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—— Abstract

In order to extract and map location information from natural language descriptions, a first step

is to identify different language elements within the descriptions. In this paper, we describe a
method and discuss the challenges faced in creating an annotated set of geospatial natural lan-
guage descriptions using manual tagging, with the purpose of supporting validation and machine
learning approaches to annotation and text interpretation.
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1 Introduction and Background

To progress research on the interpretation of geospatial natural language, methods for
automated tagging of spatial language are required [5, 9]. In this paper, we discuss the
challenges that we encountered when trying to create manually tagged annotated data set
that addresses the shortcomings of previous data sets, using two experiments. A number
of researchers have addressed the problem of annotating geospatial natural language. For
example, Stock and Yousaf [10] annotated a wide range of language elements, including
adverb and parts of objects as well as relatum, locatum and spatial relation, mainly by
extending POS tags in a rule-based approach. Kordjamshidi et al [5] restrict their attention
to trajector, landmark and spatial prepositions, although they acknowledge that other parts
of speech can be used to express spatial relations. GUM Space specifies a broad range of
tags including locatum, relatum, spatial modality [3]. SpatialML uses mark-up language
to tag elements [7] including places, coordinate, orientations, form of reference, direction,
distance and frame. Work by Zwarts [12] and Kracht [6] address spatial prepositions, with a
focus on directional prepositions and location. Much of the previous work is either limited to
very simple elements [5]; adopts a complex tag structure [3] or assumes a particular syntactic
(grammatical) structure [5, 10]. We propose an annotation scheme that addresses these
limitations in that it focuses on semantics rather than syntax.
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2 Methodology

We conduct our exploration of the challenges of creating an annotated data set using two
experiments. The first one compares the tagging conducted by pairs of human annotators
and discusses discrepancies and issues involved in manual tagging. The second one discusses
variations between individual human respondents in matching natural language descriptions
to spatial relations, highlighting the lack of consensus.

2.1 Experiment 1: Creating an Annotated Data Set

The selection of an annotation scheme was based on three criteria: 1. What must be
individually identified in order to support effective geocoding of the text? This is difficult
to evaluate conclusively, as it depends upon the geocoding approach, and some aspects of
spatial language are still not well understood. This criterion influences not only which items
we tag, but also which items we identify as separate elements. For example, it is not useful
to separate mext to into two separate tags, because the meaning depends on the combination
of the words, and the meaning of to in particular is dependent on the presence of next. In
contrast, adverbs like right, or directly, have their own meanings which are similar regardless
of the preposition they appears with, although the meaning may be influenced by the latter.
2. Can some of the tags or their subcategories be reliably determined automatically? If
a particular semantic tag can be reliably identified through an automated approach, then
there is little point in annotating in manually. The reliability of an automated approach
is a question of degree, but we use the yardstick that if the set of words of interest can
be defined by a clear set of specific words, none of which are homonyms, then they might
reliably be identified automatically. In practice this is rare, because for example, even though
the set of prepositions is a closed word class, since we are interested in semantic tags rather
than syntactic, and prepositions normally encode spatial relations, there are examples of
spatial relations that are not prepositions (e.g.in line with). 3. What is practical to expect
people to reliably annotate? This involves both volume and simplicity. A set of tags that is
too complex will be difficult for manual annotators to deal with. The set of tags must be
manageable in quantity, and simple enough to understand without specialist knowledge.

In Experiment 1, we develop a generic spatial annotation framework based on the semantic
roles of tokens in a sentence. To this end, 1000 sentences were randomly selected from the
combined set of three data sources: The Nottingham Corpus of Spatial Language[9], The
Landcare Research National Soils Database ' and The Where Am I survey, in which natural
language descriptions were elicited from human respondents, as described in [8]. Table 1
identifies, describes and explains the annotation scheme that was used. Four annotators
were given an expanded version of Table 1 with a simple explanation of terms and examples.
The purpose of the work was explained to them in simple terms, and they were given access
to the tagging app. Each annotator was then asked to annotate 10 expressions using the
tagging app, after which the authors examined the expressions and gave feedback on any
issues, before the annotator began annotating in earnest. Each expression was tagged twice
by two different annotators.

