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Abstract
Abstract data types are a helpful framework to formalise analyses and make them more trans-
parent, reproducible and comprehensible. We are revisiting an approach based on the space,
time and theme dimensions of remotely sensed data, and extending it with a more differentiated
understanding of space-time representations. In contrast to existing approaches and implement-
ations that consider only fixed spatial units (e.g. pixels), our approach allows investigations of
the spatial units’ spatio-temporal characteristics, such as the size and shape of their geometry,
and their relationships. Five different abstract data types are identified to describe geographical
phenomenon, either directly or in combination: coverage, time series, trajectory, composition
and evolution.
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1 Introduction & Motivation

In the context of big Earth data, users do not seem to struggle mainly with technical problems,
such as the provision of hardware (e.g. disk space or computing power), but are challenged
by conceptual problems. These include decisions on how to observe phenomena on Earth
(e.g. see [6]), store and analyse observations (e.g. see [3]), or replicate studies (e.g., see [19]
or [14]). The value of big data, other than their volume, variety, and velocity, is challenging
to leverage not based on inherent data characteristics, rather by how the data will be used
[13]. For example, many data storage systems perform well when inputting data (i.e. saving
raw EO images), but perform poorly when outputting data (i.e. finding relevant data and
producing information from them) [13, 22]. Not knowing how data are structured and how
they will be used on a generic level does not only challenge the general use of big Earth
data, but also the replication of studies and reuse of workflows, because tools are not clearly
distinguished from methods and data are not separated by semantic type [19].

Regular, free provision of Landsat and Sentinel data makes analyses of the temporal
dimension increasingly important. Therefore, 3D Earth observation (EO) geospatial data
cubes [18, 17] are becoming an increasingly popular tool. They do not treat images as
temporally isolated, but index and reference them in a data structure where all axes (e.g.
spatial and temporal dimensions) can be integrated and accessed equally [18]. It is necessary
to know what types of queries are expected in order to decide on an optimal tiling scheme to
optimize a geospatial data cube [8].

Increased data availability allows for analysis of high-resolution images, like Sentinel-2,
on a continental or global scale, therefore opening new application domains such as serving
the information needs of intergovernmental agreements, e.g. the United Nations sustainable
development goals (SDGs). In this context, EO data and analysis methods spread into ’new’
domains and confront new user communities with their complexity and particularities without
providing a guiding and logical understanding of the representation of the geographical reality.

With all the technical preconditions available, analyses still aim to produce information
relevant to questions posed by humans. The translation from questions to queries and results
to answers is difficult, necessitates more than increasing data volumes and computing power,
and goes beyond pure technical achievements. Recent developments are often technology-
driven and are not necessarily tied to user requirements, where user groups are also non-experts
from various application domains. For example, terminologies like ’big Earth data’, ’data
cube’ or ’analysis ready data’ are used before a proper definition or a common understanding
is achieved. Inexperienced users struggle to become familiar with tools for reasons which
might include a lack of common core terminology [15] and gaps between the user domain
and the technical EO image domain [22, 21, 4]. This is especially complicated because a
consistent conceptual model of space-time (e.g. consisting of continuants and occurrents
(events) [9] and their relationships), as a representation of a mental model of the physical
world (i.e. world model or world ontology), is still missing.

