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Abstract
Geometric Complexity Theory as initiated by Mulmuley and Sohoni in two papers (SIAM J Comput
2001, 2008) aims to separate algebraic complexity classes via representation theoretic multiplicities
in coordinate rings of specific group varieties. We provide the first toy setting in which a separation
can be achieved for a family of polynomials via these multiplicities.

Mulmuley and Sohoni’s papers also conjecture that the vanishing behavior of multiplicities
would be sufficient to separate complexity classes (so-called occurrence obstructions). The existence
of such strong occurrence obstructions has been recently disproven in 2016 in two successive
papers, Ikenmeyer-Panova (Adv. Math.) and Bürgisser-Ikenmeyer-Panova (J. AMS). This raises the
question whether separating group varieties via representation theoretic multiplicities is stronger than
separating them via occurrences. We provide first finite settings where a separation via multiplicities
can be achieved, while the separation via occurrences is provably impossible. These settings are
surprisingly simple and natural: We study the variety of products of homogeneous linear forms (the
so-called Chow variety) and the variety of polynomials of bounded border Waring rank (i.e. a higher
secant variety of the Veronese variety).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which proves
Foulkes’ conjecture for a new infinite family of cases.

2012 ACM Subject Classification Theory of computation → Algebraic complexity theory

Keywords and phrases Algebraic complexity theory, geometric complexity theory, Waring rank,
plethysm coefficients, occurrence obstructions, multiplicity obstructions

Digital Object Identifier 10.4230/LIPIcs.ICALP.2019.51

Category Track A: Algorithms, Complexity and Games

Related Version A full version of the paper is available at https://arxiv.org/abs/1901.04576.

Funding Julian Dörfler : Partially supported by DFG grant IK 116/2-1.
Christian Ikenmeyer : Partially supported by DFG grant IK 116/2-1.
Greta Panova: Partially funded by the NSF.

Acknowledgements This work was done in part while CI and GP were visiting the Simons Institute
for the Theory of Computing.

EA
T

C
S

© Julian Dörfler, Christian Ikenmeyer, and Greta Panova;
licensed under Creative Commons License CC-BY

46th International Colloquium on Automata, Languages, and Programming (ICALP 2019).
Editors: Christel Baier, Ioannis Chatzigiannakis, Paola Flocchini, and Stefano Leonardi;
Article No. 51; pp. 51:1–51:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:s8judoer@stud.uni-saarland.de
mailto:cikenmey@mpi-sws.org
mailto:gpanova@usc.edu
https://doi.org/10.4230/LIPIcs.ICALP.2019.51
https://arxiv.org/abs/1901.04576
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


51:2 On GCT: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

1 Introduction

In two landmark papers [22, 23] Mulmuley and Sohoni suggested the use of representation
theoretic multiplicities to separate group varieties that correspond to complexity classes. The
goal of this approach, which is called geometric complexity theory, is to achieve complexity
lower bounds that lead to the separation of algebraic complexity classes such as VP and VNP
(see [3] or [28] for the precise definitions, which will not be important in this paper). At the
heart of the approach was the hope that so-called occurrence obstructions (see Section 2) would
be sufficient to separate VP and VNP. In [16, 8] it was shown that occurrence obstructions
are too weak to provide the necessary separation, at least for the group varieties that were
originally proposed by Mulmuley and Sohoni. But representation theoretic multiplicities
might still be able to separate VP and VNP when we look at the finer separation criterion
via multiplicity obstructions (see also Section 2). Unfortunately, so far all known separations
of group varieties via multiplicity obstructions could also in fact be obtained via occurrence
obstructions, or at least there is no setting in which multiplicity obstructions are provably
stronger than occurrence obstructions, see e.g. [6, 7]. Indeed, little is known about multiplicity
obstructions in general, as the required multiplicities are often #P-hard to compute, see e.g.
[25, 5, 2], which implies that a polynomial time algorithm for their computation can only
exist if P=NP.

