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Abstract
Geo-grid algorithms divide a large polygon area into several smaller polygons, which are import-
ant for studying or executing a set of operations on underlying topological features of a map.
The current geo-grid algorithms divide a large polygon in to a set of smaller but equal size poly-
gons only (e.g. is ArcMaps Fishnet). The time to create a geo-grid is typically proportional to
number of smaller polygons created. This raises two problems - (i) They cannot skip unwanted
areas (such as water bodies, given about 71% percent of the Earth’s surface is water-covered);
(ii) They are incognizant to any underlying feature set that requires more deliberation. In this
work, we propose a novel dynamically spaced geo-grid segmentation algorithm that overcomes
these challenges and provides a computationally optimal output for borderline cases of an uneven
polygon. Our method uses an underlying topological feature of population distributions, from
the LandScan Global 2016 dataset, for creating grids as a function of these weighted features. We
benchmark our results against available algorithms and found our approach improves geo-grid
creation. Later on, we demonstrate the proposed approach is more effective in harvesting Points
of Interest data from a crowd-sourced platform.
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1 Introduction

Obtaining land use data at a global scale can be arduous with respect to data availability,
coverage, resolution, accuracy, computational power and storage. The emergence of Vo-
lunteered Geographic Information (VGI) exploited from open sourced platforms, however,
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Figure 1 An example of dynamically-spaced geo-grid segmentation for weighted point sampling
on a polygon map layer.

can provide rich attributes world-wide from Points Of Interest (POI) data. This data can
facilitate many mapping and modeling techniques related to human dynamics, which is
vital to emergency management and response, urban planning, and energy use. In order to
optimize the collection of such available data, it is a recommended practice to segment a
given geographical region into smaller grid cells for a more focused collection effort. ArcMap’s
fishnet[5], and other spatial indexing techniques that implement triangular mesh gridding
are commonly used geoprocessing tools for this geo-grid segmentation. However, these tools
are agnostic to the underlying topology and evenly segments areas into equally sized cells
and/or triangular facets. Such approaches cannot skip unwanted regions (such as oceans)
and their computational time is proportional to the size of individual cells, eventually, it
consumes needless time and computational resources.

These challenges led us to develop a new approach for geo-grid segmentation that make
use of underlying topology such as population distribution, building settlement extractions,
etc. The proposed method creates dynamically spaced geo-grids as a function of underlying
topological data. For example, as shown in Figure-1, using population distribution data
to influence the location for request calls, the proposed method generates bigger cells for
sparsely populated areas, or several smaller cells for densely populated regions.

2 Related Work

Multiple algorithms have been developed to generate a geocoded index to describe an exact
or general location on Earth. In fact, many of these methods implement a hierarchical
dissecting system that follows a tree structure concept to index places [7], or use a reverse
geocoding practice of interpreting actual latitude/longitude coordinates to a single array [1],
or develop a continuous map at a specific spatial unit labeled with new and random naming
conventions [6] [8] [10]. Other approaches use a triangular mesh grid for analyzing geographic
data within equally sized facets with minimal distortion [4] [3], or to identify coverage areas
for database retrieval purposes [9] [11].

While the previously mentioned practices influenced this research, our approach is not
to create a universal addressing system or a new projected referencing system. Instead, we
propose a gridding system partitioned by a given topological requirement to help collect data
from open source platform graph APIs that require a lat/long and search radius. Specifically,
we produced a hierarchically gridded map of the world based on the underlying population
within each grid to maximize our retrieval of Points of Interest (POI) data from VGI. By
considering population distributions to subdivide a grid, we produce a map that can allocate
additional computational resources where higher populations reside.
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Figure 2 GeoHashed Grid Sizes with their respective search radii.

3 Methodology

In this section, we discuss the proposed method for creating dynamically-spaced geo-grid
segmentation for weighted point sampling on a polygon map layer. And with our efforts
focused on optimizing the number of POIs fundamental to human dynamics, we assume
population is an indicator of places. We use the LandScan Global population dataset [2],
developed at Oak Ridge National Laboratory (ORNL), for weighted point sampling purposes.
This model depicts an “ambient” population distribution (average over 24 hours) at 30
arc-seconds resolution (roughly 1km at the equator).

