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—— Abstract

As maps are visual representations of spatial context to communicate geographic information,
analysis of gaze behavior is promising to improve map design. In this research we investigate
the impact of map task complexity and different legend types on the visual attention of a user.
With an eye tracking experiment we could show that the complexity of two map tasks can be
measured and compared based on AOI sequences analysis. This knowledge can help to improve
map design for static maps or in the context of interactive systems, create better map interfaces,
that adapt to the user’s current task.
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1 Introduction

Maps are visual representations of spatial context that communicate geographic information
and allow for spatial problem analysis [13]. The design of “better” maps is a key goal in
cartography. However, the definition of “better” is vague and has been a topic of research for
a long time. In his book, MacEachren provides an overview of how maps work at different
levels and how design choices interact with the processing of information from a map [10].

Visual attention is a valuable source of information for cartographic design both when
evaluating a map design or adapting the interface [5]. Tracking and analyzing visual attention
on maps through eye tracking experiments has been proposed and used in cartography for
quite some time (see [9], for an overview). Compared to other methods for evaluating a
map design, such as a “think aloud protocol”, eye tracking does not introduce additional
cognitive load or affect the task. Research questions that have been addressed by eye tracking
experiments range from testing the differences between expert and novice map users [12],
evaluating cartographic design decisions [1], or analyzing task complexity and cognitive
processes [11].
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Figure 1 The three maps used in the experiment (legend excluded). The magenta circles on the
maps indicate the cities that were subject of the tasks. These circles were not visible during the
experiment. The map material is based on the economic map from the Swiss World Atlas’.

Depending on the purpose of the analysis, different measures are commonly used for the
analysis of gaze data collected during the interaction with maps. Some measures, such as
average fixation duration [2], are not related to the map content and may provide general
insights about the cognitive state of the user. Content-related measures, on the other hand,
enable an analysis of which elements of the map or interface the user has paid attention
to [8], thus allowing for a more detailed evaluation of the map or interface. For instance,
Coltekin et al. [3] used sequence analyses on Areas of Interest (AOI) to study individual and
group differences for a geovisual analytics tasks on two different map interfaces.

In this short paper, we suggest to use compressed string analysis of eye tracking data to
evaluate the impact of task complexity and different legend types on the visual attention of
a user. The two gaze based legend types described in [6] and a traditional legend were tested
on three different map extents. This result can help to improve map design or in the context
of interactive systems, create better map interfaces, that adapt to the user’s current task.

In this research we investigate whether the complexity of two map tasks can be measured
and compared based on fixation sequences. In order to address this research question, we
choose to analyze the mean fixation duration and perform a sequence analysis based on
AOIs. The short paper is structured as follows: We first explain the experiment including
an introduction to the task, the map and the legends used. Furthermore, we explain the
procedure and the AOIs used. In the results section we report on average fixation duration
and gaze sequences. Finally we discuss the results and provide an outlook on future work.

2 Experiment

We intended to test the search behavior and interaction with a map legend while performing
a common comparison task. For this we chose three maps (Figure 1) with varying symbol
density and the three legend types, one traditional and two that adapt to the users’ gaze
as described in previous work [6]. This results in a 3 x 3 within-subjects design, with three
maps and three legend types. Each participant performed the task on each of the three maps
extents once. Map extents, legend type and ordering were counterbalanced based on a Latin
square. In the following, we explain the task in more detail.

2.1 Task, Map and Legend

The task of the user was to inspect two cities (A and B) on the map, and determine and
name the industries that differ between the two. Visual inspection of the legend was required
in order to interpret the meaning of the differing symbols. Before starting the actual task,
the location of the two cities was presented to the participant in order to avoid search and
only measure task-related gaze behavior. Panning and zooming was not possible.
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Table 1 Number of symbols shown for the two cities that needed to be compared on the three
maps. These numbers are taken as a measure for task complexity: the comparison task on Map 1
was less complex than that on Map 2, which in turn was less complex than that on Map 3.

