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—— Abstract
Two of the grouping definitions for trajectories that have been developed in recent years allow a
continuous motion model and allow varying shape groups. One of these definitions was suggested
as a refinement of the other. In this paper we perform an experimental comparison to highlight
the differences in these two definitions on various data sets.
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1 Introduction

The presence of devices equipped with advanced tracking technologies, such as GPS-enabled
mobile phones and RFID tags, makes it possible to easily record the position of moving
entities over a period of time. The widespread use of such inexpensive devices leads to the
availability of a vast amount of movement data. Consequently, in many research areas there
is an increasing interest in analyzing such movement data [3, 11].

Typically, movement data is described as a trajectory: a path made by a moving entity
over a period of time together with time stamps at the locations. Differently put, a trajectory
is a continuous mapping from a time interval I = [tstart, tend) to the space in which the entity
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is moving. An analysis task that has been well studied is to extract collective movement
patterns from such data. Some of the movement patterns considered are flocks [1], herds [5],
convoys [7], moving clusters [8], mobile groups [6] and swarms [9]. Buchin et al. formalize the
definition for another variation called groups [2]. They define a group of moving entities by
taking into account three parameters: the spatial parameter (are the entities close enough?),
the temporal parameter (does the togetherness last long enough?), and the size parameter
(are there enough entities?). They implement the algorithm to compute groups and present
experimental evaluation of their method using both generated and real-world datasets. In
a recent paper [10], we refined the definition of groups by Buchin et al. We made a slight
change in the condition for the spatial parameter and argued that the refined definition of
groups is more intuitive and is expected to be better for finding the right groups in a dense
environment. Consequently, this change leads to different algorithms to compute groups.

In this paper we compare the two definitions experimentally. While there are many
definitions of flocks, herds, groups, etc., the last two definitions and the flocking definition
are the only ones that respect the continuity of the trajectories, and do not consider only
fixed time-stamped locations. We exclude the flocking definition because it uses a fixed-size
circle to define closeness, which does not allow for elongated groups. To compare the two
grouping definitions, we implemented the algorithm to compute groups based on the refined
definition (an implementation of the other one exists) and conducted experiments on dense
pedestrian data. We compare the outputs from both implementations, which is the same as
comparing the two definitions of groups, since the implementations follow the definitions
exactly. We analyze the claim made (by us) in [10] that the newer definition is more intuitive,
especially when the environment is dense. Arguably, dense situations are especially difficult
for identifying groups.

Results and Organization. In the following section, we review both definitions, and highlight
their differences. Section 3 briefly describes what we expect to find in an experimental analysis
where we compare the two definitions. In Section 4, we describe our experiments. We focus
our evaluation on the differences of the two definitions, and thus on the maximal groups that
are reported, rather than the differences between the algorithms and their implementation.
Moreover, we consider only a single dataset consisting of trajectories of pedestrians walking
through a narrow corridor. We conclude in Section 5 where we discuss the advantages and
disadvantages of the two definitions.

2 Description and Properties of the two Definitions for Groups

The original definition of a group by Buchin et al. relies on three parameters: the number of
entities in a group, the time interval in which those entities form a group and the distance
between entities in the group [2]. While the first two parameters are simple to formalize,
the latter needs to be described in more detail. The e-connectivity between two entities is
defined as follows: Let X be a set of moving entities and consider two entities x,y € X. If
at some time ¢, the Euclidean distance between x and y is at most € (¢ > 0), then x and
y are directly e-connected. Furthermore, z and y are e-connected in X at time t if there
is a sequence T = xg, ..., T = Yy, with zg, ...,z € X and for all i, x; and z;41 are directly
e-connected at time ¢. Then, with the maximum entity inter-distance €, a minimum number
of m entities in a group and a minimum required duration of §, a subset G C X is a group
during time interval I, if the following three conditions hold [2]:

G contains at least m entities.

I has a duration at least 6.
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Figure 1 (left) Entities in G = {a, h} are e-connected using entities not in G [10]. (right) In the
original definition [2],  and y are e-connected during [to, t2].

