Deterministic Leader Election in Programmable
Matter

Yuval Emek
Faculty of Industrial Engineering and Management, Technion — II'T, Haifa, Israel
yemek@technion.ac.il

Shay Kutten
Faculty of Industrial Engineering and Management, Technion — II'T, Haifa, Israel
kutten@ie.technion.ac.il

Ron Lavi
Faculty of Industrial Engineering and Management, Technion — II'T, Haifa, Israel
ronlavi@ie.technion.ac.il

William K. Moses Jr.!
Faculty of Industrial Engineering and Management, Technion — II'T, Haifa, Israel
wkmjr3@gmail.com

—— Abstract

Addressing a fundamental problem in programmable matter, we present the first deterministic
algorithm to elect a unique leader in a system of connected amoebots assuming only that amoebots
are initially contracted. Previous algorithms either used randomization, made various assumptions
(shapes with no holes, or known shared chirality), or elected several co-leaders in some cases.

Some of the building blocks we introduce in constructing the algorithm are of interest by
themselves, especially the procedure we present for reaching common chirality among the amoebots.
Given the leader election and the chirality agreement building block, it is known that various tasks
in programmable matter can be performed or improved.

The main idea of the new algorithm is the usage of the ability of the amoebots to move, which
previous leader election algorithms have not used.

2012 ACM Subject Classification Theory of computation — Distributed computing models; Com-
puting methodologies — Mobile agents; Theory of computation — Self-organization

Keywords and phrases programmable matter, geometric amoebot model, leader election
Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.140

Category Track C: Foundations of Networks and Multi-Agent Systems: Models, Algorithms and
Information Management

Related Version A full version of the paper is available at http://arxiv.org/abs/1905.00580.

Funding Ywval Emek: The work of Y. Emek was supported in part by an Israeli Science Foundation
grant number 1016/17.

Shay Kutten: The work of this author was supported in part by a grant from the Bi-national Science
Foundation.

Ron Lavi: This research was supported by the ISF-NSFC joint research program (grant No. 2560/17).
William K. Moses Jr.: The work of this author was supported in part by a grant from the Israeli
Ministry of Science.

! Corresponding author.

© Yuval Emek, Shay Kutten, Ron Lavi, and William K. Moses Jr.;
37 licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).

Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;

Article No. 140; pp. 140:1-140:14

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fir Informatik, Dagstuhl Publishing, Germany

mailto:yemek@technion.ac.il
mailto:kutten@ie.technion.ac.il
mailto:ronlavi@ie.technion.ac.il
https://orcid.org/0000-0002-4533-7593
mailto:wkmjr3@gmail.com
https://doi.org/10.4230/LIPIcs.ICALP.2019.140
http://arxiv.org/abs/1905.00580
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

140:2

Deterministic Leader Election in Programmable Matter

1 Introduction

The notion of programmable matter [19], and specifically ameobots [8, 7], envisions matter
as composed of tiny weak robots called “particles”. Multiple studies have addressed what
these particles can achieve by cooperation, and how such weak entities can even cooperate.
See e.g., coating of materials [12, 11, 4], bridge building [1], shape formation [9, 3, 10, 15, 5],
and shape recovery [14]. An important primitive used often for coordinating such tasks is the
election of a unique leader. Interestingly, all deterministic algorithms either elected multiple
co-leaders in cases of symmetrical shapes of the matter, or relied on various assumptions
on the particles, such as initially forming a specific shape (no holes), or initially having a
common chirality.

1.1 Amoebot Model

Under the amoebot model [8, 7], each particle (an amoebot) occupies (alone) a different
intersection (or node) of the lines of a triangular grid embedded in the plane, as seen in
Figure 1.2 The degree of a particle is the number of particles occupying neighboring nodes. A
particle is either contracted (occupies one node) or ezpanded (occupies two neighboring nodes).

Each particle is activated infinitely often by an asynchronous scheduler to act. One
asynchronous round is completed when each particle is activated at least once. The activation
of a particle is atomic, i.e., it is completed before the next particle is activated. Each activation
consists of 3 stages: (i) P reads the memories of adjacent particles, (ii) P performs some
local computation and may update its own memory and/or the memories of its neighboring
particles (sometimes, this is called “sending messages”), and (iii) P may move by either
expanding or contracting.? Specifically, an expanded particle can contract to either one of
the two nodes it occupies. While contracting out of node b, the particle can pull a contracted
particle @) that occupies a node ¢ that neighbors b; then @ becomes expanded and occupies
both ¢ and b. The expansion of P from node b into a neighboring node ¢ is possible if P
is contracted and c is not occupied by another contracted particle. After the expansion, P
occupies both b (termed P’s tail) and ¢ (termed P’s head). Suppose that P’s move is an
expansion into ¢, already occupied by a different particle @ who is expanded (@ occupies
also a different node e). We then say that Q is pushed, Q becomes contracted and occupies
only node e. For the sake of convenience, we may sometimes view the (occupied) nodes as
the entities taking actions.

Each particle has constant size memory. In the leader election (LE) problem, each particle
has one of three LE statuses: C (candidate, the initial state), L (leader), and U (unelected).
and will permanently change its status to either U or L such that exactly one particle has
status L by the end of the algorithm.

The particles are classified according to their chirality as clockwise (CW) particles or
counter-clockwise (CCW) so that a CW (resp., CCW) particle numbers the ports correspond-
ing to the 6 incident edges in (each of) the node(s) it occupies from 0 to 5 in increasing
CW (resp., CCW) order; the edge from which this numbering starts is chosen arbitrarily
(refer to Figure 2 for an illustration). We assume that the particle chirality classification is

2 Because of space constraints, all figures are found in the full version.

3 Note that P allocates memory for each of its ports and that is the memory that can be modified by
adjacent particles. In other words, when P receives a message, it knows through which port the message
was sent and by extension which particle sent it.

