
Analysis of Irregular Spatial Data with Machine
Learning: Classification of Building Patterns with
a Graph Convolutional Neural Network
Xiongfeng Yan
School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
xiongfeng.yan@whu.edu.cn

https://orcid.org/0000-0003-4748-464X

Tinghua Ai
School of Resource and Environmental Sciences, Wuhan University, Wuhan, China
tinghuaai@whu.edu.cn

https://orcid.org/0000-0002-6581-9872

Abstract
Machine learning methods such as Convolutional Neural Network (CNN) are becoming an in-
tegral part of scientific research in many disciplines, the analysis of spatial data often failed to
these powerful methods because of its irregularity. By using the graph Fourier transform and
convolution theorem, we try to convert the convolution operation into a point-wise product in
Fourier domain and build a learning architecture of graph CNN for the classification of building
patterns. Experiments showed that this method has achieved outstanding results in identifying
regular and irregular patterns, and has significantly improved in comparing with other methods.
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1 Introduction

With the improvement of computing power and the advent of data era, machine learning
methods are becoming an integral part of scientific research in many disciplines. As a
supervised learning method, CNN has excellent performance in many fields, such as computer
vision and natural language processing. These successes are mainly attributed to its two
important properties: first, inspired by neuronal processing, CNN focuses on local structures
(Local Receptive Fields), and combines them into a whole, which can be applied to classifica-
tion or identification. Second, local structure of different regions can be detected by the same
convolution kernel, that is, weights sharing. The former accords with the decomposability of
object and hierarchy of cognition, the latter reduces complexity and improves learnability.

However, it should be noted that both the local connection and weight sharing properties
require that the local structure of data is fixed, normative, and can be clearly defined. For
example, the images in visual analysis are organized in a grid of pixels as a processing unit,
and sentences in natural language processing are organized in a linear arrangement of words
as a processing unit. But, for most of spatial graphics data in GIS fields, the arrangement,
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combination, or connection between objects may be more diversified, and it is often difficult
to satisfy this requirements of specification, for example, the group relationships between
plane buildings. Therefore, this kinds of data cannot directly use these powerful learning
methods for pattern recognition and knowledge discovery.

Although spatial data is irregular and cannot be organized according to grid or linear
structure, it is still possible to represent by graph structure. The graph cannot define a
convolution operation in the vertex domain directly, but in virtue of graph Fourier transform
and convolution theorem, the operation can be transformed into a point-wise product in the
Fourier domain, which is similar to the transformation of spatial domain convolution into
frequency domain convolution in image processing. Based on this idea, we propose a graph
CNN for identifying patterns and mining knowledge of irregular spatial data.

In this study, we focus on using machine learning to solve the problem of building group
pattern recognition, which can be used in many fields, such as urban morphology and
environmental analysis. Although the related researches have been carried out for decades,
there are still some problems such as incomplete taxonomy and inconsistent recognition rules.
The introduction of machine learning method is an effective attempt and supplement to solve
such classical problems in spatial analysis. In the following sections, we will describe detailed
methods, then conduct experiments and compare with other similar methods, and finally
discuss and conclude this study.

2 Methodology

2.1 Definition of Building Pattern Classification
Building patterns refer to visually salient structures exhibited collectively by a group of
buildings[4]. Traditional patterns detection methods are to predefine some specific perceptual
rules according to the characteristics of azimuth angle, direction difference and proximity, and
then to inquire whether there is a local group that satisfy such rules[3][8][10]. But these rules
are difficult to formalize and too rigid, which inevitably lead to an unsatisfactory result[6].

Similar to image processing, determining which pattern a building group visually belongs
to is essentially an issue of classification. A building group is an analogy to a picture, and
each building is analogy to the pixel and its shape features are analogy to color channels, in
spite of the relationship between them is an irregular graph structure, not a fixed grid.

2.1.1 Features of single building
Single building has spatial features that describe its graphical structures and semantic features
that describe its attributes, which in combination can effectively reflect its basic form. For
the description of these features, dozens of indices have been proposed[8]. In this study, we
mainly consider area Ab, main direction α, and three shape indices including length-width
ratio Rlw, area ratio RA, and compactness C. These indices illustrated in figure 1.

2.1.2 Graph representation of building group
Graph is an ideal tool to describe the relationships between multiple objects. Delaunay
triangulation (DT) and Minimum Spanning Tree (MST) are the two most commonly used ways
due to they can take spatial constraints and other contextual constraints into consideration,
such as proximity.

Regardless of whether DT or MST, they can be defined as G= (V, E ,W), where V and E
is a finite set of |V| = n vertices and edges, respectively, W ∈ Rn×n is a adjacency matrix
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encoding the weight between two vertices, and each vertex also contains one or several
features, as seen in figure 2.

2.2 Graph Convolutional Neural Network

2.2.1 Graph Fourier transform

Fourier transform is an effective tool in signal analysis and image processing, it decomposes
an original function (e.g., a signal or image) into the frequencies that make it up. The process
is essentially a linear transformation by using given orthogonal basics

〈
f, eiωt

〉
.

For the graph structure, we utilize the eigenvectors χ` of Laplacian as the decomposition
basics instead of complex exponentials, then define the graph Fourier transform as:

f̂ (λ`) = 〈f, χ`〉 =
∫ N

n=1
χT` (n)f(n) (1) (1)

Where, λ` is the eigenvalue and the inverse Fourier transform as:

f (n) =
∫ N

n=1
f̂ (λ`)χ`(n) (2) (2)

This definition is precise analogy to the classical one, and it can be interpreted as an
expansion of f in terms of the eigenvectors of the Laplacian[5][7].