Scott Aaronson raised the question about the existence of a setting where multiplicity
obstructions are provably more powerful than occurrence obstructions. In this paper we give
the first example of such a situation in a finite setting, see Theorem 2.1 below.

Theorem 2.1 is not only about finite settings: For the first time multiplicity obstructions
are used to separate families of polynomials, even though the separation is extremely modest.
Prior work on obstructions focused on tensors instead of polynomials ([6, 7]).

As a side result we prove a slight generalization of Hermite’s reciprocity theorem, which
proves Foulkes’ conjecture (see (1)) for a new infinite family of cases, see Theorem 3.4.

2 Representation theoretic obstructions

In this section we review how to separate group varieties via representation theoretic
multiplicities. The setup is in complete analogy to the geometric complexity theory approach
of Mulmuley and Sohoni. We then list our main result, see Theorem 2.1.

Consider the space Anm := C[x1, . . . , xm]n of complex homogeneous polynomials of degree
n in m variables. Let V := A1

m be the space of homogeneous degree 1 polynomials. In this
paper we compare two subvarieties of Anm. The first is the so-called Chow variety

Chnm := {`1 · · · `n | `i ∈ V } ⊆ Anm,

which is the set of polynomials that can be written as a product of homogeneous linear forms,
see e.g. [20, §8.6]. In algebraic complexity theory this set is known as the set of polynomials
that have homogeneous depth-two algebraic circuits of the form ΠnΣ, i.e., circuits that
consists of an n-ary top product gate of linear combinations of variables. The second variety
is called a higher secant variety of the Veronese variety and can be written as

Pownm,k := {`n1 + · · ·+ `nk | `i ∈ V } ⊆ Anm,

which is the closure of the set of all sums of k powers of homogeneous linear forms. Note that
from a general principle it follows that the Zariski closure equals the Euclidean closure in
this case, see e.g. [24, §2.C] where this is shown for every constructible set. The polynomials
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in Pownm,k are exactly those that have border Waring rank at most k, see e.g. [20, §5.4].
In algebraic complexity theory this set is known as the set of polynomials that can be
approximated arbitrarily closely by homogeneous depth-three powering circuits of the form
ΣkΛnΣ, i.e., a k-ary sum of n-th powers of linear combinations of variables.

Anm is generated as a vector space by the powers vn, v ∈ V , see e.g. [20, Ex. 2.6.6.2]. Given
two elements g1, g2 ∈ GLm := GL(V ), and given v ∈ V , we clearly have g1(g2v) = (g1g2)v.
Thus we say that V admits a GLm-action. This natural action of GLm on V lifts canonically
to Anm via g(vn) := (gv)n, g ∈ GLm, v ∈ V , and linear continuation. Both varieties Chnm and
Pownm,k are closed under this action, i.e., for g ∈ GLm and v ∈ Chnm we have gv ∈ Chnm, and
analogously v ∈ Pownm,k implies gv ∈ Pownm,k. A variety that is closed under the action of
GLm is called a GLm-variety.

Let C[Anm] denote the coordinate ring of Anm, i.e., the polynomial ring in dimAnm =(
n+m−1

n

)
many variables, where these variables are in 1:1 correspondence to the monomials

in Anm. The action of GLm on Anm lifts to a linear action of GLm on C[Anm] via the canonical
pullback as follows: (gf)(h) := f(g−1h), g ∈ GLm, f ∈ C[Anm], h ∈ Anm. Moreover, the
action respects the natural grading of C[Anm], so that each homogeneous degree d part C[Anm]d
is a finite dimensional vector space that is closed under the action of GLm.

