Some Semantic Issues in Probabilistic

Programming Languages
Hongseok Yang

School of Computing, KAIST, South Korea
hongseok.yang@kaist.ac.kr

—— Abstract

This is a slightly extended abstract of my talk at FSCD’19 about probabilistic programming and a
few semantic issues on it. The main purpose of this abstract is to provide keywords and references
on the work mentioned in my talk, and help interested audience to do follow-up study.

2012 ACM Subject Classification Theory of computation — Probabilistic computation; Theory of
computation — Program semantics; Theory of computation — Denotational semantics; Mathematics
of computing — Bayesian nonparametric models; Mathematics of computing — Bayesian computation

Keywords and phrases Probabilistic Programming, Denotational Semantics, Non-differentiable
Models, Bayesian Nonparametrics, Exchangeability

Digital Object Identifier 10.4230/LIPIcs.FSCD.2019.4

Category Invited Talk

1 Introduction

Probabilistic programming [11, 9, 35, 8] refers to the idea of developing a programming
language for writing and reasoning about probabilistic models from machine learning and
statistics. Such a language comes with the implementation of several generic inference
algorithms that answer various queries about the models written in the language, such
as posterior inference and marginalisation. By providing these algorithms, a probabilistic
programming language enables data scientists to focus on designing good models based
on their domain knowledge, instead of building effective inference engines for their models,
a task that typically requires expertise in machine learning, statistics and systems. Even
experts in machine learning and statistics may benefit from such a probabilistic program-
ming system because using the system they can easily explore highly advanced models.
Several probabilistic programming languages have been built. Good examples are Stan [8],
PyMC [23], Church [9], Venture [19], Anglican [35, 30], Turing [7], Pyro [3], Edward [32, 31],
ProbTorch [26] and Hakaru [20].

In the past five years, with colleagues from programming languages, machine learning and
probability theory, I have worked on developing the semantic foundations, efficient inference
algorithms, and static program analysis for such probabilistic programming languages,
especially those that support expressive language features such as higher-order functions,
continuous distributions and general recursion. At FSCD’19, I plan to talk about some of
these projects related to semantics and the lessons that I learnt.

This document is a companion to my FSCD’19 talk. Its primary goal is to provide
keywords and references to the work mentioned in the talk, and help interested people
start their follow-up study. If the reader looks for systematic introduction to probabilistic
programming, I recommend to look at books [10, 34, 6] and teaching materials on probabilistic
programming instead.

© Hongseok Yang;
37 licensed under Creative Commons License CC-BY

4th International Conference on Formal Structures for Computation and Deduction (FSCD 2019).
Editor: Herman Geuvers; Article No. 4; pp. 4:1-4:6

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany

mailto:hongseok.yang@kaist.ac.kr
https://doi.org/10.4230/LIPIcs.FSCD.2019.4
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

4:2

Some Semantic Issues in Probabilistic Programming Languages

Listing 1 Anglican program with undefined posterior. (normal_pdf x 0 1) computes the density
of the standard normal distribution at z. The program defines a model with two random variables
x and y, the former being sampled from the standard normal distribution and the latter from the
exponential distribution. The random variable y is observed to have the value 0, and the program
expresses the posterior of x under this observation.

(let [x (sample (normal 0 1))
x_pdf (normal_pdf x 0 1)
y (observe (exponential (/ 1 x_prob)) 0)]
x)

2 Some research questions

A large part of my research has been about building a solid theoretical foundation for
probabilistic programming languages. Doing so is particularly needed for such languages,
because programs in those languages are run by inference engines but these inference
engines only approximate the ideal mathematical semantics of these programs, namely,
their posterior distributions. Even worse, sometimes probabilistic programs do not have
posterior distributions at all, and I do not know of any inference engines that can detect
it. Listing 1 shows one such program in Anglican, whose posterior distribution (or more
precisely posterior density) is undefined.! Also, I found this foundation building intellectually
rewarding, because, as I will explain shortly, it made me think about unexpected connections
among multiple disciplines and revisit old concepts in programming languages, such as data
abstraction, from a new perspective.

Here are three specific research questions about the foundation for probabilistic program-
ming that intrigued me and my colleagues.

Q1: How to define a good denotational semantics for higher-order probabilistic pro-
gramming languages with continuous distributions and general recursions?

A standard tool for defining a continuous probability distribution rigorously is measure
theory. But it turns out that measure theory is not good enough for defining the denotational
semantics of higher-order probabilistic programming languages, such as Church, Venture
and Anglican, because measure theory does not support higher-order functions well. The
category of measurable spaces is not Cartesian closed, because the set of measurable functions
[R —,, R] cannot be turned into a measurable space that makes the following evaluation
map measurable [1]:

ev:[R =, R xR =R, ev(f,r) = f(r).

