this case the effective time will coincide with the execution time of
the worst map task or to the average execution time of a map in a balanced situation.

» Observation 2 (Benefits of parallel execution of spatial join with Diar and DJRE). By
applying the DJGI algorithm on datasets D; and D;, having both a grid index with a number
of cells s; and s;, respectively, we can obtain the estimate of the cost of each map task by
computing psDJCI(f—:, J:—]J, Vi, Vj, Acen) from Eq.1. Notice that in this case the selectivity
changes, since the geometries of a split are now spatially located only in a subset of the
reference space, i.e. the space occupied by an index cell, namely A..;; (here the smallest cell
of the two indexes is considered). A similar consideration holds for DJRE, even if in this case
only a grid index is present, suppose the one of D;, so s; becomes the number of cells of s;
that intersect D;.

The cost of each map task is reduced also for DJGI and DJRE. In particular, while the
cost of the ordering phases is reduced as for DJNI, the intersection testing phase is more
expensive since the selectivity is lower. This is the effect of the index that tends to balance
the work among the map tasks and to reduce their number. The total cost can be obtained
for DyGI by multiplying pspya by the factor s; x o(s;), where o(s;) is the number of cells of
the index of D; that are intersected by a cell of D;, and for DJRE by the factor p(s;), where
p(s;) is the number of cells of D; that intersects D;. In both cases it is in average less than
the cost of the “one task” execution.

By applying the formulas in Def. 1 and Obs. 1-2 to the example in Sect. 1.1, we obtain as
expected a lower cost for DJNI, DJGI and DJRE w.r.t. the “one task” case. However, we can
also observe that with one big geometry the index does not have a significant impact on the
execution time: both DiGI and DJRE do not reduce the cost of join w.r.t DJNI.

The following section shows the results of some experiments that have been performed
with the aim to test how the number of geometries, the number of vertices and the selectivity
can affect the effectiveness of the index partitioning in increasing the performance of a spatial
join in MapReduce. As we will see, these factors can contribute in different ways, and their
effect is not completely represented by the size in bytes of each split.

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

Table 3 Metadata about the two datasets used for the experiments on MBR size. Notice that
VertPerGeom is the number of vertices describing each of the # Geometries in the dataset.

Dataset Size # Splits # VertPerGeom # Geometries MBR ext
D; 1152 (MB) 9 1,000 2,156 le-8
D; 1 (MB) 1 1,000 40 1 - le-4

2.4 Experimental Analysis of the Problem

The previous section discusses the fact that a partitioning technique based only on the size
in bytes of the input dataset does not properly capture the complexity of a spatial join
operation, which instead depends on three factors (number of geometries, number of vertices
and selectivity) that can be independent from the input size. More specifically, given a
split s with a predefined size in Megabytes, its content can be very different: it can contain
many simple geometries with a restricted number of vertices, or it can contain few complex
geometries described by a huge number of vertices, again such geometries can have a very
different extent which does not depend on the number of vertices. While the number of
geometries contained in a split directly depends on the average number of vertices used to
describe a shape, the extent is an independent aspect. Therefore, this section presents two
kinds of experiments both performed by keeping constant the size in bytes of the two input
datasets: (i) the average extent (MBR) of the second dataset is progressively augmented,
producing a decrease of the selectivity (more join pairs), (ii) the number of vertices of the
second dataset is progressively augmented, producing also a decreasing in the number of
geometries contained inside a split.

2.4.1 \Variation on the MBR Size

The first set of experiments tries to study the effect of the average geometry MBR size
(namely the selectivity) on the join performance. In particular, we consider two synthetic
datasets D; and D; with uniform distribution, D; contains a huge number of geometries with
a small extent, and D; contains few geometries with a big extent. During the experiments
the extent of geometries in D; has been varied from 1 to le-4 w.r.t. to the overall dataset
extent, namely initially the geometries occupy all the reference space, and this occupation
is progressively decreased till a ratio of le-4. Tab. 3 reports some metadata about the two
datasets, such as the number of geometries and the number of vertices in each geometry.
We compute the spatial join between these datasets by considering the three algorithm
variants presented in Sect.2.3. Fig. 3 reports the results of such experiments. As you can
notice, the time required to perform the spatial join depends linearly on the selectivity (i.e.,

the average MBR size of the geometries) as predicted by the formulas presented in Obs. 1.