Recall that a finite dimensional vector space W that is closed under a linear action
of GLm is called a GLm-representation. This is equivalent to the existence of a group
homomorphism % : GLm → GL(W ). If we choose bases, then we can interpret GLm ⊆ Cm×m
and GL(W ) ⊆ CdimW×dimW and % is described by (dimW )2 many coordinate functions,
which are functions in m2 many variables. If these functions are polynomials, then we call
W a polynomial representation. Our main representation of interest, C[Anm]d, is a polynomial
representation. A linear subspace of W that is closed under the action of GLm is called a
subrepresentation. Subrepresentations of polynomial representations are clearly polynomial
representations again. For every GLm-representation W we have that W and 0 are two trivial
subrepresentations. IfW has no other subrepresentations, then we callW irreducible. A linear
map ϕ : W1 →W2 between two GLm-representations is called equivariant if gϕ(f) = ϕ(gf)
for all f ∈W1, g ∈ GLm. If there exists an equivariant vector space isomorphism from W1
to W2, then we say that W1 and W2 are isomorphic GLm-representations. An m-partition
of D is a nonincreasing list of m nonnegative integers that sum up to D. Every irreducible
polynomial GLm-representation has an associated isomorphism type, which is an m-partition,
see e.g. [10, Ch. 8]. Two irreducible GLm-representations are isomorphic iff their isomorphism
types coincide. We denote by {λ}m the irreducible GLm-representation corresponding to the
m-partition λ. We write {λ} = {λ}m is m is clear from the context.

The group GLm is linearly reductive, which means that every GLm-representation W

decomposes into a direct sum of irreducible GLm-representations, see e.g. [18, AII.5, Satz 4].
The number of times an irreducible representation of type λ occurs in the decomposition
is called the multiplicity of λ in W , written multλ(W ). Even though this decomposition
is usually not unique, the notation multλ(W ) makes sense, because the multiplicities are
independent of the actual decompositions.

The multiplicity aλ(d[n]) := multλ(C[Anm]d) is the infamous plethysm coefficient, which
is the object of study in Foulkes’ conjecture and also in Problem 9 in Stanley’s famous
list of open problems [30]. If we pad an m-partition λ with m′ −m many zeros to obtain
the m′-partitions λ′ = (λ1, . . . , λm, 0, . . . , 0), then multλ(C[Anm]d) = multλ′(C[Anm′ ]d), see
e.g. [14, Lem. 4.3.2]. For the sake of simplicity we identify m-partitions with m′-partitions
that arise from padding zeros. This justifies leaving out the parameter m in the notation
aλ(d[n]) by assuming that m is large enough. Foulkes’ conjecture states that

Conjecture : aλ(n[d]) ≤ aλ(d[n]) for all d ≥ n. (1)
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Conjecture (1) is known to be true (moreover, equality holds: aλ(d[n]) = aλ(n[d])) for all
2-partitions λ, which is often called Hermite reciprocity [13]. We make modest progress on
this conjecture by proving it for many families of 3-partitions, see Corollary 4.4.

Let Z be a GLm-variety, e.g., Z = Chnm or Z = Pownm,k. Then the vanishing ideal
I(Z) := {f ∈ C[Anm] | ∀h ∈ Z : f(h) = 0} is also closed under the action of GLm, which
is easy to verify: If f(h) = 0 for all h ∈ Z, then also (gf)(h) = f(g−1h) = 0, because
g−1h ∈ Z. Since the action respects the grading, each homogeneous degree d part I(Z)d is a
GLm-representation. The coordinate ring C[Z] is defined as the quotient algebra C[Anm]/I(Z)
and each homogeneous part C[Z]d = C[Anm]d/I(Z)d is a GLm-representation. Equivalently,
we can define C[Z] as the set of restrictions of functions in C[Anm] to Z.