I have been involved in the joint efforts to address this semantic issue [29, 12, 25]. Using
tools from category theory, we developed a theory of quasi-Borel spaces [12], which extends
measure theory, and used our theory to define the denotational semantics of higher-order
probabilistic programming languages and to prove the correctness of inference algorithms for

L Let pn (2,0,1) be the density at z of the normal distribution with mean 0 and standard deviation 1, and
pa(y) be the density of the exponential distribution with rate A. The prior of the program in Listing 1
is pn(z,0,1), and the likelihood is the density of the 1/pn(x,0,1)-rate exponential distribution at y = 0,
which is p1/p,. (2,0,1) (¥ = 0) = 1/pn(x,0,1). Thus, the joint density is 1. The marginal likelihood is co.
Thus, the posterior density p(z|y = 0) is undefined.

H. Yang

Listing 2 Anglican program with non-differentiable density. The program denotes a model with
three random variables x1, x2,y, all three being drawn from the normal distribution with different
parameters. It expresses the posterior distribution of x1 under the condition that y has the value 4.

(let [x1 (sample (normal 0 1))
x2 (sample (mormal (* x1 x1) 1))
x3 (if (> x2 0) x1 x2)
y (observe (normal x3 1) 4)]
x1)

such languages [25]. Recently, Vakar, Kammar and Staton built a domain theory on top
of quasi-Borel spaces, and showed how to handle term and type recursions in denotational
semantics in the presence of continuous probability distributions [33].

An interesting future direction is to generalise well-known results from probability theory
using the theory of quasi-Borel spaces. Our initial investigation with de Finetti’s theorem
for exchangeable random sequences shows a promise [12].

Q2: Can a probabilistic program denote a distribution with a density that is not
differentiable at some non-measure-zero set?

This question assumes a typical setting that gradient-based inference algorithms operate.

In the setting, all sampling statements in probabilistic programs use distributions on R"™ for
some n that have densities with respect to the Lebesgue measure, and those probabilistic
programs mean distributions on traces of sampled values during execution. For instance, the
posterior distribution of the program in Listing 2 has the following density f : R? — [0, c0)
with respect to the Lebesgue measure on R?: for x;,xs € R,

f(-rlwx?) = pn(xlaoa 1) 'pn(l'g,l'%, 1) : (]l[z2>0] 'pn(4a$17 1) +]l[zggo] 'pn(4,$2, 1))

where p,,(z, m, o) is the density at = of the normal distribution with mean m and standard
deviation o and 1|, is the indicator function returning 1 if ¢ holds and 0 otherwise.

The negative answer to the question is needed in order for these gradient-based inference
algorithms to work correctly [21, 18]. Intuitively, it ensures that the algorithms never attempt
to compute gradients at non-differentiable points, and the effects of these non-differentiable
points to the algorithms can be estimated algorithmically.

Currently we have only a partial answer to the question. We proved that for a first-order
probabilistic programming language without loops, if a program in the language uses only
analytic operations as its primitive operations, the set of its non-differentiable points has
measure zero [36]. The question is open for a language that supports higher-order functions,
includes loops, or permits non-analytic primitive operations.

Q3: What is a good theory of data abstraction for probabilistic programming languages,
which in particular can let us analyse modules from Bayesian nonparametrics?

Sophisticated probabilistic models from Bayesian nonparametrics are implemented as

modules in some probabilistic programming languages, such as Church and Anglican [24, 30].
This question asks for extending the theory of data abstraction to account for such modules.

Ideally, the theory should provide guidance about how to implement such modules, and help
programmers understand the consequences of using these modules.

I became interested in the question because of an intriguing feature of these modules.

They are often implemented using impure features, such as mutable state, but they still
satisfy a type of equations that typically hold for pure modules, such as commutativity of

4:3

FSCD 2019

4:4

Some Semantic Issues in Probabilistic Programming Languages

module operations. It turns out that this phenomenon is not an accident; the probabilistic
models that the modules denote satisfy symmetry properties such as exchangeability and
contractibility [22, 16], and the equations for the modules come from these properties [28, 27].

Answering the question amounts to connecting the theory of data abstraction in pro-
gramming languages to the study on these symmetry properties in probability theory. So far
we found a connection for the Beta-Bernoulli process, one of the simplest models [27], and
inspired by this connection, we defined a new type of symmetry properties for probabilistic
models and proved a representation theorem for them [15]. These results are far from
answering the question posed, and I expect (and hope) that more deep results are waiting to
be discovered.