Moreover, the performances of the three algorithms are very similar to each other and this
proves that a partitioning technique that takes care only of the size in bytes does not capture
the real complexity of the dataset. Indeed, given the same input size, in this experiment
the performances of the spatial join considerably worsen passing from a couple of minute to
more than one hour. While the time remains acceptable in the first cases (till an MBR area
of D; equal to le-1), it becomes incredibly bad when the geometries of D, occupy the whole
reference space. In this last case, none of the available partitioning techniques are able to
completely exploit the parallelism and the benefit of a MapReduce framework.

Coming back to the real-world case illustrated in Sect. 1.1, in Fig.4 we consider a join
between the dataset tot_reg and a polygon with an increasing MBR and a constant number

2:9

GlScience 2018

2:10

What Makes Spatial Data Big?

6 DJNI L e— tot_reg #Vert Join DJRE
& 5 | DIGI —B— MBR PerGeom size (sec)
o | DRE —4— 5o-2 1,000 61,440 | 106
g4 B le-1 1,000 104,934 | 145
o 3 1.5e-1 1,000 179,188 | 220
E 2.2¢-1 1,000 262,311 | 329
22
8
ol
0 |
0 0.2 0.4 0.6 0.8 1
Geom MBR size
Figure 3 Effective time taken by the three con-
sidered spatial join algorithms by varying the MBR Figure 4 Effective time taken by the DJRE
size of dataset D; from an area of le-4 to 1 w.r.t. algorithm applied to the real-world case by
the area of the reference space. varying the MBR size of the dataset tot_reg.

Table 4 Metadata about the two datasets used for the experiments on the number of vertices.
VertPerGeom is the number of vertices describing each of the # Geometries in the dataset.

Dataset Size # Splits # VertPerGeom # Geometries MBR ext
D, 1152 (MB) 9 1,000 2,156 le-8
D; 1 — 75 (MB) 1 1,000 — 50,000 40 le-2

of vertices (i.e., 1,000). In particular, the average MBR is changed from a radius of 15Km to
a radius of 35Km, respectively. Again the time required for performing the join linerarly
depends on the MBR size, namely the resulting selectivity.

2.4.2 Variation on the Number of Vertices

The second set of experiments evaluates the effect of the number of vertices on the complexity
of the spatial join. In particular, we consider two datasets D; and D; with a fixed size in
terms of occupied splits and containing geometries with a fixed extent. In order to check how
the number vertices affects the time required for performing the spatial join, we vary the
number of vertices of all geometries in D;, while maintaining constant the number of occupied
splits, the number of geometries and their average MBR area. Tab. 4 shows some metadata
about the considered datasets. In particular, for D; the number of vertices describing each
geometry is varied from 1,000 to 5,000.

Fig. 5 presents the result of these experiments, again the use of the partitioning induced
by the spatial index does not considerably increase the performance of the join: the difference
between the three algorithms is no more than few minutes and in some cases the execution
time is less for the join without index than for the other twos. In this case the number of
map tasks to be executed is the same for all three algorithms: DJNI considers a number of
combined splits equal to the Cartesian product, namely 1 x 9 splits, which is equal to the
number of combined splits computed by DiGI, since the 1 split of D; intersects all splits
of D;. Similarly, for DJRE the repartition does not discard any cell of D;; moreover, the
costs of performing a repartition phase is not compensated by its benefits, the number of
repartitioned geometries is so very small. The trend of the curves in Fig. 5 completely adheres
to the formulas presented in Obs. 1.

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

tot_reg Geom Join DJRE
800 ‘ ‘ # vert MBR size (min)
200 | DINI —6— 1,000 le-1 103,683 | 13
2600 | 5,000 le-1 103,704 60
2 10,000 le-1 103,707 118
2 500 1 15,000 le-1 103,710 | 174
§ 400 | 20,000 le-l 103,707 | 231
'§ 300 -1 25,000 le-1 103,708 288
E 200 - 30,000 le-1 103,707 342
100] 35,000 le-1 103,707 408
0 ; 40,000 le-1 103,707 463
0 10000 20000 30000 40000 50000 45,000 le-1 103,707 519
Vertices 50,000 le-1 103,707 578
Figure 5 Effective time taken by the three con- Figure 6 Effective time taken by the
sidered spatial join algorithms by varying the num- DJRE algorithms by varying the number
ber of vertices of each geometry in dataset D; from of vertices of each geometry in dataset
1,000 to 50,000. tot_reg from 1,000 to 50,000.