For most sets of parameters we have Pownm,k 6⊆ Chnm, but there are some exceptions.
Clearly Pownm,1 ⊆ Chnm. Moreover, Pown1,k = Chn1 for all n ≥ 1, k ≥ 1; and Pow1

m,k = Ch1
m for

all m ≥ 1, k ≥ 1. It is also easy to see that Pow2
2,2 ⊆ Ch2

2, because `2
1 +`2

2 = (`1 +i`2)(`1−i`2),
where i2 = −1. More generally, (`1 + ζ`2)(`1 + ζ2`2) · · · (`1 + ζn`2) = `n1 + ζ

n(n+1)
2 `n2 for

ζn = 1, which implies Pownm,2 ⊆ Chnm. For m = 2, k ≥ 1, n ≥ 1, we have Pownm,k ⊆ Chnm by
the fundamental theorem of algebra. These are the only exceptions, as for n ≥ 2, m ≥ 3,
k ≥ 3 we have Pownm,k 6⊆ Chnm: the polynomial xn + yn + zn of the Fermat curve is in Pownm,k
and its irreducibility implies (since n ≥ 2) that xn + yn + zn /∈ Chnm.

We will see that for specific settings of parameters there exist multiplicity obstructions
that prove Pownm,k 6⊆ Chnm, but there do not exist occurrence obstructions that prove this fact
(see the definitions below). Our approach works as follows and is in complete analogy to the
approach proposed in [22, 23] to separate group varieties arising from algebraic complexity
theory. If Pownm,k ⊆ Chnm, then the restriction of functions gives a canonical GLm-equivariant
surjection C[Chnm]d � C[Pownm,k]d. In this case, Schur’s lemma (e.g. [11, Lemma 4.1.4])
implies that

multλ(C[Chnm]d) ≥ multλ(C[Pownm,k]d). (2)

for all m-partitions λ. Therefore, a partition λ that violates (2) proves that Pownm,k 6⊆ Chnm.
Such a λ is called a multiplicity obstruction. If additionally multλ(C[Chnm]d) = 0, then λ is
called an occurrence obstruction.

Since Chnm and Pownm,k are subvarieties of Anm and since all λ for which multλ(C[Anm]d) > 0
are m-partitions of dn, it follows that if multλ(C[Chnm]d) > 0 or multλ(C[Pownm,k]d) > 0,
then λ is an m-partition of dn.

I Theorem 2.1 (Main Theorem).
(1) Asymptotic result: Let m ≥ 3, n ≥ 2, k = d = n + 1, λ = (n2 − 2, n, 2). We have

multλ(C[Chnm]d) < multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that shows
Pownm,k 6⊆ Chnm.

(2) Finite result: In two finite settings we can show a slightly stronger separation:
(a) Let k = 4, n = 6, m = 3, d = 7, λ = (n2 − 2, n, 2) = (34, 6, 2). Then

multλ(C[Chnm]d) = 7 < 8 = multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruc-
tion that shows Pownm,k 6⊆ Chnm.

(b) Similarly, for k = 4, n = 7, m = 4, d = 8, λ = (n2 − 2, n, 2) = (47, 7, 2) we have
multλ(C[Chnm]d) < 11 = multλ(C[Pownm,k]d), i.e., λ is a multiplicity obstruction that
shows Pownm,k 6⊆ Chnm.

Both separations (a) and (b) cannot be achieved using occurrence obstructions, even for
arbitrary k: for all m-partitions µ that satisfy aµ(d[n]) > 0 we have multλ(C[Chnm]d′) > 0 in
these settings.



J. Dörfler, C. Ikenmeyer, and G. Panova 51:5

One would like to show that there are no occurrence obstructions in all cases (1), but
this is wrong if n is not large enough with respect to m, see Prop. 3.11. Even for m = 3
or m = 4 ruling out occurrence obstructions as in (2) is done by a large-scale computer
calculation which is only suitable for a finite case, but not for sequences as in (1). The papers
[16, 8] rule out occurrence obstructions for families, but only in ranges where they would
give very strong new algebraic circuit lower bounds, so that we expect it to be difficult to
find multiplicity obstructions in those cases. Note also that [16, 8] are only dealing with
padded polynomials, for which [17] guarantees λ to have a very restricted shape.

