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—— Abstract

Commuting models estimate the number of commuting trips from home to work locations in
a given area. Since their infancy, they have been increasingly used in a variety of fields to
reduce traffic and pollution, drive infrastructure choices, and solve a variety of other problems.
Traditional commuting models, such as gravity and radiation models, typically have a strict
structural form and limited number of input variables, which may limit their ability to predict
commuting flows as well as machine learning models that might better capture the complex
dynamics of the commuting process. To determine whether machine learning models might add
value to the field of commuter flow prediction, we compare and discuss the performance of two
standard traditional models with the XGBoost machine learning algorithm for predicting home
to work commuter flows from a well-known United States commuting dataset. We find that the
XGBoost model outperforms the traditional models on three commonly used metrics, indicating
that machine learning models may add value to the field of commuter flow prediction.
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1 Introduction

Knowing how many people commute from various home to work locations is important
for solving problems in a wide variety of domains. Commonly referred to as commuting
flows, these movements form a complex socio-economic network that can be used to better
understand the transport of people, goods, money, information, and diseases at different
spatial scales [7]. Having a better grasp of these processes is important for policy- and other
decision-makers who aim to tackle a variety of issues such as reducing traffic and pollution,
planning the development of new infrastructure, and preventing the spread of disease.

In response to the need for better understanding the movement of commuters, researchers
have developed a suite of commuting models used for estimating population flows, planning
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transportation systems, analyzing urban traffic, and many other applications [7, 8, 10, 5].
This collection of techniques has traditionally consisted of different versions of what are
commonly known as gravity and radiation models [7]. In general, these models are based on
simple equations with a small number of input variables that have been chosen based on the
assumption that the number of trips between two locations is related to their residential and
work populations, the distance between the locations and/or the number of opportunities
(e.g. other jobs) between them [7].

Though useful, both gravity and radiation models are analytical models with crafted
functional forms and a small number of input variables [9]. This potentially limits their
ability to capture the more complex dynamics that more flexible models, such as machine
learning algorithms, may be able to. To determine whether machine learning models might
add value to the field of commuter flow prediction, we compare and discuss the performance
of a standard gravity and radiation model with the XGBoost machine learning algorithm for
predicting home to work commuter flows from a well-known United States (U.S.) commuting
dataset. We find that the XGBoost model outperforms the traditional models on three
commonly used metrics, showing promise for machine learning models in the field of commuter
flow prediction.

2 Related Work

The goal of commuting modeling is to predict the matrix of commuters T = (T};)1<i j<n
that move from every zone i to every other zone j within a set of n distinct zones. Assuming
there are a total of N commuters, the estimated matrix T' = Tz’j is derived by first estimating
the set of probabilities (p;;)i1<i j<n that a randomly drawn commuter from the set of N
commuters moves between all zones ¢ and j, and then drawing at random N trips from the
set of estimated probabilities (P;;)1<i j<n. Oftentimes, additional constraints are added to
ensure that the total number of commuters m; leaving each zone ¢, the total number of
commuters n; working in each zone j, or both, is preserved.

In order to estimate the probabilities (p;;j)i<i j<n, researchers have traditionally used
variants of the well-known gravity and radiation laws [9]. Gravity laws are based on the
assumption that the number of trips T;; between two locations ¢ and j is related to the total
number of commuters m; leaving zone 7, the total number of commuters n; working in zone
J, and decays directly as a function of the distance d;; between the zones [6]. The importance
of the distance in predicting the probabilities is typically controlled by parameters «, (3,
and/or .

Radiation laws, on the other hand, are based on the assumption that the number of trips
T;; between two locations ¢ and j depends on the total number of commuters m; leaving
zone 1, the total number of commuters n; working in zone j, and the number of intervening
opportunities s;; between the two zones [7]. In the commuting literature, s;; is typically
defined as the total number of commuters working in all zones whose centroid falls in the
circle centered at ¢ with radius d;; (not including zones ¢ or j) [7]. In some forms of this law,
a parameter [ is introduced to control the effect of the number of intervening opportunities
between the home and work zones. Table 1 provides equations for the traditional gravity
and radiation laws chosen in this study.

The XGBoost model is a subset of a broader class of models, called machine learning
models, that use a set of known input and output data to "learn" a model that can then be
given new input data to estimate unknown output data [1]. In the case of commuter flow
modeling, one might use a set of known input variables m;, n;, d;;, s;j, and known output
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Table 1 Traditional commuting laws.

Law Equation

Gravity with exponential law  p;; o mmjef*ﬁd”'

[((mi+n; +Sij)B_<mi+5ij)ﬁ](mf+l)

Extended radiation law Pij X [(mi+s1;)P +1]T(ms ;45330 1]

variables T;;, to learn the structure of a machine learning model that can then take in new

R
values of m;, n;, d;; and s;;, to estimate unknown values of Tj;. The XGBoost model is
well known for winning several machine learning competitions and depends on three primary
parameters commonly referred to as the maximum tree depth (r), number of estimators (e),

and learning rate (k) [4].