While the definition and a formalisation of a world model goes beyond the scope of
this short paper, a certain level of understanding of at least continuants is necessary as a
first step. A continuant can be seen as an entity in the physical world, parameterised by
a unique continuant-identifier and an inner state, consisting of three types of attributes
in the modelled 4D physical world: (a) positional, 3D geospatial attributes in geospatial
units (e.g. lat-long coordinates and height in meters); (b) time attribute in a physical unit
of time; and (c) “theme” [20]. We define theme as the combination of: (I) a theme type
(i.e. geo-objects, geo-fields, and field-objects according to [10]); (II) a theme name (e.g.
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any symbolic geo-object has a theme name belonging to a finite and discrete hierarchical,
structured taxonomy of concepts or classes of real-world objects); and (III) appearance
properties in the 4D physical world, expressed as either quantitative/numeric variables or
qualitative/categorical sub-symbolic theme attributes in physical units [16]. These are: (1)
photometric properties, expressed as either numeric colour values in spectral reflectance units
(e.g. mean reflectance) or categorical colour names (e.g. red) belonging to a community-
agreed discrete and finite vocabulary of colour names, related to a partition of a numeric
colour space into quantization bins [11]); (2) shape (i.e. geometric) variables [2] such as
compactness, rectangularity, elongatedness, straightness of boundaries, simple connectivity
and orientation; and (3) size variables, like length and width in metres. Occurrents, as events,
are able to change the inner state of a continuant, its relationship to other continuants, or
the emergence of new continuants. To stick with the examples given above, we may conceive
occurents as rotating crop types on an agricultural field, or the vanishing of a lake. The latter
changes its size and thereby also its relationship to other continuants (patches of vegetation
or open soil), which emerge simultaneously as new continuants.

For defining abstract data types for the application on Earth observation data, our
conjecture is:
1. The variety of phenomena in the focus of Earth observation can be represented and

categorised by a limited set of abstract data types.
2. Having a set of defined abstract data types and knowing their behaviour can make remote

sensing analyses more comprehensive and reproducible.

2 State-of-the-art and research gap

A set of generic data types for spatio-temporal data was proposed by [7] based on three
dimensions (i.e. spatial, temporal and thematic dimensions) inherent to any geospatial data
[20]. Observations can be analysed by keeping one attribute fixed, controlling another and
measuring the third. For example, in an EO image, fixing time, but controlling space and
measuring the theme yields a land cover map. Similarly, fixing space (e.g. the location of a
temperature sensor), controlling time and measuring the theme represents a temperature
curve throughout a year. In total, [7] identified three out of nine possible data types as
relevant:

Coverage: fixing time, controlling space, measuring theme
Time series: fixing space, controlling time, measuring theme
Trajectory: fixing theme, controlling time, measuring space

Another method for separating geospatial data types from their physical organisation is
comprehensively described by [1], where "spatial lenses" provide software-based views as a
way to interpret datasets. The interpretations, based on a specific view of the world, include
a network, objects, fields and events, as well as refer back to the core concepts of spatial
data [15].

In the remote sensing domain, geographic object-oriented image analysis (GEOBIA)
uses image segments (i.e. objects) instead of pixels as target analysis units [5]. Therefore,
GEOBIA applies object-oriented data models to geographic image data. Since the segments
have inherent spatial characteristics (e.g. size, shape, topological arrangement) and can
be temporally associated with each other, GEOBIA allows spatial and temporal analyses.
Typically, the objects’ semantics are modelled using ontologies or a rule-based approach,
such as implemented in the eCognition software. However, the ontologies or rule-sets are
usually tied to a virtual 2D map legend domain and not to the 4D physical world domain [4].

GISc ience 2018
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Separating the virtual image domain from the physical world domain in EO image analysis
was introduced in [16] and was then later taken up and applied as a GEOBIA-based approach
by [12] and [22, 21, 4].

Although some previous work is available, a set of universally applicable, comprehensive,
abstract data types for EO data have not yet been developed. Such a set could serve as
a framework for mapping spatial, temporal and thematic attributes of observations in EO
data cubes. Existing approaches and implementations lack either generality (e.g. specific
GEOBIA implementations), or are limited to fixed analysis units (e.g. pixels). We suggest
abstract data types to be used as a logical, intermediate layer between EO data cubes and the
4D physical world domain, thus adopting a clear distinction from the physical organisation
of data [1] as well as the 2D virtual image domain [22, 21, 4]. Our proposed abstract data
types adapt the ideas of [7] and extend them with the more differentiated understanding
of space-time phenomena and their spatial, temporal or semantic relations in GEOBIA
required for spatial image analysis [2]. Space in an EO image context has multiple meanings
since it: (1) refers to the absolute or relative location of an object (e.g. represented by a
coordinate tuple) and its spatial relation to other objects; and (2) also refers to inherent
spatial characteristics of an object (e.g. size and shape). In a more complex situation, e.g
observing the expansion of a city, the object itself is the result of a spatial arrangement of
other objects, including houses and streets.