We expect multiplicity obstructions to be more powerful than occurrence obstructions in
most cases relevant for geometric complexity theory, and Theorem 2.1 resolves the challenge
of finding a setting in which the corresponding multiplicities and occurrences could actually
be computed in a reasonable amount of time, while the setting is also involved enough
so that a difference between occurrence obstructions and multiplicity obstructions could
be witnessed.
I Remark 2.2. The partition (n2 − 2, n, 2) is known to be the type of one of Brill’s classical
set-theoretic equations for Chnm, see [12].

3 Proof of the main theorem

The main theorem (Theorem 2.1) makes a statement about the finite situations k = 4, n = 6,
m = 3, d = 7 and k = 4, n = 7, m = 4, d = 8, as well as the general situation m ≥ 3, n ≥ 2,
k = d = n+ 1. As a first step, in all these cases we show that

multλ(C[Pownm,k]d) = aλ(d[n]). (3)

In the finite cases the following computer calculation suffices to prove (3).

I Proposition 3.1. mult(34,6,2)(C[Pow6
3,4]7) = 8 = a(34,6,2)(7[6]) and mult(47,7,2)(C[Pow7

3,4]8) =
11 = a(47,7,2)(8[7]).

Proof. The plethysm coefficient computations were performed with the LiE software. The
rest is a small computer calculation completely analogous to the ones in [8, Sec. 6]. The
details can be found in the full version of this paper. J

For the general situation the equality (3) is a consequence of the following result on power
sums proved in [8, Prop. 3.2]:

I Proposition 3.2. If λ is an m-partition of dn and k ≥ d, then multλ(C[Pownm,k]d) =
aλ(d[n]).

As a second step we will use the following lemma for λ = (n2 − 2, n, 2).

I Lemma 3.3 (see also [19, Sec. 9.2.3]). Let λ be an m-partition and n ≥ m. Then
multλ(C[Chnm]d) ≤ aλ(n[d]).

Proof. Let GLn(x1 · · ·xn) := {g(x1 · · ·xn) | g ∈ GLn} ⊆ Ann denote the GLn-orbit of x1 · · ·xn.
We denote by GLn(x1 · · ·xn) the Zariski closure of this orbit, which equals its Euclidean clo-
sure by the same principles as in Section 2. Choose bases and embed Anm ⊆ Ann, so that Chnm
is the intersection of Anm and GLn(x1 · · ·xn). This implies (via argument analogous to that
for the plethysm coefficient ([14, Lem. 4.3.2])) that the multiplicity of the irreducible GLm-
representation {λ}m in C[Chnm]d equals the multiplicity of the irreducible GLn-representation
{λ}n in C[GLn(x1 · · ·xn)]. In other words multλ(C[Chnm]d) = multλ(C[GLn(x1 · · ·xn)]d). The
vector space C[GLn(x1 · · ·xn)]d consists of exactly the restrictions of polynomials in C[Ann]d to
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the orbit GLn(x1 · · ·xn). The coordinate ring C[GLn(x1 · · ·xn)] is also graded and its homo-
geneous degree d part C[GLn(x1 · · ·xn)]d consists of all homogeneous degree d regular func-
tions on GLn(x1 · · ·xn), in particular multλ(C[GLn(x1 · · ·xn)]d) ≤ multλ(C[GLn(x1 · · ·xn)]d).
The right-hand side can be understood via geometric invariant theory as follows (see [14,
Sec. 3.4(A)]): multλ(C[GLn(x1 · · ·xn)]d) = multλ∗(C[GLn]Hd ), where H = {diag(α1, . . . , αn) |∏n
i=1 α1 = 1} o Sn ⊆ GLn is the stabilizer of x1 · · ·xn. The algebraic Peter-Weyl theo-

rem (see e.g. [18, II.3.1 Satz 3], [11, Thm. 4.2.7], or [27, Ch. 7, 3.1 Thm.]) states that
C[GLn] =

⊕
λ{λ} ⊗ {λ∗} and we conclude multλ(C[GLn]Hd ) = dim{λ}H . There are several

ways of seeing that dim{λ}H = aλ(n[d]), see e.g. [19, Sec. 9.2.3] or [15, Prop. 3.3]. This
proves the lemma. J

Now an argument using symmetric functions is used to prove the following theorem.