Referring to the real-wold case introduced in Sect. 1.1, we evaluate the performance of
DJRE by varying the number of vertices in dataset tot_reg while maintaining constant the
characteristics of dataset cv_land. The results are reported in Fig. 6, again the time by the
spatial join increases with the number of vertices in each geometry.

3 Proposed Solution and Discussion

Considering the experimental results presented in the previous section, we can conclude
that the effective execution time of three spatial join algorithms, DJNI, DJGI and DJRE, are
affected by both the selectivity of the datasets, which directly depends on the MBR area

of the geometries they contain, and the average number of vertices of the same geometries.

Indeed, in the experiments the size in bytes of the input file remained unchanged, while the

selectivity and the number of vertices are varied, obtaining very different execution times.

However, the partitioning techniques provided by SpatialHadoop are only based on the size
in bytes of the input files, thus they cannot react to the variations of these parameters.

In order to avoid this problem we propose an alternative partitioning technique to be
applied during the existing index building phase. Given the grid to be used for grouping
the geometries of a dataset, the existing indexing phase scans the whole dataset and for
each geometry g detects the subset of cells S(g) that it intersects, then g will be inserted in
the split of each cell in S(g). This means that sometimes a geometry g can be replicated
in more than one split. If g is relatively small w.r.t. the index cells, then the replication is
not frequent, but when geometries are bigger, the repetition occurs more frequently. The
replication rate has not been considered in the cost estimation (see Eq. 1), since it can be
neglected in the considered experiments.

The proposed technique enriches the indexing phase with a splitting operation which
should affect the partitioning result in particular when the MBR area increases or the number
of vertices increases. In the first case, i.e. lower selectivity, we can split the geometries that
cross two or more index cells, so that the average area of their MBR is reduced and thus their
contribution to the join selectivity is reduced (see Eq.2). Notice that in this case the number

2:11

GlScience 2018

2:12

What Makes Spatial Data Big?

of tested geometries does not change (in the original approach the whole geometry will be
replicated in all combined splits), so the cost of a map task is reduced according to Eq.1. In
the second case, i.e. higher number of vertices, we can split the geometries when the number
of their vertices exceed a threshold. In this way, a big geometry g can be substituted by a
set of smaller geometries {g1, ..., gn }, that represent a partition of g and have a number of
vertices smaller than the number of vertices of g.

In order to combine the two cases, we consider a new partitioning technique where the
dataset with the bigger (in terms of average area of their MBR) geometries are splitted
by considering the grid of the other dataset. This splitting phase reduces both parameters
discussed above, thus reducing the cost of the map tasks. The following proposition shows
the effective cost reduction that the splitting phase introduces.

» Observation 3 (Benefits of the splitting phase). Consider two datasets D; and D; in a
reference space of area A, with cardinality N; and IN; and an average number of vertices
equal to V; and V}, respectively, and such that D; is the dataset having the bigger geometries
in terms of occupied area. The cost of the “one task” execution of the spatial join can be
estimated by Eq.1. Conversely, if we consider the application of DiGI on D; and D; in
presence of grid indexes having respectively a number of cells s; and s;, and assuming that
the geometries in D; have been splitted so that they are spatially contained in one cell of D;,
the cost of each map task can be estimated from Eq. 1 as follows:

N; aN; . Vi N; N; N; N,
PSDicr (7 a 4) ‘/:h J7Acell> =a1— log <> + ala ! log (a J) +
. 1% .

Sy S Si S; Sj S5

V; Vi\ N, aN;,
as <W+oj)10g<‘/5+)"a L o(Acen) (3)

2
« S S5

where « represents the average number of cells of D; that are intersected by a geometry
of D;, namely the average number of small geometries obtained from each big geometry
in D; after the splitting phase. Accordingly to [1], it can be estimated as follows: a =
[len2(D;)/lens®(D;)] - flenzvg(Dj)/lenZel(Diﬂ + 8, where, considering the MBR of the
geometries belonging to Dj, leny"?(D;) (leny"(D;)) is the average length on the z (y) axis of

x x

these MBRs, while lent®(D;) (len?jel(Di)) represents the average length on the = (y) axis of
the index cells of D;. [is an additional factor taking into account the displacement between
MBRs and cells, namely it is a function of the probability that the MBR of a geometry of
Dj crosses the boundaries of the cells of D;.