3.1 Spatial Analysis

We began by gridding the world in “.6 x .6” degree increments for two reasons. The first
reason was to begin with a small enough grid size so that the largest possible search radius
(from the center of a grid to the nearest edge) would be less than 50,000 meters. With that
said, a .6 degree grid at the equator has a radius of roughly 33,300 meters. The rationale for
not using a search radius just under 50,000m (which would actually be a .9 degree grid at the
equator), leads us to our second reasoning. Our geohashing technique splits each grid into 4
equal parts, until the last grid becomes smaller than a LandScan Global cell size, which is
~1km at the equator. When a geohashed grid is smaller than a LandScan Global cell, we can
no longer sum the population within the single grid without missing at least one LandScan
Global cell centroid. By using a .6 degree grid initially, we can geohash until the second to
last geohashed grid is roughly 1% bigger than a LandScan Global population grid, allowing
us to sum the population one last time. If the threshold is still not met, we can then geohash
one final time to make the smallest request grid possible based on population (see Figure 2).

The population threshold for this study was 5,000. Therefore, when a grid’s underlying
population sum was above 5,000 people, subdividing took place into 4 new quadrants. From
the top-left quadrant clockwise, we labeled the four quadrants A, B, C, and D, respectively.
These quadrant labels were then appended to the original ID of the grid being GeoHashed.
For example, Figure 3 represents the iterations of geohashing grids and the product of each
new quadrant’s ID. Grid 1 has a population over 5,000 and is replaced with four new grids
labeled Grid 1a, Grid 1b, Grid 1c, and Grid 1d. When necessary, these divisions continue
through each new quadrant(s) (Grid 1a, 1b, and 1c) constantly replacing the previous grid
with new appropriately sized grids. If a grid’s summed population is under 5,000, the
iterations end and no additional divisions occur (Grid 1d). The rest of the section discusses
the algorithms aspect of our method.
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Figure 3 An example of how Grids are geohashed and labeled.

Figure 4 Request points calculated through proposed algorithms and a standard 1km fishnet
grid over Kabul, Afghanistan. The background is LandScan Global’s population distribution.

3.2 Algorithm
The spatial analysis algorithm performs two important tasks that results in deciding whether
to split the current grid cell in equal size small sub-grid cells ( or move to next grid cell. This
decision is made based on the population count in the current grid cell. If the population
count is higher than the threshold, the algorithm (Algorithm:1) segments the grid cell. In
this algorithm, first we calculate the extent of the current grid cell. An extent defines the
geographic boundaries that contains a population data frame. These boundaries contain
top, bottom, left, and right coordinates, which are the edges of the map extent. For the
purpose of this work, we rely on fixed extent calculation of the cell. Later, we calculate the
total grid cell population count from the raster centroid of this grid cell (Algorithm: 2). The
algorithm returns the value of population count that main algorithm use to decide whether
to segment or maintain the current extent of the cell. In this algorithm, parameters are
passed as reference to calculate the values of grid cell extent and cell population count.

4 Application and Summary of Results

To showcase the usability of our proposed method, we curated Points of Interest (POI) data
over Kabul, Afghanistan. Influenced by population distributions from LandScan Global, we
generated dynamically-spaced geo-grid cells for weighted point sampling on Kabul’s polygon
map layer. We then benchmarked this method against the traditional 1-km fishnet generated
from ESRI ArcGIS and quantified the overall performance on three different measures. These
measures included - (i) total number of POIs curated; (ii) total number of requests made to
collect the POIs; and (iii) duration to collect.