! https://soils.landcareresearch.co.nz/index.php/soil-data/national-soils-data-
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Table 1 Tag labels and descriptions.

Title Explanation

The object whose location is being described. The important role of the
Trajector trajector in spatial language has been discussed by a number of researchers

and is also known as locatum [3] or figure [11].

The object that is used as a reference point in the description. The landmark
Landmark also plays an important and well documented role in spatial language, and is

similar to the relatum and ground identified by other researchers[11].

Spatial Rela-
tion

The word or words that indicate how two objects are positioned relative to
other. The importance of spatial relations has also been well recognised, and
they have been widely researched [1, 4, 12]. In syntactic terms, spatial relations
are most often represented using prepositions, but not always.

Location and
movement
verb (lmv)

A verb that describes the manner in which one object is positioned relative to
the other. The location and movement verb is a subset of the verb syntactic
category[11]. The road crosses behind the church.

Spatial quali-

A word of set of words that adds more information to the spatial relation and
or the location and movement verb. Spatial qualifiers have not been widely

recognized as an important carrier of spatial information as yet, and may
be represented with a range of different parts of speech, including adverbs,
adjectives and nouns. The road goes right beside the church

fier

A word of set of words that describes particular subparts of a feature.E.g. The
north of the country. Spatial specifiers have also not been widely studied in
specific terms, with work instead focusing on general issues of mereology [2].

Spatial
cifier

spe-

2.2 Experiment 2: Matching of Expressions to Spatial Relations

In the second experiment, we used data collected in earlier work [10]. In this work, respondents
were shown expressions one at a time, and asked to match each expression to one of a series
of diagrams that illustrated spatial relations. After viewing the expression and the set of
available spatial relation diagrams, each annotator was asked to select values on a Likert
scale that included only the positive side of the scale, to indicate his or her opinion about
how closely each of the selected spatial relation diagrams matched the expression: Strongly
Agree, Agree, Agree Somewhat. Only the positive half of the scale was used because users
were invited to only select diagrams that they thought reflected the expressions (i.e. if they
did not agree, the respective diagram would not be selected). Weights were allocated to
each response for a given spatial relation diagram-expression pair, using 1, 0.75 and 0.5 for
Strongly agree, Agree and Agree Somewhat respectively. The score for each expression and
its geometric configuration was calculated using this formula:

(1)

In which response k represents the number of responses with weight k, and n defines the
total number of responses for expression k. Full details of the methodology can be found
in[10].

n .
GCOScorecypression,diagram = Y _p_p(responseyweighty)/n

3 Results

In order to evaluate the reliability of the manual annotation process in Experiment 1,
we calculate inter-annotator agreement among the four annotators. Since expressions were
randomly allocated to annotator, any combination of pairs of specific annotators may annotate
a given expression. Inter-annotator agreement was calculated by comparing the words in
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Figure 1 Study 1. Mean inter-annotator agreement by tag type.
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Figure 2 a-c Annotator performance through the time.

a given expression that were given a particular tag by each annotator. Since many of the
expressions were complex and contained more than one of some tags, we calculate agreement
by proportion of overlap between the words annotated with a particular tag by each user,
rather than by a simple true/false agreement. Formula 2 expresses this measurement of
agreement between annotators for a single expression: For a given tag, ME; denotes the
number of mutual elements (words or multi-word tagged values) that both annotators agree
on, and maxy; denotes the maximum number of elements that are tagged by either annotator.
The total agreement score for the expression is then average of agreement across the populated
tags. For example, if user 1 specifies Australia, New Zealand and Canada as landmarks and
user 2 specifies Canada and USA as landmarks MFE}, for the landmarks would be 1, because
just Canada is mutual and the mazy, would be three as the maximum number of landmarks
by either annotator. The agreement score is calculated for all the tags in an expression, and
the average is calculated to determine the agreement across the entire expression.