Every pair entities xz,y € G is e-connected in X during I.
Furthermore, G is a mazimal group during time interval I if there is no time interval I’ D T
for which G is also a group and there is no G’ D G that is also a group during I.

However, this definition might have a counter-intuitive effect and may not be suitable in
a dense environment. In [10], we presented an example where this definition will have two
entities in one group that are far apart during their entire duration as a group, see Figure 1

(left). Here, a and h are always e-connected through different entities between t; and ts.

Hence, {a,h} form a group during the time interval [t1,¢3]. Since there is no superset of
{a,h} in the same time interval I, {a, h} is a maximal group. Intuitively, we do not view
{a,h} as a group because they are separated by other entities that move in the opposite
direction. To avoid this counter-intuitive situation, we refined the definition of a group by
changing the requirement on the connectivity between entities in a group:

Every pair entities z,y € G is e-connected in G during I.

The only difference is that connectivity must happen using entities in the group G itself,
and it can no longer use any entity in the whole set that is not part of the group. With
this refined definition, {a, h} is not a group because they are not e-connected through other
entities in the same group. Another example that shows the difference between the two
definitions can be seen in Figure 1 (right) [10]. With the original definition, z and y are a
group starting at ty because they are e-connected through black entities that are standing
still. However, by the refined definition, the group of {z,y} starts only at ¢; when a and h
encounter each other.

We compute all maximal groups according to the original definition using the algorithm
of Buchin et al. [2]. For a set of n entities each specified using 7 time-stamped locations,
this algorithm runs in O(rn® + N) time, where N is the output size. We use their original
implementation. Computing all maximal groups according to refined definition [10] takes
O(72n°logn) time. We implemented the algorithm ourselves.

3 Expectations

The two definitions for groups differ only in a subtle way. We observe that any group by the
refined definition is a group by the original definition, in particular, any maximal group by
the refined definition is a (not necessarily maximal) group by the original definition. This
implies that for any maximal group by the refined definition, there exists a maximal group
by the original definition that has at least these entities and at least this duration.

We can expect that in situations that are “easy” for detecting groups, the two definitions
give similar results in terms of the number of maximal groups and the duration of these
groups. When the situation gets more and more complex, the detection of groups also gets
more difficult. The small difference in the definitions may lead to different results now,
because the accidental linking of entities through e-closeness via entities that are not in
the group is more likely to happen, which is exactly where the definitions differ. So we
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Figure 2 Trajectories of people walking in the corridor from the pedestrian data provided by the
Jilich Supercomputing Centre.

may see maximal groups in the original definition that do not exist in the refined definition.
Furthermore, maximal groups may have a longer duration by accidental linking just before
the group is e-connected or just after it.

It is not directly clear, however, that the original definition will return more maximal
groups. Besides the effect just sketched above, it can also be that a maximal group in the
original definition is briefly spread too much but some other entity in the neighborhood
provides the linking to keep on seeing it as one maximal group. This linking would not
be realized in the refined definition, which may lead to two maximal groups due to the
interruption. If this happens much, the refined definition might give more maximal groups.

4 The Pedestrian Data

Our set of experiments uses pedestrian data collected by the Civil Security and Traffic
division of the Jiilich Supercomputing Centre [4] to study the dynamics of pedestrians. The
data consists of trajectories extracted from video recordings of people walking in a synthetic
environment. The particular datasets we use consist of two sets of people walking in opposite
directions through a corridor that is 8 meters long and 3.6 meters wide [4]. The density
inside the corridor is controlled by the width w, in centimeters, of the two entrances to the
corridor: a larger width w means that more people can enter the corridor simultaneously.
The considered widths w are taken from {120,160, 200,250}. Each experiment consists of
300 trajectories, each of approximately 300 vertices as well.

