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—— Abstract

In this paper the potential of geospatial semantics for spatial predictions is explored. Therefore
data from the LinkedGeoData platform is used to predict landcover classes described by the
CORINE dataset. Geo-objects obtained from LinkedGeoData are described by an OWL ontology,
which is utilized for the purpose of spatial prediction within this paper. This prediction is based
on an association analysis which computes the collocations between the landcover classes and
the semantically described geo-objects. The paper provides an analysis of the learned association
rules and finally concludes with a discussion on the promising potential of geospatial semantics
for spatial predictions, as well as potentially fruitful future research within this domain.
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1 Introduction and Related Research

This paper investigates the potential of geospatial semantics for spatial predictions. For this
purpose data is obtained from the LinkedGeoData platform [6], which maintains geospatial
data with semantic annotations, provided as linked data. This data is then used to predict
CORINE landcover classes within a defined region of interest (ROI). Predictions are carried
out by computing association rules using the FP-Growth algorithm. Descriptive statistics
are calculated for the corresponding association rules and are used for an evaluation of the
potential of geospatial semantics for spatial predictions. For the purpose of this research,
spatial prediction is defined as the prediction of a CORINE landcover class for a defined
region, based on the classes of geo-objects which fall within that region. Examples for such
classes of geo-objects are given: tree, restaurant, river and bar. The proposed methodology
ultimately enables to predict landcover classes in areas, where no classifications are yet
available.

Spatial predictions are identified as one of the use-cases of Digital Earth [5] as well as
a key feature for tackling global problems such as urbanization and climate change [3].
Association analysis can spatially predict and has traditionally been utilized as spatial
association rule mining [8] or co-location mining [7] within the domain of Geoinformation
science. Spatial association rule mining aims at detecting geo-ojects with a frequent spatial
relationship. Other papers focus on increasing the performance of co-location mining in
terms of computational complexity [1, 10] . Further approaches use contextual information as
an auxiliary data source in order to achieve better predictions [11, 14]. Nevertheless, no work
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uses extensive semantic information for association analysis or researches on the contribution
of geospatial semantic information for spatial predictions. Thus, this work explores the
potential, geospatial semantics hold for spatial predictions. The contribution of this paper is
as follows: It demonstrates that data with geospatial semantics enable to score meaningful
association rules and are therefore a promising data source for this purpose. Additionally, it
is shown that geospatial semantics predict association rules with a high conviction in urban
areas as well as that a higher number of distinct classes provide better results.

The paper is structured as follows: Firstly the methodology is outlined, followed by a
presentation of the results, including an analysis. The paper finalizes with a discussion of
the results as well as its fruitfulness to future research and applications.

2 Methodology

Two major steps are performed within the methodology of this work. First, the data is
derived and preprocessed. Second, the association analysis is carried out using the FP-Growth
algorithm [2]. The FP-Growth algorithm generates association rules describing which set of
classes have a relevant association.

2.1 Data acquisition and preparation

In order to perform an association analysis between linked data of the LinkedGeoData dataset
and the CORINE landcover dataset (see table 1), a series of steps are performed for deriving
and preparing the data: OpenStreetMap data is downloaded for a ROI. SPARQLIFY]6]
is then used to load the OpenStreetMap data into a new local triplestore as linked data
in the LinkedGeoData structure. Thus, a local copy of the LinkedGeoData endpoint is
created for a specific ROI. This enables to access semantic information of geo-objects of
the OpenStreetMap dataset, such as its OWL classes. The OWL classes are defined by the
LinkedGeoData ontology and are ultimately used to predict the CORINE landcover classes.
The ROI is covered by Austria. Geo-objects are then loaded into a PostGIS database. Each
object contains three attributes: A unique identifier, the name of its OWL class as well as a
geometry encoded as a well-known binary. Thus, every geometry is enhanced with semantics.
The dataset contains 3 different types of geometries, namely, point, polygon and linestring.
There are 1.080.819 point-objects, 4.024.536 polygon-objects and 1.893.309 line-object which
can have one of the 768 OWL classes. Furthermore, the CORINE dataset is transformed
to a polygon dataset where each pixel is presented by a square polygon, called a grid-cell.
Each grid-cell contains two attributes: An unique identifier, as well as the class number of
the corresponding landcover class. There are 44 classes in the CORINE landcover dataset,
however, only 28 of them are present in Austria [13]. There are 56667188 grid-cells within
the ROI. Finally, a transaction table is generated in the PostGIS database. Each row of
this transaction table contains the identifier of a grid-cell and a class of a geo-object which
intersects with the corresponding grid-cell. Thus, the table enables to query which classes
appear within a certain grid-cell. The distinct set of classes which intersect with a grid-cell
is defined as a transaction ¢;. All transactions form a set, denoted as T. Thus, t; is a subset
of T.