4.1 Approach
A Point of Interest (POI) is a feature on a map that has a unique latitude and longitude
coordinate. Some examples include - church, school, and hospital. Several mapping sites,
such as OpenStreetMap, provide APIs to search POIs in a vicinity. These APIs input a
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Algorithm 1: Algorithm to calculate grids using LandScan Global.
Function CalculateGeoHash(inputGrid, landScan_global, threshold)

Data: LandScan Global raster population layer, grid, and threshold values
Result: grid cells
/* Split the original grid in 0.6° grid blocks.The radius from

center is 33,000 mtrs at the equator.API threshold 50,000 mtrs
*/

intpuGrid←− calculate_fishnet(inputGrid, 0.6°) ;
overlay_landscan_global();
while true do

/* Traverse each grid block in sequential fashion */
RunSpatialAnalysis(gridId, GeoPoint geoPoint[4], long populationCount) ;
if populationCount > 5000 then

Split the cell in to four equal parts;
replace old cell with four new cells ;
if current_grid == len(grid) then

break();
end

end
else

continue; /* move to next grid cell */
end

end
end

geocoordinate with a radius, and returns POIs in that extent. Mapping websites impose a
limit on the number of POIs returned, so its vital to keep a small radius. However, that
increases the scanning time and number of API calls needed to maximize POIs collection.
We assume population distribution dictates the distribution of POIs. A densely populated
area may have more POIs than a sparsely populated area. In this experiment, we attempt to
collect POIs for Kabul, Afghanistan. As shown in Figure-4, we have generated a set of 740
request points and distance between adjacent points using the proposed method and 790
request points at 1-km distance using the ArcMap fishnet algorithm. Next, we will make API
calls using these two request points dataset and compare the results of total POIs collected.

4.2 Results Discussion
The proposed geohash approach outperforms the traditional 1-km fishnet approach on all
three measures. As shown in Figure-5a, when the proposed approach reqeust points dataset
was used, it took us 3520 seconds to collect 2548 POIs using 741 API call. When the 1-k
dataset was used, it took us 3990 seconds to collect only 2495 POIs using 790 calls. These
numbers become significant for large scanning area such as at country scale. In Figure-5b,
we have shown the distribution of collected POIs from the two datasets.

4.3 Limitations and Future Work
One limitation to our proposed method is our use of LandScan Global, which restricts our
segmentation abilities considering its resolution of 30 arc-seconds. In the future, we plan to
implement LandScan HD, also developed at ORNL, because of its resolution at 3 arc-seconds
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Algorithm 2: Algorithm to calculate grid cell extent and population.
Function RunSpatialAnalysis(gridId, GeoPoint geoPoint[4], long
populationCount)

Data: LandScan Global raster population layer, grid, and threshold values
Result: grid cell extent, populationCount of the grid cell
if cell !=null then

/* Genrate coordinate values for top_left, top_right,
bottom_left, bottom_right corners of the grid cell */

geoPoint←− calculate_boundaries_spatial_extent();
/* Calculate population count for this grid cell */
populationCount←− extract_landscan_spatial_statistics(geoPoint) ;

end
end
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(a) The histogram shows the distribution of Points
of Interest curated using the two methods, time, and
the total number of request made to the server.

(b) Curated Points of Interest from two different
methods, overlaying LandScan Global’s population
distribution.

Figure 5 Results of Points of Interest curation.

(~90m at the equator). With a more spatially refined population distribution, our model can
be partitioned further with an ending grid size just shy of 90 square meters, instead of the
current 600 meters. Furthermore, the processing time to develop our dynamically spaced
geo-grids will also need to be improved. Countries with wide-spread population distributions,
like India and Pakistan, produced hundreds of thousands of grids that were appended after
each iteration, thus slowing down the overall processing time. Future work will explore how
to improve this workflow as it will be necessary when we refine our input measurements to
analyze population distributions at 3 arc-seconds.

5 Conclusion

In this paper, we proposed a method for gridding the world into varying geofenced grids
based on a given measurement threshold to optimize search requests against social media
APIs. While our research used ORNL’s LandScan Global population dataset to designate the
requirements, this algorithm can be augmented for other geospatial analysis and with other
datasets. In fact, raster and point data are best suited with this method for generalizing or
identifying areas of interest in vector data at multiple spatial representations. For example,
crime data can be used to provide emergency personnel a map for allocating resource coverage.
While, we recognize this method of geohashing is time consuming on the front end, we have
observed an increase in the amount of data exploited, thus validating the necessity up front.
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