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr.

determined by a malicious adversary and that initially, a particle does not know whether its
chirality (or a chirality of any other node) is CW or CCW.

The configuration of the particle system at any given time is comprised of the location and
state of each particle; it is contracted if all particles are contracted. We follow the common

practice (see [6]) and assume that the particles are, initially, in a contracted configuration.

The algorithm terminates in a contracted configuration.

Define a graph G(t), called the shape, induced on the grid by the nodes occupied by
particles at time ¢ and an edge connects two graph nodes if they represent two neighboring
grid nodes. Following the common practice in the amoebot model literature (see [8]), it
is required that the shape is connected at all times. Since the shape is a (finite) planar
graph associated with a planar embedding, it partitions the plane into faces (see [16]), where
exactly one of them is the outer face. The occupied nodes adjacent to the outer face are said
to form the outer boundary of the shape. An inner face that includes at least one unoccupied
node is called a hole in the shape (refer to Figure 3 for an example). The occupied nodes
adjacent to a hole are said to form an inner boundary. The length of a boundary B, denoted

Lp, is the number of nodes on B; those are boundary nodes, occupied by boundary particles.

Define Ly, = mgx Lp.

1.2 Related Work

Randomized algorithms, assuming common chirality in the initial configuration, are given in
[13, 6]. A deterministic algorithm was presented in [15] to both elect a leader and obtain
common chirality for the natural special case that the shape did not contain holes; multiple
leaders could be elected in some cases (a constant number). They then used the leader(s) to
coordinate shape transformation. The no-holes assumption is replaced in [2] by an assumption
that the particles start with a common chirality. In a brief announcement, they outlined an
interesting algorithm that still may end with several leaders in cases of high symmetry. The
current paper adapts and uses a large part of the algorithm of [2] as a procedure. In [17],
both common chirality and no-holes are assumed to elect a unique leader. That algorithm
also assigns, to each particle, an identifier that is unique within a radius of k. Moreover,
beside triangular grids, their algorithm can work also on the square and king grids.*

The type of asynchronous scheduler used affects the leader election results. Typically in
the literature [13, 6, 17], the scheduler provides conflict resolution mechanisms for movement
and communication such that particle activations can be analyzed sequentially, i.e., the
activation of each particle is atomic. As the current paper demonstrates, it is not impossible
to elect a leader deterministically (unless, perhaps, in models when a scheduler is allowed to
schedule such particles simultaneously [2, 15]).

1.3 Technical Challenges and ldeas

Multiple ideas are combined here in order to address different cases. Consider, for example, a
polygon with a hole. One approach in previous algorithms, assuming no holes, was to remove
(from being candidates) boundary nodes repeatedly until only one remains. In the case of
one hole (addressed by one of our subroutines), the present algorithm utilizes the ability of
particles to move. Intuitively, they may move (eventually) to the center of the polygon, and
the particle reaching the center first is the elected one. (Thanks to the sequential scheduler,
only one can reach a certain node first).

4 1t is possible to adapt the current paper’s leader election algorithm to run on king grids, but this would
require some work, while it follows in a natural way for the algorithm of [17].

140:3

ICALP 2019

140:4

Deterministic Leader Election in Programmable Matter

This, of course, requires our algorithm to perform various maneuvers, to identify the
center and to make sure no additional holes remain. In particular, particles have to identify
the outer boundary, move outward in order to gain a symmetric shape, and then move inward
together so no additional holes are formed. Since multiple polygons may be moving at the
same time, two polygons may “collide” and not manage to finish the maneuver. There, we
use the idea of reset, to restart the algorithm for the new shape. We managed to upper
bound the number of such resets.

Because of the existence of bridge (and semi-bridge particles) (to be defined in the next
section, but intuitively particles whose removal disconnects the shape), solving for a single
simple polygon is not enough. For example, consider the case that the shape is a long line
(possibly connecting simple polygons). Here, we use the fact that there exists only one outer
face (borrowing its detection from the algorithm of [2], with some necessary adaptations).
The partial leaders of the simple polygons cooperate to define a tree that spans the simple
polygons. Final leader election is then performed over the tree.

The assumption of common chirality is used throughout the paper. To remove this
assumption and have particles agree on chirality, we use again the detection of the outer
face. The particles on the outer boundary agree on chirality (this turned out to be easier for
us than agreeing on a leader among them, using the local symmetry breaking provided by
the scheduler). Then, the outer boundary particles coordinate and propagate this shared
chirality to the other particles within the shape.

1.4 Our Contributions and Paper Organization

The current paper presents the first deterministic protocol that elects exactly one leader on
any contracted configuration, even without assuming common chirality. For a comparison of
this result to known ones, please see Table 1.

The building blocks may be of interest by themselves. The assumption of common
chirality is removed last, in Section 5. Other building blocks are: maximal independent
set (MIS) protocol, boundary detection, leader election on a convex polygon without sharp
vertices, and leader election on a spanning tree. They are are given in Section 3. Additional
definitions required to understand the paper are present in Section 2. The main protocol,
Leader — Election — By — Moving (before removing the common chirality assumption), is
presented in Section 4 (together with some other small components, such as broadcast with
termination detection, and reset).

