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—— Abstract

The understanding of geographical reality is a process of data representation and pattern discov-
ery. Former studies mainly adopted continuous-field models to represent spatial variables and to
investigate the underlying spatial continuity/heterogeneity in a regular spatial domain. In this
article, we introduce a more generalized model based on graph convolutional neural networks
that can capture the complex parameters of spatial patterns underlying graph-structured spatial
data, which generally contain both Euclidean spatial information and non-Euclidean feature in-
formation. A trainable site-selection framework is proposed to demonstrate the feasibility of our
model in geographic decision problems.
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1 Introduction

The continuous-field model, which can be seen as a process of reducing the number of spatial
variables required to represent reality to a finite set (a field) [6], is a fundamental perspective
in modelling the complex geographical world. The variation of attributes in a field model
represents the spatial pattern of certain geographical phenomenon at the conceptual level of
abstraction [12, 7], as is shown in Figure 1. The analysis of spatial patterns based on field
models has been studied extensively in traditional geography applications [2, 17]. Methods
can be roughly divided into two types: autoregressive methods that adopt a spatial lag term
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Figure 1 Spatial patterns represented in a regular grid [5]. (a) Positive spatial autocorrelation.
(b) Spatial randomness. (c) Negative spatial autocorrelation.

to consider the autocorrelation of local neighborhoods [1] and geostatistical methods that
use semi-variograms to characterize the spatial heterogeneity [15, 2].

To uncover the deep features of spatial patterns, convolutional neural networks (CNNs)
have been introduced from computer science to investigate local stationary properties of
the input data by allowing long range interactions in terms of shorter, localized interactions
[11]. However, the use of CNNs becomes problematic when the data is not structured
in the regular spatial domian (e.g. raster model in GIS), since the local kernel filter can
no longer be defined via the Euclidean metric of the grid. Graph convolutional networks
(GCNs) is a generalization of CNNs to deal with graph-structured data in the irregular
spatial domain (i.e., vector model in GIS), where the input data is represented as objects
and their connections. The convolutional filter in GCNs can be extended to be localized in
the spectral domain of the objects’ features [3, 9], thus enable us to investigate both short
range interactions and long range interactions in the spatial domain. We think that GCNs
are suitable for modelling the complex spatial patterns in geographical data that generally
contain both Euclidean spatial information and non-Euclidean feature information [13].

In this article, we will introduce a way to model the spatial patterns in geographical
data by constructing a graph neural network with both spatial information and feature
information embedded and by designing a localized feature filter on graph that considers
spatial constraints. A layer-wise neural network framework is proposed to make the model
trainable. In addition, we have applied the proposed framework in a intra-urban site-selection
cases based on a POI check-in dataset in Beijing, China to demonstrate the feasibility of our
model.

2 Embedding spatial patterns in graphs

2.1 Graph Fourier transformation

To enable the formulation of fundamental operations such as filtering on a graph, the Graph
Fourier transform is needed first, which is defined via a generalization of the Laplacian
operator on the grid to the graph Laplacian [4]. In graph G = (V, E, W), V is a finite set
of |V| = n nodes, F is a set of edges among nodes and W € R™*" is a weighted adjacency
matrix representing the weights of edges. An input vector x € R" is seen as a signal defined
on G with x; denotes the spectral information of node 1.
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» Definition 1 (Graph Laplacian). Let L = A — W be the graph Laplacian of G, where
A € R™ " is a diagonal matrix with A; = Zj Wi;, and the normalized definition is
L% =1, — A~Y2WA~12 where I, is the identity matrix.

As L? is a real symmetric positive semidefinite matrix, it has a complete set of orthonormal

eigenvectors U = (uy,- -+ ,u,), and their associated nonnegative eigenvalues A = (A1, -+, \,).

The Laplacian is diagonalized by U such that L* = UAUT where A = diag([A1, -+ ,\n]) €
R"™*", The graph Fourier transform of € R" is then defined as # = UTz € R".