AgreementScore = Average(d> (M Ey/maxy)) (2)

Figure 1 shows the mean inter-annotator agreement for individual tags, as well as overall
and also the percentage of tags of each type that were annotated in the 1000 expressions. We
used this formula, to have an accurate calculation of each separate tag. We also explore the
role of annotator experience in the manual tagging process, and evaluate whether annotator
performance improves over time. For each annotator, we calculated inter-annotator agreement
for the first, second and third 50 expressions tagged by three annotators through the time
to see whether their performance changed by time or not. Only 3 annotators are shown
because the remaining did not annotate sufficient expressions. Figures 2a to ¢ show the
results. We then calculated the inter-annotator agreement of different subsets of annotators,
to determine whether some annotators were more successful than others in tagging, either
overall of for specific tags. The results (Figure 3) show some inconsistency. It is, however,
clear that Annotator 2’s contribution is important, with her exclusion resulting in overall
deterioration.
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Figure 3 Inter-annotator agreement Figure 4 a,b Study 2. GCO score for second three
excluding each annotator in turn. expression.

Turning to Experiment 2, the results highlight the lack of agreement among individual
respondents regarding the spatial relation diagram that best reflects a given expression. The
respondents in Experiment 2 were also non experts in geographic information science. Figures
4 a and b each show the spread of responses for three example expressions. In contrast to
Experiment 1, Experiment 2 used short, simple spatial expressions, and the graph shows the
frequency (after weights have been applied as described in Section 2) of selection of each
spatial relation for a given expression. Two expressions in 4b show a number of small peaks,
with no clearly dominant relation selected by the respondents. Across the entire data set, a
similar pattern was observed, with lack of consensus among respondents in selecting spatial
relations to match many expressions.

4 Discussion and Conclusion

The results clearly show that it is not straightforward to create a manually annotated data
set of natural language descriptions with a broad set of language elements that is based
on semantics rather than syntax. Obviously, for an annotated data set for use in machine
learning and validation, we would like the agreement to be very strong. Considerations of
the level of experience of the annotators and the examination of the influence of specific
annotators on particular tags did not result in noticeable improvement. The challenges that
were encountered can be summarised as follows: Firstly, it is not unusual for the same place
name, geographic feature or moving object to be both a trajector and a landmark, and
secondly, the landmark/trajector status of a word may be ambiguous. The following example
illustrates both of these cases. In the expression the church stands beside the post office near
the bridge, the structure of the expression could be:
“trajector+(Imuv)+spatial-relation+landmark+spatial relation+landmark”
“trajector+(Imuv)+spatial-relation+ (trajector and landmark)+spatial relation+landmark”
In the first case, church is a trajector for both the church landmark and the bridge
landmark, and in the second case post office is the trajector for the bridge landmark, as well
as the landmark for the church trajector. The annotation scheme used in this paper allowed
each word to be tagged only as a trajector or a landmark, but not both. The creation of a
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tag that indicates a dual role may be a possible methods for addressing this. Resolution of
ambiguity is a more difficult problem to solve, and even the most expert and experienced
annotators may disagree. A final observation from the results is that, spatial qualifiers and
spatial specifiers had only fair inter-annotator agreement (lower than other tags), and while
this may be in part due to confusion about when to use each, when questioned, Annotator 2
was able to accurately explain when the spatial specifier tag was used and claimed to find it
easy to understand. Confusion in the tagging process was sometimes caused by considerations
of grammar, rather than meaning.

In this paper, we have described a semantic annotation scheme that is designed to
be both useful and practical, and the methodology used to create an annotated data set.
We analysed and presented some of the challenges encountered in the process, and the
fundamental difficulties resulting from ambiguity and individual discrepancies in the use of
spatial language that make it difficult to define a single, reliable annotated data set at a
semantic level. In future work, we intend to do more analysis and test different annotation
strategies like single tag per annotator, to see if there is any improvement in the results
achieved.
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