Table 1 Table comparing the result on leader election to those of previous papers. “No holes”
refers to whether the algorithm requires the graph to have no holes initially or not. “Multiple leaders”
refers to whether the leader election algorithm may output multiple leaders in certain cases or always
outputs a unique leader. The length of the largest boundary in the initial configuration is Lmax-
The length of the outer boundary in the initial configuration is L. The number of particles in the
configuration is denoted by m. The terms r and mtree are unique to paper [17].

Paper Common | Randomness | No holes | Multiple Running time
chirality leaders

[13] Yes Yes No No O(Lmax) rounds on expectation

[6] Yes Yes No No O(L) rounds with high probability

2] Yes No No Yes Not analyzed in paper

[15] No No Yes Yes O(n) rounds

[17] Yes No Yes No 2(r + mtree + 1) rounds
Current Paper No No No No O(Ln?) rounds

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr.

2 Preliminaries: Shape and Boundaries

We need quite a few definitions related to the shape. A local boundary of a particle is an
interval 4,7+ 1,...,44+j mod 6 of its ports that lead to unoccupied grid nodes. Note that a
contracted particle may have up to three local boundaries, each a part of some boundary of
the shape. However, all three may be parts of the same boundary of the shape. Henceforth,
we use only the term “boundary” even for local boundaries, when the context makes the
usage clear. A bridge particle is a contracted boundary particle occupying a node b lying on
i local boundaries (note that 1 < i < 3), each of which is a part of the outer boundary, and
having ¢ occupied adjacent nodes in the grid. An example of bridge particles and semi-bridge
particles (see next paragraph) with bridge edges is illustrated in Figure 4.

A semi-bridge particle is a contracted boundary particle occupying a node b lying on 2
outer boundaries, and having 3 or 4 occupied adjacent nodes in the grid. If b is occupied by
a bridge or semi-bridge particle, ¢ is an adjacent occupied node, and both sides of the edge
(b, c) are on the outer boundary, then edge (b, c) is called a bridge edge.’

For a boundary node b occupied by particle P with chirality C' and lying on boundary B,
define b’s predecessor node a and successor node ¢ w.r.t. B and C as the previous occupied
node and the next occupied node along B according to C, respectively (refer to Figure 5
for an illustration).® Note that node b admits such predecessor a and successor ¢ for each
boundary b lies on.

The boundary count of b w.r.t. B and C measures the deviation of the line segment formed
by b and its successor from the line segment formed by b’s predecessor and b w.r.t. B taking
C into account. More formally, the boundary count of b w.r.t. B is a function of C' and the
angle Zabc that takes on one of the values —1,0, 1,2, or 3 (as illustrated in Figure 6).” Let i
be the unique integer that satisfies Zabc = 180° — i % 60°. Let « and y be the port numbers
of b corresponding to edges (b,a) and (b, ¢), respectively. If (z —y) mod 6 = 4, then the
boundary count of b w.r.t. B is —i, else it is <. When the boundary referred to is clear from
context, it is not mentioned when giving the boundary count for a node.

Consider an occupied node b on boundary B with boundary count w. The following
definitions for b are all w.r.t. B. Node b is called a vertex when w = —1,1,2, or 3.8 When
w = 2, b is a sharp vertex. Vertex b is concave when w = —1 and convex when w = 1 or
2. A shape whose outer boundary vertices are all convex w.r.t. the outer boundary is a
convez polygon. A shape consists of two (or more) simple convex polygons sharing the same
contracted semi-bridge particle(s) P (, Q, R, etc.) when (i) P (, @, R, etc.) has no adjacent
bridge edges, (ii) the shape is disconnected by removing P (, Q, R, etc.), and (iii) all vertices
other than those occupied by P (, @, R, etc.) are convex vertices. Notice that the definition
of convex polygon relates only to its outer boundary nodes. Specifically, no assumptions are
made on the presence of holes within the shape.

Note that a semi-bridge particle may have 3 adjacent occupied nodes and lie on 2 outer boundaries and
1 inner boundary. In this case, the particle still has 1 bridge edge.

Throughout, we use w.r.t. to abbreviate “with respect to”.

Note that it is not possible to have a node with boundary count -2 or -3 w.r.t. some boundary.

Also note that the boundary count and its application to calculating the count of a segment, defined
and used in the full version, is similar to how [2] uses vertex labeling in deciding the count of a segment
in their paper. The actual measurement of the boundary count is similar to how [13] measures the
angles between the direction a token enters and exits an agent.

Notice that the angle bisector of a vertex with boundary count 1 or -1 overlaps with a line of the
triangular grid.

140:5

ICALP 2019

140:6

Deterministic Leader Election in Programmable Matter

3 Building Blocks

Let us now present the four building blocks in brief, except Subsection 3.3 that is more
detailed. The full version contains all missing details. The description uses some additional
definitions. Each boundary particle P maintains a binary flag seg head in each boundary
node b that P occupies w.r.t. each boundary that b lies on. When P occupies a boundary
node and has seg_ head = true for that boundary, we say P is a seg-head for that boundary.
Consider two seg-heads P; and P, on boundary B, occupying nodes by and by with predecessor
nodes ¢y and ¢y and successor nodes di and dy w.r.t. B, respectively. P is the previous
(resp., next) seg-head before (resp., after) P; iff the particles in successor (resp., predecessor)
nodes from by to by w.r.t. B (excluding by and bs) have seg_head set to false.

Let P, be the next seg-head after P; w.r.t. B. P;’s segment is the sequence of successor
nodes from by to co with head by and tail co. It is said that P;’s segment is before Py’s
segment or P»’s segment is after P;’s segment w.r.t. B. For the sake of convenience, when
referring to a procedure/action initiated by the head of a segment involving the participation
of the particles in that segment, we just say that a segment runs the procedure/performs
the action. It is important to note that a particle P may participate in multiple segments
simultaneously (one per boundary P lies on). The algorithm needs to be careful to prevent
contradicting actions of such segments (for example, preventing one segment from expanding
P into one node while another segment is trying to expand P into a different node).