2.2 Association Analysis

After the preparation of the data, the association analysis is performed. Therefore the
FP-Growth algorithm is utilized which computes association rules based on the frequencies
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of transactions and the number of all available transactions. An example of a computed
association rule is given:

{Building, Tree, Tramway} — {Continuous urban fabric }

This association rule suggests, that the class “Continuous urban fabric” is likely to appear,
if the classes “Building”, “Tree” and “Tramway” are present. Association rules can have
different confidences. The confidence of an association rule can be calculated by equation 1
[12].

_ supp(XUY)
conf(X—=Y) = eyl "
supp(X) = {t:IX C tli’,I‘t‘i,ti €T} o

The support function supp(X) describes the proportion of a transaction ¢;, which contains
X, in the set T. Its numerator denotes the number of times ¢; (which contain X) is observed
among all transactions in T. Whereas the denominator is defined by the number of all
transactions within T. The confidence can range from [0,1] and states how often a rule has
been found in the transaction database. A confidence of 0 corresponds to no confidence
that a given rule is true. In contrast, a confidence of 1 states the maximum confidence
that an association rule is correct. An association rule can be additionally described by the
Conviction [12]:

1 — supp(Y)
1—conf(X—=7Y) 3)

conv(X =Y) =

The conviction is as a measurement of the degree of implication of an association rule.

An association rule can be confident merely because Y appears with a high frequency and X
with a low frequency. A high conviction corresponds to a high degree of implication of an

association rule, whereas a low conviction corresponds to a low degree of implication of a rule.
Confidence and conviction are going to be used to validate the generated association rules.

The FP-Growth algorithm computes rules based on a defined minimum support. The lower
the support is set, the more association rules are computed. However, defining the value
too low will yield a long runtime. The support is set as low as possible within this study to
compute as much association rules as possible in order to gain more insights on the impact
of geospatial semantics on spatial predictions. For this purpose, an optimal value of 0.1 was
found in an interative manner. In addition, association rules having a conviction lower than
1 were pruned, as a conviction below that value suggests no significant implication. For
running the FP-growth algorithm, rapidminer [9] was used. There are 56.667.188 grid-cells
and consequently 56.667.188 potential transactions. Due to computational limitations not
all of these transactions were used within this study. Therefore 5000 randomly selected
transactions per landcover class were chosen. This balanced selection was made in order to
avoid a bias in the association rules.

3 Results and Analysis

There are 28 predictable CORINE landcover classes within the ROI (see table 1). Each
landcover class is a subclass of a more general parentclass. Tables 2, 3 and 4 summarize the
number of learned association rules, the descriptive statistics for each class as well as the
corresponding parent class, according to the definition of the CORINE dataset [13].
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Table 1 All available 28 CORINE classes in Austria and their description.