I Theorem 3.4. a(n2−2,n,2)(n+ 1[n]) = 1 + a(n2−2,n,2)(n[n+ 1]).

Theorem 3.4 is a corollary of more general results, see Corollary 4.4 in the appendix.
This finishes the proof that (n2 − 2, n, 2) is a multiplicity obstruction in all cases of

Theorem 2.1.

No occurrence obstructions
To finish the proof of Theorem 2.1(2), it remains to show that there are no occurrence
obstructions in the finite situation n = 6, m = 3 and n = 7, m = 4. We will primarily go
into more detail for the first case and the second one will be proven similarly. We will do
this by showing that

aµ(d[n]) > 0 implies multµ(C[Chnm]d) > 0 for n = 6, m = 3. (4)

Note that this claim is independent of k. We start proving (4) by giving a complete
classification of when aµ(d[n]) > 0 for the case n = 6, m = 3.

First, the following lemma states that for a few special µ the plethysm coefficient
always vanishes.

I Lemma 3.5. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition of
dn and λ̄ ∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}, then aλ(d[n]) = 0.

Proof. This is proved by a finite calculation for all cases but (3, 3) as Thm 1.10(a) in
[16]. Exactly the same calculation can be used to also prove the result for the additional
partition (3, 3). J

For characterizing the set of all µ for which aµ(d[n]) is positive, we observe that they form
a finitely generated semigroup and hence we only need to find the semigroup’s generators:

If aµ(d[n]) > 0 and aν(d′[n]) > 0, then aµ+ν(d+ d′[n]) > 0. (5)

A detailed proof of (5) can be found for example in [1, Prop. 21.2.6].

I Proposition 3.6. Define the set
X := {(6), (6, 6), (8, 4), (10, 2), (6, 6, 6), (8, 6, 4), (10, 4, 4), (9, 6, 3), (8, 8, 2), (10, 6, 2), (11, 5, 2),
(10, 7, 1), (12, 4, 2), (11, 6, 1), (10, 8), (14, 2, 2), (13, 4, 1), (13, 5), (15, 3), (8, 8, 8), (10, 8, 6), (11, 7, 6),
(10, 9, 5), (11, 8, 5), (10, 10, 4), (12, 7, 5), (11, 9, 4), (13, 6, 5), (12, 8, 4), (11, 10, 3), (13, 7, 4), (12, 9, 3),
(13, 8, 3), (12, 10, 2), (15, 5, 4), (14, 7, 3), (13, 9, 2), (13, 10, 1), (16, 5, 3), (15, 7, 2), (14, 9, 1), (17, 4, 3),
(15, 8, 1), (15, 9), (19, 3, 2), (18, 5, 1), (17, 7), (10, 10, 10), (11, 10, 9), (12, 10, 8), (13, 9, 8), (12, 11, 7),
(13, 10, 7), (14, 9, 7), (13, 11, 6), (15, 8, 7), (13, 12, 5), (16, 7, 7), (15, 9, 6), (14, 11, 5), (13, 13, 4), (15, 10, 5),
(15, 11, 4), (14, 13, 3), (16, 11, 3), (15, 13, 2), (15, 14, 1), (17, 13), (13, 12, 11), (14, 11, 11), (13, 13, 10),
(15, 11, 10), (14, 13, 9), (16, 11, 9), (15, 13, 8), (15, 14, 7), (18, 9, 9), (15, 15, 6), (17, 17, 2), (18, 17, 1),
(26, 5, 5), (15, 14, 13), (16, 13, 13), (15, 15, 12), (17, 17, 8), (18, 15, 15), (17, 17, 14), (25, 23), (45, 45)}.
Here we truncated trailing zeros from the 3-partitions. The set X is the set of generators of
the semigroup of 3-partitions µ that have aµ(d[6]) > 0.
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The proof of Proposition 3.6 proceeds in several steps.
A direct computation with the LiE software verifies aµ(d[6]) > 0 for all µ ∈ X \{(45, 45)}.