3.1 MIS Selection

To perform Procedure MIS — Selection, P joins the MIS iff no neighbor of P has yet joined
the MIS. The following trivial observation breaks with impossibility results in other models
when the scheduler is not asynchronous.’

» Observation 1. When run by particles, procedure MIS — Selection deterministically
computes an MIS in one round.

3.2 Boundary Detection

Boundary — Detection is a parameterized procedure run by boundary nodes with common
chirality to tell each such node b, for each boundary B that b lies on, whether B is an inner or
outer boundary. This procedure is a modification of the first phase of the algorithm presented
in [2], specifically adapting their subroutine StretchExpansion to handle (1) inner boundaries
and (2) an edge case that may not be needed (and is not addressed) in [2] but is needed here
(see Figure 7).19 These adaptations result in subroutines Inner — Stretch — Expansion and
Outer — Stretch — Expansion, respectively. Due to space constraints, the entire modified
boundary detection procedure and proof of the theorem are presented in the full version.

» Theorem 1. When executed by contracted boundary particles, procedure Boundary—
Detection terminates in O(L2,,,) rounds resulting in each boundary node b knowing, for
each boundary B it is on, whether B is an inner or outer boundary. If b has seg__head = true
w.r.t. boundary B, then b knows how many nodes k, k € {1,2,3,6}, are also segment heads
w.r.t. B.

9 In particular, this procedure selects a leader in a ring of 3 particles.
10 Recall that [2] is a brief announcement, so this edge case may be handled in the full version of their paper.

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr.

3.3 Leader Election on a Convex Polygon without Sharp Vertices

Procedure Convex — Polygon — Leader — Election relies on 3 subroutines, described below.

Note that the outer boundary nodes of a convex polygon without sharp vertices form a

hexagon in the grid. Let b be a vertex, occupied by particle P, with successor node d w.r.t.

the outer boundary. Define P’s side as the side of the hexagon containing b and d.

Let LSLS stand for largest same length sides and SSLS stand for smallest same length
sides. Every possible hexagon is isomorphic to one of the following four. See Figures 8-13.
1. Category 1: The hexagon has exactly either 1 LSLS or 1 SSLS.

2. Category 2: The hexagon has either 2 LSLS and 4 SSLS, 4 LSLS and 2 SSLS, or 2 LSLS;,

2 SSLS, and 2 other same length sides.

3. Category 3: The hexagon has exactly 3 LSLS and 3 SSLS.
4. Category 4: The hexagon has 6 sides of the same length.

Let Py, P1,... Py—1 be the seg-heads on the outer boundary such that P 1) moa & is
the next seg-head after P;. Subroutine Compare — Length(x) is initiated by a seg-head P;
to compare the length of P;’s segment with that of P 4) moa x’s segment. The procedure
simulates the way a Turing machine would perform a similar task, where the segments
would be segments of the machine’s tape. Since this is a known method, the details are
omitted (refer to [15] for an example). The proof of the following lemma can be found in the
full version.

» Lemma 2. Let x be a constant and assume that there are L nodes on the outer boundary. If
the nodes from P;’s segment’s head to P;yz) mod k'S segment’s tail run Compare — Length(x),
then the subroutine terminates in O(L?) rounds, resulting in P; knowing the size comparison
between the two segments.

Consider two parallel lines M; and My of the grid. The mid-line(s) between M; and
M is the line(s) parallel to both M; and My which is either equidistant from both M; and
My, or not closer to one of the lines by more than a unit distance. Consider a category 2
hexagon where opposite outer boundary vertices b1 and by, occupied by particles P; and P
respectively, have seg head = true and the remaining nodes have seg head = false. There
exist either 1 or 2 mid-lines between P;’s side and P»’s side. Let ¢; and ¢z, occupied by
particles Q1 and @2 respectively, be nodes on P; and P»’s segments respectively lying on the
mid-line (or on the closer mid-line to the head of the segment in the case of 2 mid-lines). The
outer boundary particles run subroutine Mid — Line to find ¢; and ¢y and subsequently Q4
and @2 set seg__head = true and P; and P, set seg__head = false. See Figures 10 and 11
for examples. A more detailed description of the subroutine is found in the full version. The
following observation captures the running time of Mid — Line.

» Observation 2. Let there be L outer boundary nodes on a category 2 hexagon with opposite
vertices by and bs, occupied by particles Py and Py respectively, with seg _head = true
and remaining nodes with seg__head = false. Subroutine Mid — Line, run by the L nodes,
terminates in O(L2) rounds, such that nodes c; and co, which are the closest nodes in P;
and Py’s segments lying on mid-lines between Py ’s side and Ps’s side respectively, now have
seg__head = true and by and by have seg__head = false.

Intuitively, when the segment heads are on the mid-line as promised by Observation
2, if they move towards the center, they can get next to each other and elect one of them
as a leader. The following subroutine Snake — Movement(D, x) (described in more detail in
the full version), is used for election in hexagons of several types. Consider a path p of w
nodes occupied by contracted particles with head node b occupied by particle P and tail

140:7

ICALP 2019

140:8

Deterministic Leader Election in Programmable Matter

node c. P has seg__head = true w.r.t. the outer boundary and the remaining particles have
seg__head = false. See Figure 14 for an example. Particles in p (termed snake p) expand, so
p becomes longer and its head P moves in direction D for distance x < w (without breaking
connectivity and while keeping the tail node of p fixed at ¢). P is the one expanding first, and
the particles perform a sequence of expansions and contractions until reaching the desired
total length of p. Note that x may not be a constant. Hence, this value is represented
distributively on the particles of p by them simulating a tape of a Turing machine. (The
value of x is also input to the subroutine and used for the computing in the same manner).