3 Methodology

To determine whether the XGBoost model might add value to the field of commuter flow
prediction, we compare and discuss the performance of a standard gravity and radiation
model with the XGBoost machine learning algorithm for predicting a subset of home to work
commuter flows within the Knoxville Metropolitan Statistical Area (MSA). From this point
forward, we refer to the home location as the origin location and the work location as the
destination location. The following subsections discuss the specific gravity, radiation, and
XGBoost models chosen, as well as the data, study area, evaluation metrics, and experimental
setup, in greater detail.

3.1 Models

In this study, we compare the performances of the gravity model based on an exponential
distance decay function, the radiation model based on the extended radiation law, and
a standard implementation of the XGBoost model. Table 1 provides the equations for

both the gravity and radiation laws underlying the gravity and radiation models selected.

Additionally, for both the gravity and radiation models, we ensure that the number of workers

in each destination zone j is preserved by simulating all (7};)1<;, j<n from the multinomial

distribution M (nj7 (%) 1<i Sn)‘ From this point forward, whenever we use the terms

gravity or radiation model, we are referring specifically to the gravity and radiation models
chosen in this study. The exponential distance decay function and extended radiation model
were chosen because of their decent performance in a recent study conducted by [7]. The
standard XGBoost model was chosen because of its flexibility and proven track record as the
winner of several machine learning competitions [4].

3.2 Data and Study Area

We use each of the three models to predict commuting flows reported in a Census dataset
called the 2010 Longitudinal Employer-Household Dynamics Origin-Destination Employment
Statistics (LODES) [3]. The 2010 LODES dataset is a partially synthetic dataset that
provides residential, workplace, and origin to destination commuter flow totals for a variety
of U.S. Census-defined regions. We focus our study on estimating commuting flows between
origin and destination Census block groups. Additionally, we focus our study on a subset of
origin and destination block groups in the Knoxville MSA. More specifically, we consider
all origin and destination block group pairs within a random sample of 120 block groups in
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Figure 1 The spatial boundaries for all 2010 Knoxville block groups (bgs), the subset of sampled
bgs in the study area, and all origin-destination (o-d) commuting flows between the sampled block
groups.

Table 2 Evaluation metrics.

Metric Equation

- 22@ . min(Ty;,Ti5)
Common Part of Commuters (CPC) CPC(T,T) = S - ST E
ii=1 "4 ij=1""4

2 27:,.7‘:1 (A75;>0°17;;>0)

n n
1, . + 1+
Zi,j:l Tij >0 Zi,j=1 Ti; >0

Root Mean Squared Error (RMSE) ~ RMSE(T,T) = \/ S (T~ Ti)?

Common Part of Links (CPL) CPL(T,T) =

the Knoxville MSA. In total, there are n = 14,280 block group pairs within this subset, and
N = 15,288 commuters who travel these routes. Figure 1 provides a visual map of the study
area and data.

We use the LODES dataset to determine m;, n;, and T;;, and another dataset, called
the 2010 U.S. Census Block Group Shapefiles [2], to obtain the distances d;; and intervening
opportunities metrics s;; for all origin block groups ¢ and destination block groups j in the
study area. Whenever we calculate a distance for a set of locations, we use the haversine
formula to determine the great-circle distance between them.

3.3 Evaluation Metrics

To evaluate how well each of the models perform, we use three metrics commonly used in the
commuting modeling literature. The first two, known as the Common Part of Commuters
(CPC) and Common Part of Links (CPL) metrics, measure the similarity between the true
commuting flow network and a predicted network. The third metric, known as the Root
Mean Squared Error (RMSE), measures the prediction accuracy (how similar the true flow
counts are to the predicted flow counts). Table 2 provides the equations for each metric.

3.4 Experimental Setup

To select the optimal hyperparameters and then compare the winning models, we split our
data into training, validation, and testing sets via nested cross validation. More specifically,
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we first split our data into 10 unique training and testing set pairs via 10-fold cross validation.

We refer to each of these training/testing set pairs as outer folds. We then further split the
training sets of each outer fold into 10 more unique training and validation sets via a second
round of 10-fold cross validation.

For our gravity and radiation models, we choose the optimal 8 € [0,0.1,--- , 1] for each
outer fold by first simulating one possible Tij from the models corresponding to each 8 on
the training sets of each inner fold. We then select the 8 that corresponds to the model with
the highest average CPC' score over all inner folds. Once the optimal Ss are selected for each
outer fold, we use the winning models to compute one possible Tl-j on the testing sets of each
outer fold.

For the XGBoost model, we choose the optimal maximum tree depth r, number of
estimators e, and learning rate k, by first using a randomized grid search to simulate 100
random samples (7, e, k) from the Cartesian product of r € [2,3,---,7], e € [25,26, - - ,275],
and k € [0.1,0.2,---,0.5]. We then find the optimal combination (r, e, k) for each outer
fold by first simulating Tij from the models corresponding to each of the 100 parameter
combinations (7, e, k) on the training sets of each inner fold, and then selecting the (r, e, k)

set that corresponds to the model with the highest average CPC' score over all inner folds.