2.2 Convolutions on graphs

» Definition 2 (Graph convolutions). The convolution operators on graphs are defined as the
muliplication of x with a filter gy = diag(6) parameterized by 6§ € R™ in the Fourier domain,
ie.

go*x = go(L%)x = go(UNUT )z = Uge(A)U” . (1)
We can understand go(A) as a function of the eigenvalues of L, a non-parametric filter whose
parameters are all free and can be trained.

However, the evaluation of Eq. 1 is computationally expensive, as the multiplication
with eigenvector matrix U is Q(n?). To overcome this problem, [8] suggested the Chebyshev
polynomials Ty (x) = 22T)_1(x) — Tx_2(x) up to K*" order to approximate gg(A):

K
g0 (M)~ Y 0, Ti(A), (2)
k=0

2

Amaa

A —1,, 0" € RE is a vector of polynomial coefficients, Ty(x) = 1

with a rescaled A =
and Ty (z) = .

Furthermore, by assuming K = 1 and \j,4, = 2 in Eq. 2 and some renormalization tricks,
[10] proposed an expression with a single parameter § = 0, = —6} to compute:

go*x = 0(L, + ATV2PWAY e = ATV 2W AT 2, (3)

where W =W + I,, and A;; = > Wi;. Eq. 3 has complexity O(|E|) because Wz can be
efficiently implemented as a product of a sparse matrix with a dense vector.

2.3 Spatial-enriched graph construction

Different from state-of-the-art graph constructions in many recognition tasks, where the
adjacency matrix W are often defined by calculating the similarity among nodes, we try to
enable the constructed graph to capture the relationships between the feature similarity and
the spatial displacement of node pairs, i.e., to construct a spatial-enriched graph.

Given the input features X € RV*¢ of nodes V, where N = |V/| is the number of locations
and C' € R is the number of features for each node, we define the adjacency matrix W
according to spatial displacement of N locations. The distance matrix for locations can
be considered a prior knowledge for the graph construction process and we can introduce
the distance decay effect in geography to represent the spatial dependence of features in X.
Derived from the gravity model, there many functions that could be used to express the
spatial weighting function, such as the power function, the exponential function, and the
Gaussian function [19]. Here, we consider a variant of the self-tuning Gaussian diffusion
kernel [9]:

_ d(,5)

Wij =exp 7%, (4)
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Figure 2 Illustration of the site-selection framework based on graph convolutional networks.

where d(,j) is the Euclidean distance between node i and j and o; is computed as the
distance d(i,ix) corresponding to the k-th nearest neighbor i of node i. Eq. 4 gives a
normalized measurement of spatial displacement in a graph whose variance is locally adapted
around each location.

Compared to traditional geographical studies that choose arbitrary models to capture the
effect of distance, our GCN-based model is a more universal way to model the relationship
underlying spatial data. We treat the feature information and the spatial information
separately, and leave the graph to learn the spatial pattern given certain training objective.
The details of learned spatial pattern are restored in the layer-wise parameters of the deep
graph convolutional network and can be adopted in various applications.

3 Example: site-selection tasks

One of the most common applications that implicitly consider spatial patterns is to find the
best location to site a facility given the urban configurations. Traditionally, there are lots of
studies that tried to solve this kind of site-selection problem through an spatial optimization
model that considers some predefined spatial constraints [18]. However, if the model is simple
and easy to compute, the optimization may be arbitrary to some extent; while if the model
is too specific about the complex spatial relationships, the optimization are always difficult
to compute.

Based on the graph convolutional model proposed in Section 2 that can learn the
heterogeneity pattern underlying spatial data, we design a trainable neural network framework
for the site-selection problem, illustrated in Figure 2. The site-selection framework is an
example to show how our graph convolutional model can be adopted in geographic decision
problems.