Note that only a segment on the outer boundary can perform this procedure, hence, snake
p will not belong to two different segments giving it contradictory instructions to move. One
thing that may happen is that the head of snake p reaches a particle Q) not in snake p. If
Q belongs to another snake p’ then p stops. Otherwise, p continues moving in direction D
simply by annexing ¢ who now becomes the head of the snake (that we still call snake p).
The proof sketch of the following lemma can be found in the full version.

» Lemma 3. Assume that L contracted particles of a snake run Snake — Movement (D, x),
where x < L. Then, the subroutine terminates in O(x?) rounds without breaking connectivity.
On termination, either the snake head reached a node at distance x away from the head of
the snake in direction D, or the next particle in direction D belongs to another snake.

Now, procedure Convex — Polygon — Leader — Election is described. Note that illustra-
tions expanding on the description are found in the full version. Initially, the 6 particles that
occupy vertices on the outer boundary set seg_ head = true while the remaining particles in
the polygon set seg__head = false. Each of these 6 particles initiates Compare — Length(x)
for 1 <z < 6, sends messages to the remaining 5 particles with the results of these compar-
isons, and determines which category hexagon it lies on.'’ The procedure follows one of the
following four cases:

1. Category 1 hexagon: This case is trivial - the particle at the head of the smallest or
largest side becomes the leader. See Figures 8 and 9.

2. Category 2 hexagon: If there are exactly 2 LSLS, then those sides’ polygon vertices keep
seg__head = true and the remaining vertices set seg head = false. Else there are 2
SSLS whose vertices keep seg_head = true while others set seg head = false. Call
particles occupying vertices with seg head = true, P; and P5, and denote the direction
from the successor of P; to P; as D; (similarly denote Ds). Now, P; and P initiate
Mid — Line resulting in two new particles (1 and Q)5 setting seg_head = true and P
and Py setting seg__head = false (refer to Figures 10 and 11 for examples).

The resulting segments of ()1 and Q)2 form snakes p; and ps with lengths w; and ws re-

spectively that run Snake — Movement (Dy, w;) and Snake — Movement(D,, wy) in directions

Dy and Ds, respectively. In addition to the usual termination conditions when running

Snake — Movement(D;, w;) and Snake — Movement(D,, wy), the subroutines also terminate

when the head of p; is adjacent to that of po. Then, the two heads run MIS — Selection

and the particle that joins the MIS becomes the leader.

3. Category 8 hexagon: Let Py, Py, and P3 occupy vertices by, by, and bg such that Py, Ps,
and Pj’s sides are the 3 largest sides. The remaining particles set seg__head = false. See
Figure 12. Let Dy, Do, and D3 be the directions along the angle bisectors of by, bo, and
b3 respectively toward the center of the hexagon. The two phase procedure followed by
Py’s segment is now described. (Py’s and Ps’s segments act similarly).

M 'With this information, a particle can compute, using a constant amount of space, the total order on
the lengths of sides of the hexagon. Combined with information of which sides are equal in length, a
particle can determine both the category of the hexagon it lies on and the type of its own side.

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr.

Notice that P;’s segment encompasses 1 SSLS and 1 LSLS with lengths x and y respectively.
In phase 1 (simulating a Turing machine), the values of f = |(y — x)/3], g = 2 + f, and
g = (y —x) mod 3 are computed and stored in P;’s segment. If ¢ = 2, g is incremented
by 1. Now P; sends a message to the particle @1 located f nodes from the head of the
segment, telling Q) to set seg_head = true and store D1, f, g, and q. P, subsequently
sets seg__head = false. Q1 is now the head of a segment. Similarly, some @2, Q3 replace
P5, P3 as heads of their segments. Now Q1 sends a message along the outer boundary
to @2 and Q3 indicating that the first phase is over. Once @)1 receives similar messages
from Q2 and @3, the second phase begins.
In phase two, Q1’s segment runs Snake — Movement(D,, g). If ¢ = 0, all three snakes move
towards the same final node b. Let p be the snake such that its head particle R is the
first to occupy b. R waits until the remaining two snakes reach it and then becomes the
leader. If ¢ # 0, the final nodes occupied by the heads of the three snakes form a triangle.
Let R be a head of the snake that occupies one of the triangle’s nodes. R waits until the
other two triangle’s nodes are occupied and then runs MIS — Selection. The particle
chosen to be in the MIS becomes the leader.

4. Category 4 hexagon: All vertices have seg_head = true (e.g., Figure 13). The procedure
here is a simplified version of the case of Category 3 hexagon. See the full version.

» Theorem 4. Procedure Convex — Polygon — Leader — Election run by contracted par-
ticles of a convex polygon without sharp edges results in exactly one leader being elected
deterministically in O(L?) rounds, where L is the number of particles on the outer boundary.

Proof Sketch. The readers can convince themselves that all types of hexagons have been
accounted for in the four hexagon categories. Let us prove correctness for each category
separately. The case of category 1 is trivial.

In a category 2 hexagon, Observation 2 guarantees that particles are chosen such that they
lie on the same mid-line or adjacent mid-lines. The distance needed to be traveled by each
segment until both heads are adjacent is < L/2. Since the segments divide the nodes of the
outer boundary equally, each segment has enough contracted particles such that it is possible
to traverse this distance by expanding every particle in the segment. Moreover, no two snakes
can block each other before reaching that distance. MIS — Selection is guaranteed to choose
exactly one leader due to Observation 1.