1 2 3 4 5 6 7 10
ad 2 rail Mineral Jree
Continous Discontinous | Industrial and Road and rai . mprn' Green
. ) . . network and Port areas Airports extraction urban
urban fabric urban fabric commercial units . .
associated land sites areas
11 12 14 15 18 20 21 23

Complex Agriculture

Sport and leisure | Non-irrigated Broad leaved

. Rice fields Vine yards Pastures cultivation | with natural
facilities arable land . forest,
patterns vegetation
24 25 26 27 29 31 32 34
Transitional Sparsely Glaciers
Coniferous forest | Mixed forest Natural grassland | Moors and heathland ansitiona Bare rock vegetated and perpetual
woodland shrubs
area sSnow
35 36 40 41
Inland marshes Peatbogs Water courses Waterbodies
Table 2 Predictions for CORINE landcover classes 1-11.
CLASS number 1 2 3 4 5 6 7 10 11
Number of 5752 157 345 226 - 1525 45 496 11
association rules
Min (Conﬁdence) 0.11 0.11 | 0.11 | 0.11 | - 0.11 0.11 | 0.11 | 0.11
Max (Confidence) 0.87 | 0.36 | 0.58 | 0.72 | - | 0.98 | 0.90 | 0.71 | 0.86
Mean (Confidence) | 0.32 | 0.17 | 0.23 | 0.25 | - | 0.60 | 0.51 | 0.24 | 0.52
Standarddeviation 0.17 | 0.05 | 0.12 | 0.14 | - 0.25 0.28 | 0.12 | 0.28
(Confidence)
Min (Conviction) 1.08 | 1.09 | 1.08 | 1.08 | - | 1.10 | 1.08 | 1.08 | 1.08
Max (Conviction) 7.23 1.50 | 2.27 | 3.48 | - | 61.47 | 9.23 | 3.40 | 7.06
Mean (Conviction) | 1.59 | 1.17 | 1.31 | 1.37 | - | 6.17 | 3.25 | 1.34 | 2.87
Standarddeviation | 0.64 | 0.07 | 0.27 | 0.41 | - 8.58 | 2.50 | 0.34 | 1.89
(Conviction)
CORINE Artificial surfaces
Parentclass

Observing tables 2, 3 and 4, several trends can be observed: Most rules were computed for
class 1(Continuous urban fabric), followed by class 6 (Airports). Association rules predicting
class 1 exhibit a relatively high confidence, up to 87%, as well as a relatively high conviction,
7.23. An association rule which exhibits both, a high conviction and high confidence can be
considered a meaningful rule. Generally, it can be observed that all subclasses of “Artificial
surfaces” yield the most promising results. In contrast, confidence and conviction decline
for classes which are a subclass of “Agricultural areas”, with one exception, i.e. class 15
(vine yards), which was predicted with exceptional conviction and confidence. However, no
predictions could be made for class 14 (rice fields). The lowest confidence as well as conviction
can be observed among subclasses of “Forests and semi-natural areas” and “Wetlands” with
one exception, class 34 (Glaciers and perceptional snow). No association rules were computed
for classes 27 (Sclerophyllous vegetation), class 29 (Transitional woodland shrub), class 32
(Sparsely vegetated areas), as well as class 36 (Peatbogs). The confidence as well as conviction
inclines for subclasses of water bodies, as specially for subclass 41 (water bodies).

4 Discussion and Future Research

Considering the findings based on the results presented in tables 2, 3 and 4 it can be said
that geospatial semantics can be used for spatial predictions and exhibit different qualities
depending on the landcover class to be forecast. Classes closely related to urban areas are
predicted better than classes which can be found more often in rural areas, such as forests
or wetlands. A potential explanation for this effect is given: LinkedGeoData is based on
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Table 3 Predictions for CORINE landcover classes 12-25.

CLASS number 12 14 15 18 20 21 23 | 24 25
Number of 5 - 64 2 4 1 - - -
association rules
Min (Confidence) 0.12 | - 0.11 | 0.12 | 0.12 | 0,15 | - - -
Max (Confidence) | 0.13 | - | 0.86 | 0.13 | 0.17 | 0.15 | - - -
Mean (Confidence) | 0.13 | - | 048 | 0.12 | 0.14 | 0.15 | - - -
Standarddeviation | 0.01 - 0.25 | 0.01 | 0.02 - - - -
(Confidence)
Min (Conviction) 1.09 - 1.10 | 1.09 | 1.09 | 1.13 - - -
Max (Conviction) 1.11 - 6.73 | 1.10 | 1.16 | 1.13 - - -
Mean (Conviction) | 1.10 | - | 2,59 | 1.10 | 1.12 | 1.13 | - - -
Standarddeviation | 0.01 - 1.68 | 0.01 | 0.03 - - - -
(Conviction)
CORINE Agricultural areas Forests and semi-
Parentclass natural areas

Table 4 Predictions for CORINE landcover classes 26-41.