Notice that, as shown in Obs. 1, the cost of a map task is obviously reduced compared
to the “one task” case, in particular: (i) the ordering phases are reduced proportionally
w.r.t. the input reduction with an additional cut quantifiable in: a;N;log(s;) for D; (or
araN;(log(a) —log(s,)) for D;), (ii) the intersection testing phase is also reduced in two ways:
by the reduction of the pairs of geometries to be considered, with a factor (a - o(D;)/s;),
and also by the reduction of the cost for testing the intersection between two geometries,
since the number of vertices is decreased by a factor a.

4 Validation of the Solution

This section presents some additional experiments that verify the theoretical behavior of the
algorithms when the new splitting technique described in Sect. 3 is applied. In particular,
we first consider the experiments related to the variation of the average MBR size (i.e.,
selectivity) and check the effect of splitting the geometries of D, using the grid of the constant
dataset D; of size 9 splits. These results are reported in Tab. 5 where the first three columns

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

Table 5 Comparison between the execution time of the three distributed join algorithms when
performed considering the original and the modified synthetic datasets with a variable MBR size.

D; Avg MBR size Dint Dijar DJRE
Orig Part %Decr. | (sec) %Improv. | (sec) %Improv. | (sec) % Improv.
le-1 2.27e-2 77.25% 491 5.66% 527 7.17% 527 5.66%
2e-1 3.08e-2 84.58% 941 6.71% 934 8.72% 945 3.94%

3e-1 3.66e-2 87.79% | 1,223 15.20% 1,285 10.95% 1,280 15.31%
4de-1 4.35e-2 89.12% | 1,752 8.58% 1,633 14.91% 1,705 10.33%
Se-1 4.40e-2 91.19% | 2,008 13.86% 1,814 23.99% 1,747 26.17%
6e-1 4.93e-2 91.79% | 2,553 13.35% 2,586 9.81% 2,259 24.11%
Te-1 5.75e-2 91.78% | 3,009 12.78% 2,650 16.28% 2,665 15.67%
8e-1 6.58¢-2 91.77% | 3,573 11.49% 3,570 4.86% 3,311 13.21%
9e-1 7.4le-2 91.76% | 4,352 5.83% 4,021 3.37% 3,629 12.71%
le+0 8.21e-2 91.79% | 4,558 14.22% 4,473 8.73% 4,746 7.60%

Average 10.77% 10.88% 13.47%

Table 6 Comparison between the execution times of the three distributed join algorithms when
performed on the original and the modified synthetic datasets with a variable number of vertices.

D; # VertPerGeom DJRE

Original Splitted % Reduction | (sec) % Improvement
1,000 149 85% 303 5%
10,000 1,545 84% 397 20%
20,000 2,924 85% 753 57%
30,000 4,512 85% 1,239 2%
40,000 6,020 85% 2,123 8%
50,000 8,272 83% 3,194 84%

Average 85% ‘ 52%

contain: (a) the original MBR size, (b) the MBR size after the splitting and (c) the average
percentage of decrease in the MBR size. The area of the used grid cells is 8.21e-2, while
the average percentage of decrease in the MBR size increases as the average MBR area
of the original geometries increases. For each algorithm the table reports the execution
time on the splitted geometries and the percentage of improvements w.r.t. the original
situation. All three versions of the distributed join benefit from the partitioning with an
average improvement of around 10-13% with respect to the previous executions.

As second set of validation experiments we consider the case in which the geometry

MBR remains unchanged but we vary the number of vertices describing each geometry.

In particular, we consider only the case of DJRE since the execution time of the various
algorithms are not much different from each other and DJRE is on average the most efficient
one. These results are reported in Tab.6 where the first three columns contain: (a) the
original number of vertices in each geometry, (b) the number of vertices after the splitting (c)
the average percentage of decrease in the number of vertices. The other two columns contain
the execution time of DJRE on the splitted geometries and the percentage of improvement
w.r.t. the original situation. The results of these experiments confirms what verified in
Sect. 2.4, namely the not negligible effect of the number of vertices on the spatial join
execution time. Indeed, this time greatly decreased by decreasing the complexity of the
geometries in terms of the average number of vertices in each geometry.