Once the optimal parameter combinations are selected for each outer fold, we next use the
optimal models to compute T;; on the testing sets of each outer fold. During each simulation,
we round the output data T;; to the nearest non-negative integer.

4 Results

Figure 2 shows box plots of the CPC, CPL, and RMSEFE scores produced by each model type
for all outer folds. In addition, each of these figures shows the actual values for each metric
over each outer fold, randomly adjusted, or "jittered", on the y-axis to prevent overlap. More
specifically, we see in Figure 2 that all CPC and CPL scores produced by the XGBoost
model are higher than all CPC and CPL scores produced by the gravity model, which are in
turn higher than all of the CPC and CPL scores produced by the radiation model. Since all
scores, rather than just all median scores, are higher in the XGBoost model than both other
models, we are confident that the XGBoost model outperforms the gravity and radiation
models on the CPC and CPL metrics. On the other hand, though we see that the median
RMSE of the XGBoost model is also the best, or lowest, median RMSE among all three
models, not all of the XGBoost model’s RMSE scores are lower than scores coming from
the other models. For example, the XGBoost RMSFE score from one of the 10 testing sets is
worse than all of the gravity model’s RMSE scores and worse than eight of the radiation
model’s RMSE scores. This suggests that, though the XGBoost model produces a network
with more similar structure to the ground truth network, it may also produce flow counts
that are very far apart from one another.

5 Conclusion and Future Work

In this paper, we compared and discussed the performance of a standard gravity and radiation
model with the XGBoost machine learning algorithm for predicting origin/destination
commuter flows for a subset of block groups in the Knoxville MSA. We parameterized each
model using two well known Census datasets and then evaluated and compared each model
using the CPC, CPL and RMSFE metrics.

Overall, we found that the XGBoost model far outperformed the gravity and radiation
models on both the CPC and CPL metrics, indicating that it was able to re-create the
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Figure 2 Box plots and horizontally jittered CPC, CPL and RMSE scores for the best performing
models on each testing set.

original network better than the traditional models. However, we also discovered that the
XGBoost model sometimes led to higher RMSFE scores than both the gravity and radiation
models, despite having the lowest median RMSF value. This may indicate that, given certain
training/testing set combinations, the XGBoost model has the potential to produce estimates
that are very far off from the ground truth flows. Thus, despite the fact that the XGBoost
model re-creates the overall flows better than the gravity and radiation models, certain
(though likely rare) links may have larger errors.

Though this study does indicate that the XGBoost model likely adds value to the field of
commuter flow prediction, there are a few limitations and opportunities worth noting. For
example, in a follow-up study it may be worth comparing more complex commuting models
with the XGBoost model to determine if it still performs better. Additionally, one might want
to add other machine learning models to the framework to determine if they add additional
value on top of the XGBoost model. Furthermore, there may be other non-conventional
input variables worth considering in the machine learning models that may further improve
their performances.

6 Copyright

This manuscript has been authored by UT-Battelle, LLC under Contract No. DE-ACO05-
000R22725 with the U.S. Department of Energy. The United States Government retains
and the publisher, by accepting the article for publication, acknowledges that the United
States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish
or reproduce the published form of this manuscript, or allow others to do so, for United
States Government purposes. The Department of Energy will provide public access to these
results of federally sponsored research in accordance with the DOE Public Access Plan
(http://energy.gov/downloads/doe-public-access-plan).

—— References

Ethem Alpaydin. Introduction to machine learning. MIT Press, 2014.

2 United States Census Bureau. Block group shapefiles for Tennessee [data file], 2010. URL:
https://www.census.gov/geo/maps-data/.

3 United States Census Bureau. LEHD Origin-destination employment statistics [dataset],
2010. URL: https://1lehd.ces.census.gov/data/.


https://www.census.gov/geo/maps-data/
https://lehd.ces.census.gov/data/

A. M. Morton, J. O. Piburn, and N. N. Nagle

10

Tiangi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, pages 785-794. ACM, 2016.

Andrea De Montis, Marc Barthélemy, Alessandro Chessa, and Alessandro Vespignani. The
structure of interurban traffic: a weighted network analysis. Environment and Planning B:
Planning and Design, 34(5):905-924, 2007.

Sven Erlander and Neil F Stewart. The gravity model in transportation analysis: theory
and extensions, volume 3. VSP, 1990.

Maxime Lenormand, Aleix Bassolas, and José J Ramasco. Systematic comparison of trip
distribution laws and models. Journal of Transport Geography, 51:158-169, 2016.

Celik H Murat. Sample size needed for calibrating trip distribution and behavior of the
gravity model. Journal of Transport Geography, 18(1):183-190, 2010.

Caleb Robinson and Bistra Dilkina. A machine learning approach to modeling human
migration. arXiv preprint arXiv:1711.05462, 2017.

Jan Rouwendal and Peter Nijkamp. Living in two worlds: a review of home-to-work de-
cisions. Growth and Change, 35(3):287-303, 2004.

51:7

GlScience 2018



	Introduction
	Related Work
	Methodology
	Models
	Data and Study Area
	Evaluation Metrics
	Experimental Setup

	Results
	Conclusion and Future Work
	Copyright