Number of symbols symbol Visual angle
inCity Abut | in City Bbut i it
inCity A inCityB n |'ty . u n I v . Y total different density between Cities

notin CityB [ notinCityA

Map 1 2 4 0 2 6 2 high 5.7°

Map 2 5 5 2 2 10 4 high 9.1°

Map 3 4 6 2 4 10 6 low 34.3°

Sequence

Figure 2 Example sequences of one participant’s dwells on three different AOIs: the two cities
whose symbol sets had be be compared (A, B) and the legend (L).

We expected the chosen approach to result in a very structured and predefined way of
solving the task: first the participant looks at city A then at city B in search for symbols that
differ. After finding at least one, the participant will search within the legend to determine
its meaning. This structured approach allows us to break down the analysis to a sequence
analysis on only three different AOIs (Figure 2).

As with this study we focus more on task difficulty and not on the design of the map
itself, we employed an economic map from the Swiss World Atlas which had been designed by
experienced cartographers to teach geography in schools'. We can identify four characteristics
that among others, increase the search space and thus contribute to a higher task difficulty:
= Total number of symbols in a map extent
= Number of symbols per city
= Number of symbols that differ between two cities

= Distance between the cities

Based on this, we chose three map extents for our experiment (Figure 1). Map 1 and 2
feature a higher density of symbols compared to Map 3. The distance between the relevant
cities is the shortest in Map 1, however, still exceeds the area that can be inspected with one
fixation, followed by Map 2 and Map 3. Table 1 shows that the cities contained three to six
symbols each, and that two to six differed between them. For instance, Map 1 has only two
symbols that differ between the two cities. Furthermore, these symbols are all in city B. We
assume that this makes the task the easiest on Map 1, followed by Map 2 and Map 3 as with
them more map features differ.

The design of the legend was from the original map and a total of 26 symbols were shown
(Figure 3). We tested a traditional legend and the two gaze based legend types described in
our previous work [6] namely fized adaptive, where the content of the legend is adapted to
highlight the symbols that where visible within the last fixation on the map and dynamic
adaptive which also adapts its placement to appear always at the bottom right position of
the current field of view.

! https://schweizerweltatlas.ch/en/
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Figure 3 @ shows a part of Map 1 with the AOI for the legend in green, the AOIs for City
A in cyan and for City B in magenta. The scan path is highlighted in red and fixations in yellow.
Figure 2 shows the result as a sequence (see first row). shows the cities and symbols that need
to be compared in detail.

In our previous experiment we could show that with the gaze-based legends, participants
spent less task time on the legend compared to the traditional legend [6]. Here, however, we
are interested in analyzing the impact of task difficulty on the gaze sequence and on usage of
the legend.

2.2 Participants and Setup

18 participants (7 female) took part in our experiment with most of them having a professional
background in Geomatics or Cartography. Their average age was 31.9 (SD = 4.4).

During the study, we collected gaze data using a Tobii TX 300 eye tracker. Additionally,
we used a chin rest to keep the distance between participants and display (23", 1920 x 1080
px) constant (60 cm). Before each run we performed a 9-point calibration.

2.3 Procedure

After filling out a demographic questionnaire, participants proceeded with a test run to
familiarize themselves with the given legend type. Next, a preview map without the symbols
was provided to show the locations of the two cities in question. When the participant
indicated that she was ready, the actual task began, however, there was no time constrain to
fulfill the task. These steps were repeated three times to test all different maps and legend
types. This assured that each possible combination of map x legend was tested six times.

2.4 Area of Interest

As we are mainly interested in which sequence visual attention was spent on the map and
the legend, for each task, we annotated the following three AOIs: Legend, City A and City
B. In case of cities, the size of the AOIs comprised the city name and all related symbols
(Figure 3). For the legend, the AOI was dynamically adapted to the size (and placement) of
the legend which requires to track fixations in real time. Based on the gaze data coming at
300 Hz from the eye tracker, we used our online implementation of the I-DT algorithm first
introduced in [4] to calculate fixations (80 px dispersion and 200 ms window size).