2:13

GlScience 2018

2:14

What Makes Spatial Data Big?

5 Related Work

A common strategy to reduce the cost of a spatial join is the filter-and-refine approach
which consists on a filter phase that traditionally works on the MBR, (minimum bounding
rectangle) of the involved geometries, and a refining step which performs the actual test
on the filtered pairs. The filter phase can usually benefit from the use of a spatial index
while the identification of both the overlapping MBRs or geometries is performed using the
plane-sweep algorithm [10]. In [17] the authors analysed the problem of how to partition
spatial data in order to perform parallel spatial join. They promoted the use of spatial
locality in task decomposition in order to speed-up the join computation. This partitioning
reflects the way data is partitioned by SpatialHadoop during the construction of a global
index. However, it is not effective in the case considered in this paper, since we assume
the presence of some big and complex geometries which occupy the whole reference space.
In the context of parallel spatial join execution, some research has been done in order to
define partitioning techniques which produce balanced partitions even in presence of skewed
data [4, 9, 11]. This paper does not consider the effect of the data distribution (skewed or
uniform), but concentrates on the presence of big and complex geometries that do not allow
to completely exploit the parallelism induced by the MapReduce approach.

In [5] the author analysed the various partitioning techniques available in SpatialHadoop
and they experimentally studied the effect of such indexes on some operations, such as the
range query and the spatial join. The work mainly evaluates such partitioning techniques
based on four quality measures, but it assumed that the considered objects occupy a
small space w.r.t. the reference space, so it did not consider the problem treated in this
paper. The problem of processing big complex geometries together with small ones has
been investigated for the first time in [12], where the author detected a difference in the
performance of some Pigeon operations when performed on spatially equivalent datasets with
different configurations for what regards the extent and complexity of the involved geometries.
Pigeon [6] is an extension of Pig Latin for dealing with spatial data in SpatialHadoop.

6 Conclusion

This paper deals with the problem of identifying the characteristics that really represents the
complexity of spatial data, making them “big” w.r.t. the most common operations. These
characteristics have to play a central role in the definition of an effective partitioning technique
able to exploits all potentiality of a MapReduce environment, like Hadoop. Traditionally,
in such environments the partitioning of data is performed by subdividing the records in
the original datasets so that each obtained split has an upper bound size given in terms
of the number of occupied bytes. This kind of partitioning is used also in spatial-aware
MapReduce systems, like SpatialHadoop, where the data partitioning, even the one induced
by the construction of spatial indexes, is driven only by the data size in bytes. However,
spatial data is characterized by other kinds of dimensions, such as the number of vertices
(complexity) used to described a single geometry, or the average area of the MBR of the
geometries (extent). These characteristics usually affect the cost of spatial analysis operations,
such as the spatial join. Therefore, we can assume that what makes spatial data big is not
only their size in bytes, but also their complexity and their extent. In order to validate such
hypothesis, in this paper we analyse the behaviour of some distributed spatial join algorithms
provided by SpatialHadoop when varying the average MBR size and the number of vertices,
showing how such characteristics affect the performance of the spatial join and that they
are not correctly captured by a partitioning technique based only on the size in bytes of the

A. Belussi, D. Carra, S. Migliorini, M. Negri, and G. Pelagatti

input datasets. We propose the idea of a new partitioning technique which takes care of such
characteristics by also performing a splitting of the original geometries in order to reduce
their complexity and better exploit the parallelism induced by a MapReduce environment.
Further improvements will regard the identification of the grid which is more appropriate on

the base of the average MBR size of geometries and the average number of vertices.

—— References

1

10

11

12

13

14

15
16

17

A. Belussi, S. Migliorini, and A. Eldawy. A Cost Model for Spatial Join Operations in
SpatialHadoop. Technical Report RR108/2018, Dept. of Computer Science, University of
Verona, 2018. URL: https://iris.univr.it/handle/11562/981957.