For category 3, inscribe the hexagon in an equilateral triangle with vertices A, B, and
D, centroid C, and F trisecting AB, as seen in Figure 15. Observe that each side of the
triangle is of length 2z +y and |AF| = |FC|. When (y —) mod 3 = 0, FC coincides with
a grid line and all segments move towards C' using Snake-Movement (). However, if (y — x)
mod 3 # 0, the segments move to nodes that form a triangle around the centroid, in which
case, MIS — Selection is run and Observation 1 guarantees a leader is selected. Note that
no two snakes can block each other before reaching the meeting point.

The proof for category 4 is a simplified version of the proof for Category 3. Thus for all
four types of hexagons, a leader is chosen. The running time is analyzed in the full version. <«

3.4 Leader Election on a Spanning Tree

Procedure Spanning — Tree — Leader — Election deterministically elects a unique leader
when participating particles form a spanning tree and have common chirality. Note that this
can also be performed by the algorithms of [15, 17]. We defer the description to the full
version and give the following theorem without a proof.

140:9

ICALP 2019

140:10 Deterministic Leader Election in Programmable Matter

» Theorem 5. Procedure Spanning — Tree — Leader — Election run by particles forming
a spanning tree of diameter x results in exactly one leader being elected deterministically
in O(x) rounds.

4 Leader Election

An overview of deterministic algorithm Leader — Election — By — Moving for electing a
unique leader is now given, assuming common chirality (an assumption removed later).
Additional details and proofs appear in the full version.

The initial contracted configuration of n particles forms a connected shape G(0) at the
beginning of round 0 with all particles having status C. H(t), K(t), Fi(t), and Fy(t) are
virtual graphs at the beginning of round ¢ that are maintained by the particles distributively

12 Note that the round number is subsequently dropped, as it is

and are initially empty.
apparent from context.

The algorithm has six phases. Graph H is used throughout the algorithm for various
purposes depending on the phase of the algorithm. Graph K is a subgraph of G that holds a
spanning tree of all particles and is important for phase 6 of the algorithm. Graph Fj is a
forest of trees of all particles used throughout the algorithm. Graph F3 is a forest of trees of
a subset of the particles used only in phase 5 of the algorithm.

Each particle P maintains a phase counter in [1...6] and appends its value to each
message sent. If P receives a message from another particle () in a different phase, P does

not process (Q’s message until P is in the same phase as Q.3

1. Initialization: At the end of this phase, every particle is contracted and each boundary
particle has identified the type (inner/outer) of each of its boundaries. Furthermore,
graph H consists of a set of simple convex polygons, where two simple polygons may
share the same semi-bridge particle.

Each boundary particle runs Boundary — Detection for each boundary B it lies on
to determine whether B is an inner or outer boundary. Once Boundary — Detection
terminates, all particles not on the outer boundary set seg_head = false. Thus, there
are k, k € {1,2,3,6}, particles with seg_head = true located on the outer boundary.
Call these seg-heads Py, Ps,..., P,. If k = 1, change P;’s status to L and broadcast
(by simple flooding [18]) a final_terminate message to other particles to terminate the
algorithm and change their statuses to U.

Each particle that is not a bridge or semi-bridge adds itself and its edges to adjacent
nodes to H. Otherwise, semi-bridge particles add themselves and their non-bridge edges
to H. Note that all particles are contracted at the end of this phase.

2. Spanning forest formation: Each outer boundary node a becomes the root of a tree T'
and uses the standard broadcast-&-echo method [18] to recruit nodes to its tree. Each
node b joins exactly one tree T. Termination detection of the phase is coordinated by
seg-heads P; to Py, after all the broadcast-&-echoes terminate. Thus a spanning forest Fj
of trees is formed with outer boundary particles as roots of the trees. Furthermore, each
node knows its parent and children in the tree. Note that all particles remain contracted
during the phase.

12 For each graph, each particle maintains locally its own edges in the graph and whether it is in the graph
or not. Each particle allots a constant amount of memory for each of the graphs G, H, K, F1, F» and
updates them as necessary when activated.

1314t is trivial to return to a contracted configuration from the configuration the algorithm terminates in, so
this “7th phase” is not described. Informally, it consists of particles that performed Snake — Movement()
as part of Convex — Polygon — Leader — Election during phase 5 reversing their movements.

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr. 140:11

3. Conwvexification: The subgraph H, induced by removing bridge particles from the shape,
is a collection of polygons. Each outer boundary particle P w.r.t. H that is a concave
vertex and not a semi-bridge particle expands towards the outer boundary along P’s
angle bisector while coordinating the pulling of P’s tree with it. P occupying node b and
moving to node ¢ completes one step of convexification when it has moved to node ¢ and
all particles in the tree rooted at P in F; are back in a contracted state. Convexification
is performed repeatedly by particles until no more steps of convexification are possible
(refer to Figure 16 for an example).

At the same time, each seg-head P; (1 < i < k) continuously checks its segment for any
concave vertices in H. If none are found, the k seg-heads coordinate to terminate this
phase. All particles previously in H update their edges in H to reflect current connections
to other particles. Bridge and semi-bridge particles add themselves and their bridge edges
to virtual graph K. Note that all particles are contracted at the end of this phase.