3 Proposed abstract data types

We differentiate between position (or location) and space, which are inherent spatial properties
of objects. Further, a position of an object might not only be the absolute position, but also its
relative location within a topological arrangement. We also differentiate between continuous
(i.e. quantitative) and discrete (i.e. categorical) variables. The temporal dimension has its
upper limit in t0 and goes back until t−x as this approach is intended for querying an archive
and not for projecting processes in the future. The following abstract data types can be
selected, and are illustrated in Figure 1:

Coverage: constructed by fixing time, controlling position, measuring theme (continuous
or discrete)
Composition: constructed by fixing time, controlling theme, measuring space
Time series: constructed by fixing the position, controlling time, measuring theme
(continuous or discrete)
Trajectory: constructed by fixing theme, controlling time, measuring position
Evolution: constructed by fixing theme, controlling time, measuring space.

4 Conclusion & Outlook

Challenges of big Earth data go beyond technical issues. We suggest a limited, yet defined
and tangible set of abstract data types, which are specifically selected for use as a framework
for query primitives within EO data cubes. While existing solutions rely on fixed spatial
units, such as pixels, in GEOBIA the space properties do not only refer to the position,
but also to the spatial arrangement of objects and to properties such as extent, shape and
size of the object under consideration. Based on the state-of-the art review, we found the
necessity to extend the original set of abstract data types with two new ones to account for
the differentiated view on space within the GEOBIA domain. While defining this framework
is an ongoing process and this contribution is a first step towards it, in this short paper



M. Sudmanns, S. Lang, D. Tiede, C. Werner, H. Augustin, and A. Baraldi 60:5

Figure 1 Example phenomena relevant to Earth observation visualised in a 3D space. Here, the
axes provide an ordering principle for EO spatio-temporal phenomena. Note that space can be
conceived as position (e.g. 0-dimensional, coordinate tupel or tripel) and the spatial relationship to
other entities, or as geometric features (e.g. set of coordinate tupels, size, compactness). Although the
attributes are represented on single, individual axis, the semantics of the axes differ between theme
or time (monodimensional) and space or position (multidimensional). An interactive visualisation is
available as online visualisation (http://cf000008.geo.sbg.ac.at/adt/).

we aim to highlight the necessity of having it for formalising queries. Future work will
align this framework with the definition of a world model as a conceptual description of
geospatial phenomena, e.g. using a rigorous formalisation of continuants, occurrences and
their relationships. Further, this also includes revisiting the original and suggested terms and
a discussion of whether they are appropriate for this purpose. Being in a preliminary stage,
the framework and the abstract data types are presented here in a rather informal manner.
Therefore, the focus will lie on the formalisation of the data types and their methods as well
as an example implementation in an EO data cube.

Abstract data types allow for semantic annotations and workflow exchanges by separating
methods from tools and the image domain from the physical world domain. They can be
considered as a logical, intermediate layer between the conceptual world model and the data
storage engine, e.g. geospatial data cubes. Therefore, they can be used to answer questions
such as “what data are used?" or "what are they useful for?” and are linked to big Earth
data relevant decisions. These include but are not limited to how certain phenomena can be
observed, how a system can be designed to provide analysis results with reasonable response
times and how the result can be interpreted and deemed trustworthy. Further, they help
non-EO experts to express their questions in formalised terms. It is increasingly relevant to
analyse EO data together with non-EO data, where abstract data types might also play a
significant role.
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