Alberto Belussi, Sara Migliorini, Mauro Negri, and Giuseppe Pelagatti. Validation of spatial
integrity constraints in city models. In 4th ACM SIGSPATIAL Int. Workshop on Mobile
Geographic Information Systems, pages 70-79, 2015. doi:10.1145/2834126.2834137.
Matteo Dell’Amico, Damiano Carra, and Pietro Michiardi. PSBS: Practical size-based
scheduling. IEEE Transactions on Computers, 65(7):2199-2212, 2016.

D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling
in parallel joins. In 18th Int. Conf. on Very Large Data Bases, pages 27—-40, 1992.

A. Eldawy, L. Alarabi, and M. F. Mokbel. Spatial partitioning techniques in SpatialHadoop.
Proc. VLDB Endow., 8(12):1602-1605, 2015.

A. Eldawy and M. F. Mokbel. Pigeon: A spatial MapReduce language. In IEEE 30th Int.
Conf. on Data Engineering, pages 1242-1245, 2014. doi:10.1109/ICDE.2014.6816751.
A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial data.
In 2015 IEEFE 31st International Conference on Data Engineering, pages 1352-1363, 2015.
A. Eldawy and M. F. Mokbel. Spatial Join with Hadoop, pages 2032-2036. Springer
International Publishing, Cham, 2017. doi:10.1007/978-3-319-17885-1_1570.

K. A. Hua and C. Lee. Handling data skew in multiprocessor database computers using
partition tuning. In 17th Int. Conf. on Very Large Data Bases, pages 525-535, 1991.
Edwin H. Jacox and Hanan Samet. Spatial Join Techniques. ACM Trans. Database Syst.,
32(1), 2007. doi:10.1145/1206049.1206056.

Masaru Kitsuregawa and Yasushi Ogawa. Bucket spreading parallel hash: A new, robust,
parallel hash join method for data skew in the super database computer (SDC). In 16th
Int. Conf. on Very Large Data Bases, pages 210-221, 1990.

S. Migliorini, A. Belussi, M. Negri, and G. Pelagatti. Towards massive spatial data valida-
tion with spatialhadoop. In 5th ACM SIGSPATIAL International Workshop on Analytics
for Big Geospatial Data, pages 18-27, 2016. doi:10.1145/3006386.3006392.

Giovanni Neglia, Damiano Carra, Mingdong Feng, Vaishnav Janardhan, Pietro Michiardi,
and Dimitra Tsigkari. Access-time-aware cache algorithms. ACM Transactions on Modeling
and Performance Evaluation of Computing Systems (TOMPECS), 2(4):21, 2017.

Mario Pastorelli, Damiano Carra, Matteo Dell’Amico, and Pietro Michiardi. HFSP: bring-
ing size-based scheduling to hadoop. IEEE Trans. on Cloud Computing, 5(1):43-56, 2017.
Tom White. Hadoop: The Definitive Guide. O’Reilly Media, Inc., 4th edition, 2015.
Matei Zaharia, Reynold S. Xin, Patrick Wendell, Tathagata Das, Michael Armbrust, Ankur
Dave, Xiangrui Meng, Josh Rosen, Shivaram Venkataraman, Michael J. Franklin, Ali
Ghodsi, Joseph Gonzalez, Scott Shenker, and Ion Stoica. Apache Spark: A unified en-
gine for big data processing. Commun. ACM, 59(11):56—65, 2016. doi:10.1145/2934664.
Xiaofang Zhou, David J. Abel, and David Truffet. Data partitioning for parallel spatial
join processing. Geolnformatica, 2(2):175-204, 1998.

2:15

GlScience 2018

https://iris.univr.it/handle/11562/981957
http://dx.doi.org/10.1145/2834126.2834137
http://dx.doi.org/10.1109/ICDE.2014.6816751
http://dx.doi.org/10.1007/978-3-319-17885-1_1570
http://dx.doi.org/10.1145/1206049.1206056
http://dx.doi.org/10.1145/3006386.3006392
http://dx.doi.org/10.1145/2934664

	Introduction
	Motivating Example

	Problem Statement
	Data Partitioning in MapReduce
	Spatial Indexes in SpatialHadoop
	Use of Spatial Indexes in Distributed Joins
	Experimental Analysis of the Problem
	Variation on the MBR Size
	Variation on the Number of Vertices

	Proposed Solution and Discussion
	Validation of the Solution
	Related Work
	Conclusion