The phase as described so far may be stopped before convexification completes if two
types of situations arise. Type I: during the movement outward, an outer boundary
particle that moved in some direction D to node b in one step of convexification finds out
that the node adjacent to b in direction D is occupied. Type 2: a semi-bridge particle,
bridge particle, or outer boundary particle stops being one. Both types reflect a change
in the particles occupying the outer boundary, possibly resulting in particles previously
with seg_head = true no longer lying on the outer boundary. The algorithm then resets
to phase 1, as described in the full version (the reset procedure also makes sure that all
the particles are reset to a contracted state).

4. De-sharpification: In this phase, certain particles remove themselves from H recursively

until only convex polygons and two-node lines remain in H. Consider a particle P in H.
If P is not a semi-bridge particle and is a sharp vertex w.r.t. the outer boundary in H,
then P removes itself from H. If P is a semi-bridge particle and its occupied adjacent
nodes are located at ports z,z + 1,2+ 3, and x + 4 (mod 6) for some positive integer
value of z, then P removes itself from H.
At the same time, each seg-head P; (1 < i < k) checks its segment continuously for any
sharp vertices in H. If none are found, P; coordinates with the other k — 1 seg-heads
to terminate the phase. The induced subgraph H at the end of the phase is a set
containing just two types of polygons: (a) lines consisting of 2 nodes as well as (2) convex
polygons without sharp vertices. Note that all the particles remain contracted at the end
of this phase.

5. Leader election on individual polygons and spanning tree formation: This phase consists of
two stages. In stage one, each convex polygon and each line in H elects a unique polygon
leader using Convex — Polygon — Leader — Election and MIS — Selection, respectively.
In stage two, each particle P chosen as a polygon leader in stage one, acts as a root and
forms a tree that spans its connected component of G \ K. The nodes in K that are
reachable from P over G \ K are leaves of P’s tree. Call this forest of polygon leaders
rooted trees Fs.

The termination condition is somewhat long to describe; see the full version for details.
Very informally - the polygons are connected by semi-bridge particles. Hence, when a
polygon leader finished constructing its tree over the polygon, the semi-bridge particle(s)
is notified. The seg-head particles P; (1 < ¢ < k) check continuously the semi-bridge
particles to know when the construction of F5 is done.

At the end of this phase, K is updated to contain all particles in graph G with edges
restricted to bridge edges and edges of F5. It is shown later in a lemma that K now forms
a tree, spanning all the candidates (status C particles).

ICALP 2019

140:12 Deterministic Leader Election in Programmable Matter

6. Leader election on a spanning tree: Each particle participates in
Spanning — Tree — Leader — Election on the graph K. Once a particle P changes
its status to L, P broadcasts a final_terminate message by flooding along K. This
results in one particle, the leader, having status L and the remaining particles having
status U when the algorithm terminates.

The following lemmas apply to the algorithm, with proofs deferred to the full version.

» Lemma 6. Phase 1 terminates in O(L2)) rounds, where Ly, is the length of the largest
boundary of the shape, resulting in each boundary particle knowing what type each of its
boundaries is and k, k € {1,2,3,6}, particles, Py, Py, ..., Py, lying on the outer boundary
with seg__head = true. Furthermore, at the end of the phase, H consists of a set of simple
convex polygons, where two simple polygons may share the same semi-bridge particle. If
k =1, the algorithm terminates with one particle as leader in an additional O(n) rounds.

» Lemma 7. Phase 2 terminates in O(n) rounds, resulting in a disjoint forest of trees Fy
covering every particle.

» Lemma 8. Phase 3 terminates in O(Ln) rounds, resulting in either a reset or a graph H
containing a set of simple convexr polygons, where two simple polygons may share the same
semi-bridge particle.

» Lemma 9. There can be at most L resets occurring in phase 3, where L is the length of
the outer boundary of the original shape.

» Lemma 10. Phase 4 takes O(n) rounds to complete, resulting in H containing only a set
of lines consisting of 2 nodes and convex polygons without sharp vertices.

» Lemma 11. Phase 5 terminates in O(L?+n) rounds resulting in K containing all particles
and forming a spanning tree.

» Lemma 12. Phase 6 terminates in O(n) rounds resulting in a unique leader with status L
being chosen and all other nodes having status U.

Combining the above lemmas together, we get the desired results.

» Theorem 13. Algorithm Leader — Election — By — Moving, run by n particles in a con-
tracted configuration, elects a unique leader deterministically and terminates in O(Ln?)
rounds, where L is the number of particles on the outer boundary of the original shape.

Proof Sketch. From Lemmas 6, 7, and 8, the combined running time of one iteration of
phases 1 to 3 is O(n?) rounds since L,, = O(n). There can be at most O(L) iterations of
phases 1 to 3, by Lemma 9. Adding in the running times of phases 4 to 6 from Lemmas 10, 11,
and 12, it is clear that the total running time of the algorithm is O(Ln?) rounds.

The correctness directly follows from Lemma 12. <

5 Chirality Agreement

In this section, procedure Chirality — Agreement is described. Consider n contracted
particles forming a connected shape with the length of maximum boundary being Ly,ax. The
particles run Chirality — Agreement and terminate in O(L2, + n) rounds, resulting in all
particles agreeing on the same chirality and forming the original shape.

Y. Emek, S. Kutten, R. Lavi, and W. K. Moses Jr.

Informally, after the boundary particles identify their boundaries, they first agree on
chirality separately for each boundary they lie on. This is easier than leader election given
the local symmetry breaking built into the model (atomicity of the scheduler). This is enough
to allow the particles to identify the outer boundary similarly to the way it was done for
the leader election. Finally, the chirality agreed upon for the outer boundary becomes the
chirality of everyone. A detailed explanation of the procedure along with the proof of the
following theorem can be found in the full version.