For deriving sequences from the gaze data, we denoted the fixations to AOIs in order of
appearance. Consecutive fixations on the same AOI are handled as one visit, called dwell.
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3 Results

First, we calculated the average fixation duration (Figure 4 (A)). This is a measure commonly
related to the task difficulty [7]. However, independent of the used legend type, a one-way
ANOVA (F(2,51) = .06, p = .940) could not show a statistical significant difference between
the three Maps.

From Figure 4 we can see that in general, sequence length (i.e. number of dwells
on an AQI) is shorter for Map 1 (15.1, SD = 8.1) followed by Map 2 (33.5, SD = 6.0)
and Map 3 (39.0, SD = 5.1). A one-way ANOVA (F(2,51) = 22.110, p < .001) confirmed
statistically significant differences between the Maps. All following results are Bonferroni
adjusted (o = 0.017). Post hoc analysis with a Tukey test resulted in a significant difference
between Map 1 and Map 2 (p < .001), and Map 1 (p < .001) and Map 3 but not between
Map 2 and Map 3 (textitp = .318). Furthermore, a one-way ANOVA showed no significant
effect of legend types onto the length of the gaze sequence (Map 1: F(2,15) = 1.261, p = .312;
Map 2: F(2,15) = .400, p = .678; Map 3: F(2,15) = 3.530, p = .055).

We also counted the number of dwells on the legend (Figure 4 (O). As this data was
not normally distributed we used a Kruskal-Wallis H which confirmed statistical differences
(x? = 29.832, p < .001). Following the results of the Mann Whitney U post-hoc tests
shows that participants dwelt significantly less often on the legend on Map 1 (mean = 3.94,
SD = 3.67) compared to Map 2 (mean = 6.44, SD = 3.05, U = 47.0, p < .001) and Map 3
(mean = 10.22, SD = 3.84, U = 16.0, p < .001). Also the result between Map 2 and 3 is
significant (U = 56.0, p < .001). If we compare these values with the number of different
symbols in Table 1, we can see a correlation between number of symbols that differ between

the two cities and participants’ dwells on the legend. The ratio is between 0.51 and 0.62.

Again, a Kruskal-Wallis H was applied to calculate the effect of legend types onto the number
of dwells on the legend. However, legend type has no statistically significant effect with
Map 1 (x? = 4.258, p = .119), but it has on Map 2 (x? = 5.984, p = .050) and on Map 3
(X% = 7.645, p = .022).

Furthermore, we analyzed the sequences before the legend was visited the first time. In
average 5.8 switches between City A and City B have occurred before the gaze shifted to the
legend. However, we could neither find statistical significance between the different maps
(x? = .917, p = .632) nor did the legend (x? = 7.743, p = .021) seem to have an impact.

4 Discussion and Future Work

Although we could not find any significant differences in the fixation duration, evaluation of
the sequence length indicates that more differences of symbols, which we take as an indicator
for task difficulty, result in more focus switches between cities and legend. Furthermore, we
could show that the number of dwells on the legend goes in line with the number of different
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symbols between two cities. The fact that the number of dwells on the legend was always
higher than the number of different symbols is particularly interesting, as this suggests,
participants mostly evaluated one symbol at a time, when visiting a legend and needed some
more to reassure their answer.

One reason could be that the symbols consist of arbitrary shapes and colors (Figure 1). It
could be that more decisive or iconic symbols are easier to remember and require less re-visits
of the legend. Future work has to inspect AOI sequences in more detail. For instance, can
correlation between sequences of different participants contribute to find common patterns for
certain tasks? This knowledge can help to create better maps or in the context of interactive
systems, create better map interfaces, that adapt to the user’s current task.
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