CLASS number 26 | 27129 | 31 |32 34 35 |36 | 40 41
Number of 1 - - 2 - 11 8 - 47 12
association rules
Min (Confidence) | 0.15 | - - |01 | - 015|011 | - | 0.11 | 0.11
Max (Confidence) | 0.15 | - - | 027 | - | 086 ]025| - | 027 | 052
Mean (Confidence) | 0.15 | - - | 019 | - [ 044 ] 016 | - | 015 | 0.22
Standarddeviation - - - 1012 | - | 024 |005| - | 004 | 0.12
(Confidence)
Min (Conviction) 1.13 | - - ] 108 | - | 113 | 108 | - | 1.08 | 1.08
Max (Conviction) | 1.13 | - - | 132 - | 7111129 | - | 1.31 | 1.99
Mean (Conviction) | 1.13 | - - 1.20 | - | 249 | 1.15 | - | 1.14 | 1.28
Standarddeviation - - - 1017 | - 2.13 | 0.07 | - | 0.05 | 0.25
(Conviction)
CORINE Forests and semi-natural areas Wetlands | Waterbodies
Parentclass

OpenStreetMap and therefore relies on volunteers collecting geospatial data. Thus, there
is a greater likelihood that a higher coverage of geospatial data is present in urban areas,
increasing the number of classes per grid-cell. A higher number of classes per grid-cell enable
to compute association rules with a higher conviction as they exhibit a higher distinction
and therefore result in a lower support. The same argument could be made for the number
of available classes: A higher amount of available classes would increase the chances to get
association rules with a higher conviction as it would increase the distinction. However, this
aspect is not covered in this study. Future research will focus deeper on the investigation of
the potential of geospatial semantics for predictive purposes. Therefore two major aspects
will be investigated: (1) The effect of the class hierarchy on the quality of spatial predictions.
For this purpose classes will be exchanged with their parent class. (2) Future studies will
investigate the impact of adding other geospatial data with different ontologies. The obtained
knowledge can be used as input in spatial human-computer interaction [4], for future geo-
sensor networks in order to create better predictions as well as to measure the impact on
integrating different geospatial data sources with semantic annotations. This could help
to explain yet undiscovered geospatial phenomena and it is therefore argued that further
analysis in this domain is paramount to research progress.

45:5

GlScience 2018



45:6

Geospatial Semantics for Spatial Prediction

—— References

1

10

11

12

13

14

Witold Andrzejewski and Pawel Boinski. GPU-accelerated collocation pattern discovery. In
Barbara Catania, Giovanna Guerrini, and Jaroslav Pokorny, editors, Advances in Databases
and Information Systems, pages 302-315, Berlin, 2013. Springer.

Christian Borgelt. An implementation of the fp-growth algorithm. In Proceedings of
the 1st International Workshop on Open Source Data Mining: Frequent Pattern Min-
ing Implementations, OSDM ’05, pages 1-5, New York, NY, USA, 2005. ACM. doi:
10.1145/1133905.1133907.

Max Craglia, Kees de Bie, Davina Jackson, Martino Pesaresi, Gabor Remetey-Fulopp,
Changlin Wang, Alessandro Annoni, Ling Bian, Fred Campbell, Manfred Ehlers, John van
Genderen, Michael Goodchild, Huadong Guo, Anthony Lewis, Richard Simpson, Andrew
Skidmore, and Peter Woodgate. Digital earth 2020: towards the vision for the next decade.
International Journal of Digital Earth, 5(1):4-21, 2012. doi:10.1080/17538947.2011.
638500.

Toannis Giannopoulos, Peter Kiefer, and Martin Raubal. Mobile outdoor gaze-based geo-
HCI. In Geographic Human-Computer Interaction, Workshop at CHI 2013, pages 1213,
2013.