The three questions are chosen mainly based on my personal taste. If the reader wants
to gain a broad view on what semantics researchers care about regarding probabilistic
programming languages, I recommend to read the following papers [17, 14, 13, 4, 2, 5].

3 Final remark

Probabilistic programming is an exciting topic that raises several fresh theoretical and
practical questions in programming languages, statistics, machine learning and probability
theory. I hope that my FCSD’19 talk and (highly incomplete and biased) list of research
questions in the previous section helps the reader partially understand why I and my colleagues
are excited about the topic. This document conveys the view of one programming-language
researcher on probabilistic programming. To understand how machine learning researchers
think about probabilistic programming, I recommend to watch the video recording of Josh
Tenenbaum’s ICML’18 invited talk, and read the introduction of the book on probabilistic
programming [34]; the introduction is written mostly by Frank Wood.

—— References

1 R. J. Aumann. Borel structures for function spaces. Illinois Journal of Mathematics, 5:614—630,
1961.

2 Sooraj Bhat, Johannes Borgstrom, Andrew D. Gordon, and Claudio V. Russo. Deriving
Probability Density Functions from Probabilistic Functional Programs. Logical Methods in
Computer Science, 13(2), 2017.

3 Eli Bingham, Jonathan P. Chen, Martin Jankowiak, Fritz Obermeyer, Neeraj Pradhan,
Theofanis Karaletsos, Rohit Singh, Paul A. Szerlip, Paul Horsfall, and Noah D. Goodman.
Pyro: Deep Universal Probabilistic Programming. Journal of Machine Learning Research,
20:28:1-28:6, 2019.

4 J. Borgstrom, A. D. Gordon, M. Greenberg, J. Margetson, and J. van Gael. Measure
Transformer Semantics for Bayesian Machine Learning. LMCS, 9(3):11, 2013.

5 Johannes Borgstrom, Ugo Dal Lago, Andrew D. Gordon, and Marcin Szymczak. A lambda-
calculus foundation for universal probabilistic programming. In ICFP, pages 33—46, 2016.

6 Cameron Davidson-Pilon. Bayesian Methods for Hackers: Probabilistic Programming and
Bayesian Inference. Addison-Wesley Professional, 2015.

7 Hong Ge, Kai Xu, and Zoubin Ghahramani. Turing: Composable inference for probabilistic
programming. In AISTATS, pages 1682-1690, 2018.

8 Andrew Gelman, Daniel Lee, and Jigiang Guo. Stan: A Probabilistic Programming Language
for Bayesian Inference and Optimization. Journal of Educational and Behavioral Statistics,
40(5):530-543, 2015.

9 Noah D. Goodman, Vikash K. Mansinghka, Daniel M. Roy, Keith Bonawitz, and Joshua B.
Tenenbaum. Church: A Language for Generative Models. In UAI pages 220-229, 2008.

H. Yang

10

11

12

13

14

15

16
17

18

19

20

21

22

23

24

25

26

27

28

29

30

Noah D Goodman and Andreas Stuhlmiiller. The Design and Implementation of Probabilistic
Programming Languages. http://dippl.org, 2014. Accessed: 2019-4-11.

Andrew D Gordon, Thomas A Henzinger, Aditya V Nori, and Sriram K Rajamani. Probabilistic
programming. In Proceedings of the on Future of Software Engineering, FOSE 2014, pages
167-181, 2014.

Chris Heunen, Ohad Kammar, Sam Staton, and Hongseok Yang. A convenient category for
higher-order probability theory. In LICS, pages 1-12, 2017.

Daniel Huang and Greg Morrisett. An Application of Computable Distributions to the
Semantics of Probabilistic Programming Languages. In ESOP, pages 337-363, 2016.
Chung-Kil Hur, Aditya V. Nori, Sriram K. Rajamani, and Selva Samuel. A Provably Correct
Sampler for Probabilistic Programs. In FSTTCS, pages 475-488, 2015.

Paul Jung, Jiho Lee, Sam Staton, and Hongseok Yang. A Generalization of Hierarchical
Exchangeability on Trees to Directed Acyclic Graphs. arXiv preprint, 2018. arXiv:1812.06282.
Olav Kallenberg. Probabilistic Symmetries and Invariance Principles. Springer, 2005.

D. Kozen. Semantics of Probablistic Programs. Journal of Computer and System Sciences,
22:328-350, 1981.

Wonyeol Lee, Hangyeol Yu, and Hongseok Yang. Reparameterization Gradient for Non-
differentiable Models. In NeurIPS, pages 5558-5568, 2018.