In Figure 2, the goal of the neural networks is to learn a complex function of spatial
pattern on a graph G = (V, E), which takes as input:

A feature matrix X € RNV*C that contains the features z; for every observed location i,

where N is the number of given locations and C' is the number of input feature types
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Figure 3 Illustration of some input training samples with only six POI types visualized. There
are actually 242 POI types in total, and the multi-channel features contained in our dataset are
not shown in this figure, such as the check-in number of each facility, the area of each facility, the
number of photos took at each location.

A fully-connected spatial distance matrix W € R¥*N summarized using Eq. 4 that
represents the spatial structure of observed locations

and outputs a decision vector Z = [Ry,---, Ry] € RV that contains the distances between
the optimal site and all given locations. By calculating the virtual decision vector Z’' =
[R],---,Rl] € RY for all potential locations in the area, we can find an optimal site that

minimize ||Z — Z'|| or we can reject a proposal of site-selection given a distance threshold.

For simplicity, we display a simple two-layer GCN to capture the spatial dependence
among urban locations and make prediction. Recalling the convolutional filter introduced in
Eq. 3, let W= A~V2WA~1/2 the forward propagation then takes the simple form:

Z = ReLU (WReLU (’WX@@)) ®<1>) , (5)

where ©(0) ¢ RE*H is the input-to-hidden parameters for a hidden layer with H feature

maps. O € R¥*1 is the hidden-to-output parameters for an output desicion vector Z.
Assuming all the existed facilities in urban areas are successful samples of site-selection

given their circumstances, we then backpropagate the model with the mean square error loss

function (MSELoss) between the output decision vector Z and the real location vector Z*.

Computational skills such as stochasitic gradient descent, batch normalization and activation
functions are all adopted in our work to train the model.
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We utilized a dataset collected from Sina Weibo in 2014 that contains 868 million check-in
records for 143,576 points of interest (POIs) in Beijing [14]. The dataset contains multiple
features to form the multi-channel enriched feature matrix X as our model input. By
randomly capturing 28,000 snapshots (3km x 3km) that contain at least one built-up hotel
as our input training samples and 7000 snapshots with the same settings as our validation
set, we can adopt the framework in Figure 3 to train a network that tries to learn the
function of spatial configurations between hotels and their complex urban environment. The
original input training samples are shown in Figure 3. The trained network can thus be
used to evaluate the built-up environment and decide where to build a potential hotel. In
practice, methods of patch extraction and normalization are applied to make the input
training samples comparable and combinable [16]. We formalized the comparable training
graphs into minibatches without the information of target hotels, but record the ground
truth decision vectors Z* of each input sample for the calculation of MSELoss.

Currenly, we are still optimizing the experiment for this site-selection task. After more
than 200 epochs of training, the average prediction accuracy on the validation set (7,000
samples) can reach around 50 meters, but the result is not very stable due to the abnormally
complex POI configurations in Beijing, China. However, we believe the simple framework
proposed in this section casts light on the applications of graph convolutions in geographic
decision systems.

4  Conclusion and Discussion

In this article, we introduced a generalized model that can capture the spatial pattern in
geographical data using graph convolutional networks. By embedding the feature information
and the spatial information separately into the graph network, and designing a feature-based
localized filter on the graph, our model can learn both short and long range interactions
among space and approximate the high-dimensional parameters of spatial patterns according
to certain training objectives. Based upon that, we proposed a trainable site-selection
framework using spatial-enriched graph convolutional neural networks to demonstrate the
feasibility of our model to be adopted in various geographic problems.

Important open questions remain: How about universality of the graph convolutional
networks, how could it be transferred to other applications directly? How to evaluate
the model’s parameters in a way that is both quantitative, interpretable and intuitive for
geographical analysis? How to incorporate more understanding of spatial interactions into
the graph-based model except for the distance decay? In addition, this initial work has only
focused on the multi-features in a single dataset; a promising area is to integrate the features
of multi-sourced geo-data such as street networks, remote sensing spectra and other social
sensing datasets. An improved version of our model is needed to characterize and explain the
intertwined spatial variation pattern in our complex geographic world. We plan to address
these questions in on-going works.
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