M. F. Goodchild. The use cases of digital earth. International Journal of Digital Earth,
1(1):31-42, 2008. doi:10.1080/17538940701782528.

Jon Jay Le Grange, Jens Lehmann, Spiros Athanasiou, Alejandra Garcia Rojas, Giorgos Gi-
annopoulos, Daniel Hladky, Robert Isele, Axel Cyrille Ngonga Ngomo, Mohamed Ahmed
Sherif, Claus Stadler, and Matthias Wauer. The geoknow generator: Managing geospa-
tial data in the linked data web. http://jens-lehmann.org/files/2014/1gd_geoknow_
generator.pdf. (Accessed on 04/30/2018).

Y. Huang, S. Shekhar, and H. Xiong. Discovering colocation patterns from spatial data sets:
a general approach. IEEE Transactions on Knowledge and Data Engineering, 16(12):1472—
1485, 2004. doi:10.1109/TKDE.2004.90.

Krzysztof Koperski and Jiawei Han. Discovery of spatial association rules in geographic
information databases. In Max J. Egenhofer and John R. Herring, editors, Advances in
Spatial Databases, pages 47-66, Berlin, 1995. Springer.

Rapidminer. Lightning fast data science platform | rapidminer. https://rapidminer.com/.
(Accessed on 04/30/2018).

Arpan Man Sainju and Zhe Jiang. Grid-based colocation mining algorithms on gpu for big
spatial event data: A summary of results. In Michael Gertz, Matthias Renz, Xiaofang Zhou,
Erik Hoel, Wei-Shinn Ku, Agnes Voisard, Chengyang Zhang, Haiquan Chen, Liang Tang,
Yan Huang, Chang-Tien Lu, and Siva Ravada, editors, Advances in Spatial and Temporal
Databases, pages 263—280, Cham, 2017. Springer International Publishing.

Muhammad Shaheen, Muhammad Shahbaz, and Aziz Guergachi. Context based positive
and negative spatio-temporal association rule mining. Knowledge-Based Systems, 37:261—
273, 2013. doi:10.1016/j .knosys.2012.08.010.

Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to Data Mining.
Addison-Wesley Longman Publishing, Boston, MA, USA, 2005.

UBA. CORINE Landcover Nomenklatur (deutsch). http://www.umweltbundesamt.at/
fileadmin/site/umweltthemen/raumplanung/1_flaechennutzung/corine/CORINE_
Nomenklatur.pdf. (Accessed on 04/30/2018).

Cunjin Xue, Wanjiao Song, Lijuan Qin, Qing Dong, and Xiaoyang Wen. A spatiotemporal
mining framework for abnormal association patterns in marine environments with a time
series of remote sensing images. International Journal of Applied Earth Observation and
Geoinformation, 38:105-114, 2015. doi:10.1016/j.jag.2014.12.009.


http://dx.doi.org/10.1145/1133905.1133907
http://dx.doi.org/10.1145/1133905.1133907
http://dx.doi.org/10.1080/17538947.2011.638500
http://dx.doi.org/10.1080/17538947.2011.638500
http://dx.doi.org/10.1080/17538940701782528
http://jens-lehmann.org/files/2014/lgd_geoknow_generator.pdf
http://jens-lehmann.org/files/2014/lgd_geoknow_generator.pdf
http://dx.doi.org/10.1109/TKDE.2004.90
https://rapidminer.com/
http://dx.doi.org/10.1016/j.knosys.2012.08.010
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/raumplanung/1_flaechennutzung/corine/CORINE_Nomenklatur.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/raumplanung/1_flaechennutzung/corine/CORINE_Nomenklatur.pdf
http://www.umweltbundesamt.at/fileadmin/site/umweltthemen/raumplanung/1_flaechennutzung/corine/CORINE_Nomenklatur.pdf
http://dx.doi.org/10.1016/j.jag.2014.12.009

	Introduction and Related Research
	Methodology
	Data acquisition and preparation
	Association Analysis

	Results and Analysis
	Discussion and Future Research