In our experiments we fix the inter-entity distance € to 80 cm, and choose the minimum
group size m from {3,6,9}. For the minimum required duration § we consider values in the
range [60,180]. This corresponds to a minimum group duration roughly between four and
twelve seconds. For comparison, the average time ¢ it takes a person to cross the corridor
ranges from roughly twelve to twenty-three seconds.

The Number of Maximal Groups. We first consider the number of maximal groups as a
function of w, and thus of the density of the environment. As Figure 3 highlights for the
case m = 6 and § = 150, we see that up to w = 200, the number of reported maximal groups
increase as a function of w. This applies for both the definitions of a group, although the
number of maximal groups according to the original definition increases much faster than for
the refined definition. For even bigger values of w, the number of maximal groups flattens
off, or sometimes even decreases. These results are more apparent for larger values of §.

The number of maximal groups reported by the refined definition is generally much
smaller than the number of maximal groups reported by the original definition. This is
also clearly visible in Figure 4, where we show the number of maximal groups, with m = 6,
and w = 200, as a function of 6. The graphs for different settings of m and w are similar.
Here, we also see that the number of maximal groups decreases as we increase the minimum
required duration (which is to be expected).
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Figure 3 The number of maximal Figure 4 The number of maximal groups for m = 6
groups for m = 6 and § = 150 as a and w = 200 as a function of §. There are much fewer
function of the width w of the corridor = maximal groups according to the refined definition when

entrance, which influences density. compared with the original definition.

Measuring the Conformity of a Group. Since all entities (pedestrians) completely cross
the corridor, we can classify each entity as type going “left to right” (type R), or “right to
left” (type L). We can extend this notion to groups of entities by taking the type of the
majority of its members (in case of ties we pick arbitrarily). We then define the conformity
¢(@) of a group G as the percentage of its members that have the same type as the type of
the group. Hence, the conformity of G is a value varying from 50, half of the members of G
cross the corridor each way, to 100, all members of G go in the same direction. Intuitively,
we expect that a set of people that act as a group (in the social sense) travel in the same
direction, and thus we expect the conformity to be high in a good grouping definition.

We now measure the conformity of all maximal groups reported by our two definitions.

Specifically, we consider the percentage of maximal groups that have conformity 100, that is,

all group members travel in the same direction. We say that such a group is uni-directional.

The results are in Figure 5. Consider the case where m = 3 and w = 120. For both
definitions, we see that as the minimum required duration increases, so does the percentage
of uni-directional maximal groups. However, the refined definition generally has a much
higher percentage of uni-directional maximal groups. In particular, for a duration as short
as 90 time units (about 5 seconds), all maximal groups are uni-directional. For the original
definition this requires a minimum duration threshold of more than 180. These results are
even more clearly visible as we increase the width of the corridor. For example, for w = 160,
all maximal groups with a duration of at least 6 = 120 are uni-directional, whereas in the
original definition less than 40% of the reported maximal groups are uni-directional, even if
we increase the minimum required duration to 180. We expect that this is mostly due to
the fact that the original definition reports many more maximal groups than the refined
definition. We get similar results for larger minimum group size thresholds, that is, m = 6
and m =9.

5 Conclusions

We examined two definitions for groups in trajectory data which both support continuous
movement and varying shapes of groups. One definition was introduced as a refinement of the
other, to obtain a more natural formalization of groups, but at the expense of a less efficient
algorithm for their computation. Our comparison is based on a number of experiments where
groups are computed by both definitions.
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Figure 5 The conformity of the maximal groups in the pedestrian data as a function of 4.

The most important finding is that the two definitions differ more and more as the density
of the crowd increases. This implies that in dense situations it does matter which definition is
taken, even though they seem very similar. A second observation is that the refined definition
appears to be more natural, at least in some cases. The original definition reports many
groups that contain entities that move in opposite directions, whereas the refined definition
finds only a few of them. Moreover, such groups then often have a short duration. An
other interesting observation is that the refined definition gives fewer groups. It is not clear
whether this is an advantage or a disadvantage, since the nature of both definitions gives rise
to groups that share entities at the same time.
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