2.2.2 Convolution on graph

As we cannot conduct the convolution in vertex domain directly, we can try to convert this
operation into a point-wise product in Fourier domain by means of graph Fourier transform
and convolution theorem, and it can be defined as:

(f ∗ g) (n) =
∫ N

n=1
f̂ (λ`) ĝ (λ`)χ`(n) (3) (3)

Using notation from the matrix theory, the convolution also can be written as:

f ∗ g = X
((
X T f

)
•
(
X T g

))
= Xdiag (ĝ (λ1) , . . . , ĝ (λN ))X T f=X ĝθ (Λ)X T f (4) (4)

Where, diag (ĝ (λ1) , . . . , ĝ (λN )) can be understood as a set of free parameters θ in the
Fourier domain (the Eigenspaces of Laplacian), or a function of the eigenvalues ĝ (Λ).
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Figure 3 The convolution of a graph f and a kernel of free parameters.

2.2.3 Polynomial approximation for fast localized convolution

The above definition of convolution operation on graph still has two limitations: 1) in
each operation, the Eigen decomposition need to be performed, which will bring lots of
computational cost; 2) without considering the locality in space, the features of a vertex may
be related to global vertices after this operation, it is not consistent with the local connection
property of classical CNN[1][2].

In response to these problems, Hammond[5] proposed a fast localized convolution based
on low-order polynomial approximation that represent ĝθ (Λ) as a polynomial function of
eigenvalues:

ĝθ (Λ) =
∫ K−1

k=0
θkΛk (5) (5)

Then, the Equation (4) can be rewritten as:

f ∗ g = X
(∫ K−1

k=0
θkΛk

)
X T f =

(∫ K−1

k=0
θk
(
XΛkX T

))
f =

(∫ K−1

k=0
θkLk

)
f (6) (6)

As we can see, no need to perform the Eigen decomposition anymore, and the feature
values of vertex are related only to its K-order neighboring vertices, which satisfies the
locality in space.

2.2.4 Architecture of convolutional neural network on graph

Based on the above-defined graph convolution, we propose a learning architecture of CNN
on graph for the classification of building patterns, as seen in figure 4. This architecture
includes convolutional, subsampling, and full connected layers, where subsampling layer is
optional and the full connected layer is the same as the classical CNN. We input a building
group that has already been represented as graph to this architecture, after the steps of
feature extraction and classification, we can get the probability that it belongs to each class
and choose the class with maximum probability as the final classification result.
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Figure 4 The architecture of convolutional neural network on graph.

Table 1 Accuracies of the proposed method and other methods.

Method SVM Random Forest Graph CNN
Accuracy 90.2% 93.4% 98.04%

3 Experiments

The experimental buildings were extracted from a large-scale 1:2000 topological map of the
city of Guangzhou, China. We divided them into separated groups by using road network
division and clustering techniques, and each group contains 20-128 buildings. Then, we
manually identified the two patterns of regular and irregular from all groups. Each group
was estimated by at least three participants to ensure the correctness, and these ambiguous
groups were discarded. At last, there are 2647 and 2646 available groups for regular and
irregular pattern respectively and contain a total of 318 598 buildings. Each group can serve
as a sample for the graph CNN, all samples were split into training, validation and test sets
by 6:2:2, and input features of all data were standardized using training set.

We used a shallow graph CNN architecture with four convolutional layers and one
full connected layer to test the datasets, each convolutional layer contains 24 third-order
polynomial convolution kernels. The more convolutional layers, the more complex the model
is and the more samples are required. In addition, regularization and dropout techniques
are also used to control the complexity, and their parameters are referenced from empirical
values and fine-tuned. The accuracy is 98.04%, which is better than that of SVM[9] and
random forest[6] methods, the comparison results are shown in table 1.

The activation of a sample is shown in figure 5 and the input volume stores the graph of
building group (left) and the last volume holds the scores for each class (right).

In this model, the order K of the polynomial is one of the important parameters. We
tested the values of 1, 2, 3, 4, 5, and 6 respectively, the performances on the validation set are
shown in figure 6a. The comparison found that it achieved the best performance when K=3.
The larger of K, the more complex of the training and the longer it takes. We further tested
the effect of input features of individual building on the classification of group patterns. We
tried to train and learn by using 4 features of them or only one, these results are shown in
figure 6b and we found that the area was one of the important features and the accuracy
could also reach 96.34% when only area feature was used. This may be due to the fact that
areas of buildings in a regular pattern are more homogeneous.
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Figure 5 The activations of an example graph CNN architecture.
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Figure 6 Performances when taking different K values or inputting different features.

4 Discussion and Conclusion

As a classical problem in the analysis of irregular spatial data, the traditional building
pattern classification method needs to manually extract features and design rules for specific
patterns. In this paper, we propose a graph CNN that represent the building groups by
graph and convert the convolution of vertex domain into a point-wise product in Fourier
domain. It can directly extract patterns characteristics based on the training and learning of
sample data. Experiments showed that proposed method has achieved outstanding results in
identifying regular and irregular patterns, and has significantly improved in comparing with
other methods. Meanwhile, it has great potential to extend to other analyses of irregular
spatial data, such as classification of road patterns and identification of point clouds.

The difficulties of this method lie in the selection of input features and the training process.
We have selected five features for experiments, but there are still many other descriptive
indices that can be selected. Determining which indices can better describe building patterns
and applying them to training and learning still requires more experiments, and the principal
component analysis may be a worthwhile approach to try. The training of graph CNN
requires more samples, otherwise it will easily lead to overfitting, especially for deep networks
with many convolutional layers. In the follow-up work, Volunteer Geographic Information
(VGI) is a desirable and feasible data source.
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