» Theorem 14. Procedure Chirality — Agreement, run by n contracted particles forming
a connected shape, terminates in O(L2,.) Tounds, where Lyay 15 the length of the largest
boundary in the shape, resulting in all particles having common chirality and retaining the
original shape.

6 Conclusion and Future Work

The results of this paper leave several lines of research open. First, the algorithms here
require the particles to move for leader election and for chirality agreement. Is it possible
to solve either problem deterministically in the given setting without requiring particles to
move? Second, can one reduce the running time or provide a matching lower bound?

—— References

1 Marta Andrés Arroyo, Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W.
Richa. A stochastic approach to shortcut bridging in programmable matter. Natural Computing,
17(4):723-741, 2018.

2 Rida A. Bazzi and Joseph L. Briones. Brief Announcement: Deterministic Leader Election
in Self-organizing Particle Systems. In International Symposium on Stabilizing, Safety, and
Security of Distributed Systems, pages 381-386. Springer, 2018.

3 Sarah Cannon, Joshua J. Daymude, Dana Randall, and Andréa W. Richa. A Markov chain
algorithm for compression in self-organizing particle systems. In Proceedings of the 2016 ACM
Symposium on Principles of Distributed Computing, pages 279-288. ACM, 2016.

4 Joshua J. Daymude, Zahra Derakhshandeh, Robert Gmyr, Alexandra Porter, Andréa W.
Richa, Christian Scheideler, and Thim Strothmann. On the runtime of universal coating for
programmable matter. Natural Computing, 17(1):81-96, 2018.

5 Joshua J. Daymude, Robert Gmyr, Kristian Hinnenthal, Irina Kostitsyna, Christian Scheideler,
and Andréa W. Richa. Convex Hull Formation for Programmable Matter. arXiv preprint,
2018. arXiv:1805.06149.

6 Joshua J. Daymude, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim Stroth-
mann. Improved leader election for self-organizing programmable matter. In International
Symposium on Algorithms and Experiments for Sensor Systems, Wireless Networks and
Distributed Robotics, pages 127-140. Springer, 2017.

7 Joshua J. Daymude, Kristian Hinnenthal, Andréa W. Richa, and Christian Scheideler. Comput-
ing by Programmable Particles. In Distributed Computing by Mobile Entities, pages 615-681.
Springer, 2019.

8 Zahra Derakhshandeh, Shlomi Dolev, Robert Gmyr, Andréa W. Richa, Christian Scheideler,
and Thim Strothmann. Brief announcement: amoebot—a new model for programmable matter.
In Proceedings of the 26th ACM symposium on Parallelism in algorithms and architectures,
pages 220-222. ACM, 2014.

9 Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. An algorithmic framework for shape formation problems in self-organizing
particle systems. In Proceedings of the Second Annual International Conference on Nanoscale
Computing and Communication, page 21. ACM, 2015.

140:13

ICALP 2019

http://arxiv.org/abs/1805.06149

140:14 Deterministic Leader Election in Programmable Matter

10

11

12

13

14

15

16
17

18

19

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal shape formation for programmable matter. In Proceedings of the 28th
ACM Symposium on Parallelism in Algorithms and Architectures, pages 289-299. ACM, 2016.
Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, and Thim
Strothmann. Universal coating for programmable matter. Theoretical Computer Science,
671:56-68, 2017.

Zahra Derakhshandeh, Robert Gmyr, Andréa W. Richa, Christian Scheideler, Thim Stroth-
mann, and Shimrit Tzur-David. Infinite object coating in the amoebot model. arXiv preprint,
2014. arXiv:1411.2356.

Zahra Derakhshandeh, Robert Gmyr, Thim Strothmann, Rida Bazzi, Andréa W. Richa, and
Christian Scheideler. Leader election and shape formation with self-organizing programmable
matter. In International Workshop on DNA-Based Computers, pages 117-132. Springer, 2015.
Giuseppe Antonio Di Luna, Paola Flocchini, Giuseppe Prencipe, Nicola Santoro, and Giovanni
Viglietta. Line recovery by programmable particles. In 19th International Conference on
Distributed Computing and Networking, ICDCN 2018, volume 133180, pages 1-10. Association
for Computing Machinery, 2018.

Giuseppe Antonio Di Luna, Paola Flocchini, Nicola Santoro, Giovanni Viglietta, and Yukiko
Yamauchi. Shape Formation by Programmable Particles. In 21st International Conference on
Principles of Distributed Systems, 2017.

Reinhard Diestel. Graph theory. 2005. Grad. Texts in Math, 101, 2005.

Nicolas Gastineau, Wahabou Abdou, Nader Mbarek, and Olivier Togni. Distributed leader
election and computation of local identifiers for programmable matter. arXiv preprint, 2018.
arXiv:1807.10461.

Adrian Segall. Distributed network protocols. IEEE transactions on Information Theory,
29(1):23-35, 1983.

Tommaso Toffoli and Norman Margolus. Programmable matter: concepts and realization.
Physica D: Nonlinear Phenomena, 47(1-2):263-272, 1991.

http://arxiv.org/abs/1411.2356
http://arxiv.org/abs/1807.10461

	Introduction
	Amoebot Model
	Related Work
	Technical Challenges and Ideas
	Our Contributions and Paper Organization

	Preliminaries: Shape and Boundaries
	Building Blocks
	MIS Selection
	Boundary Detection
	Leader Election on a Convex Polygon without Sharp Vertices
	Leader Election on a Spanning Tree

	Leader Election
	Chirality Agreement
	Conclusion and Future Work