Vikash Mansinghka, Daniel Selsam, and Yura Perov. Venture: a higher-order probabilistic
programming platform with programmable inference. arXiv preprint, 2014. arXiv:1404.0099.
Praveen Narayanan, Jacques Carette, Wren Romano, Chung-chieh Shan, and Robert Zinkov.
Probabilistic inference by program transformation in Hakaru (system description). In Pro-
ceedings of the 13th International Symposium on Functional and Logic Programming, FLOPS
2016, pages 6279, 2016.

Akihiko Nishimura, David Dunson, and Jianfeng Lu. Discontinuous Hamiltonian Monte Carlo
for Sampling Discrete Parameters. arXiv preprint, 2017. arXiv:1705.08510.

Peter Orbanz and Daniel M. Roy. Bayesian Models of Graphs, Arrays and Other Exchangeable
Random Structures. IEEE Trans. Pattern Anal. Mach. Intell., 37(2):437-461, 2015.

Anand Patil, David Huard, and Christopher J Fonnesbeck. PyMC: Bayesian Stochastic
Modelling in Python. Journal of Statistical Software, 35(4):1, 2010.

Daniel M. Roy, Vikash Mansinghka, Noah Goodman, and Joshua Tenenbaum. A stochastic
programming perspective on nonparametric Bayes. In ICML Workshop on Nonparametric
Bayesian, 2008.

Adam Scibior, Ohad Kammar, Matthijs Vdkar, Sam Staton, Hongseok Yang, Yufei Cai, Klaus
Ostermann, Sean K. Moss, Chris Heunen, and Zoubin Ghahramani. Denotational validation
of higher-order Bayesian inference. PACMPL, 2(POPL):60:1-60:29, 2018.

N. Siddharth, Brooks Paige, Jan-Willem van de Meent, Alban Desmaison, Noah D. Goodman,
Pushmeet Kohli, Frank Wood, and Philip Torr. Learning Disentangled Representations with
Semi-Supervised Deep Generative Models. In NIPS, pages 5927-5937, 2017.

Sam Staton, Dario Stein, Hongseok Yang, Nathanael L. Ackerman, Cameron Freer, and
Daniel M Roy. The Beta-Bernoulli Process and Algebraic Effects. In ICALP, 2018.

Sam Staton, Hongseok Yang, Nathanael L. Ackerman, Cameron Freer, and Daniel M Roy.
Exchangeable random process and data abstraction. In Workshop on Probabilistic Programming
Semantics, PPS 2017, 2017.

Sam Staton, Hongseok Yang, Chris Heunen, Ohad Kammar, and Frank Wood. Semantics
for probabilistic programming: higher-order functions, continuous distributions, and soft
constraints. In LICS, pages 525-534, 2016.

David Tolpin, Jan-Willem van de Meent, Hongseok Yang, and Frank D. Wood. Design and
Implementation of Probabilistic Programming Language Anglican. In Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming Languages,
IFL 2016, pages 6:1-6:12, 2016.

4:5

FSCD 2019

http://dippl.org
http://arxiv.org/abs/1812.06282
http://arxiv.org/abs/1404.0099
http://arxiv.org/abs/1705.08510

4:6

Some Semantic Issues in Probabilistic Programming Languages

31

32

33

34

35

36

Dustin Tran, Matthew D. Hoffman, Dave Moore, Christopher Suter, Srinivas Vasudevan, and
Alexey Radul. Simple, Distributed, and Accelerated Probabilistic Programming. In NeurIPS,
pages 7609-7620, 2018.

Dustin Tran, Alp Kucukelbir, Adji B. Dieng, Maja R. Rudolph, Dawen Liang, and David M. Blei.
Edward: A library for probabilistic modeling, inference, and criticism. CoRR, abs/1610.09787,
2016.

Matthijs Vakar, Ohad Kammar, and Sam Staton. A domain theory for statistical probabilistic
programming. PACMPL, 3(POPL):36:1-36:29, 2019.

Jan-Willem van de Meent, Brooks Paige, Hongseok Yang, and Frank Wood. An Introduction
to Probabilistic Programming. arXiv preprint, 2018. arXiv:1809.10756.

Frank Wood, Jan Willem Meent, and Vikash Mansinghka. A New Approach to Probabilistic
Programming Inference. In AISTATS, pages 1024-1032, 2014.

Yuan Zhou, Bradley Gram-Hansen, Tobias Kohn, Tom Rainforth, Hongseok Yang, and Frank
Wood. A Low-Level Probabilistic Programming Language for Non-Differentiable Models. In
AISTATS, 2019.

http://arxiv.org/abs/1809.10756

	Introduction
	Some research questions
	Final remark