The case d = 15 runs into memory problems when using LiE. Other software such as Schur
stops working when d = 8. We used the formula [32, Cor. 4.2.8] to verify a(45,45)(15[6]) > 0.

We call the number of nonzero parts the length of a partition. We use a brute-force
computer verification and a direct computation with LiE to show that for d ≤ 26 every
partition µ of length ≤ 2 with aµ(d[6]) > 0 is a sum of partitions from the set X. The same
computation is done for all 3-partitions, but only up to d ≤ 14. The following proposition
states that these finite computations completely describe all cases.

I Proposition 3.7. If λ is a 3-partition of 6d, d ≥ 15, and λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)},
then λ is a sum of partitions from X.

Proof. For 15 ≤ d ≤ 17 we use a computer calculation to show that we can write every
such partition λ as a sum of partitions from X. For d > 17 we prove this inductively by
showing that we can write every 3-partition λ of 6d with λ̄ /∈ {(3, 3), (3, 1), (2, 1), (1, 1), (1)}
as a sum of one of the partitions (6), (6, 6) or (6, 6, 6) and a smaller λ′ with again λ̄′ /∈
{(3, 3), (3, 1), (2, 1), (1, 1), (1)}.

Let ci denote the number of columns in λ with exactly i boxes for i ∈ {1, 2, 3}. Since we
have at least 108 boxes in λ, the pigeonhole principle implies that at least one must be true:
c1 ≥ 6, c2 ≥ 10 or c3 ≥ 10.

In the case c1 ≥ 6 we have λ = λ′ + (6) with λ′ being a sum of elements from X since
λ̄′ = λ̄. In the case c2 ≥ 10 we have λ = λ′ + (6, 6) with λ′ being a sum of elements from X

as λ′2 ≥ 4. In the case c3 ≥ 10 we have λ = λ′ + (6, 6, 6) with λ′ being a sum of elements
from X as λ′3 ≥ 4. J

This finishes the proof of Proposition 3.6.
To prove (4) it is sufficient (and necessary) to show that multµ(C[Chnm]d) > 0 for all

µ ∈ X, because a semigroup property analogous to (5) holds (the same proof applies, e.g. [1,
Prop. 21.2.6]):

If multµ(C[Chnm]d) > 0 and multν(C[Chnm]d′) > 0, then multµ+ν(C[Chnm]d+d′) > 0. (6)

If the length of µ is at most 2, we use the following general result.

I Proposition 3.8. Let µ be a 3-partition of length at most 2. If aµ(d[n]) > 0, then
multµ(C[Chnm]d) > 0.

Proof. We use an inheritance result: If for a 2-partition µ we have multµ(C[Chn2 ]d) > 0, and ν
is the 3-partition that arises from µ by adding a single 0, then multν(C[Chn3 ]d) > 0. The proof
is completely analogous to other inheritance results, see e.g. [14, Lemma 4.3.2 or Sec. 5.3].
Now for 2-partitions µ we have aµ(d[n]) = multµ(C[Chn2 ]d), because every homogeneous
polynomial in 2 variables decomposes as a product of homogeneous linear polynomials by
the fundamental theorem of algebra, see also e.g. [19, Exa. 9.1.1.8]. This is how the Hermite
reciprocity can be proved. An even simpler argument works if µ has length 1. J

We finish the proof of (4) by using a computer calculation to verify that for all 3-partitions
µ ∈ X of length 3 we have multµ(C[Ch6

3]) > 0, see Proposition 5.1.
This finishes the proof of Theorem 2.1(2a). The proof of Theorem 2.1(2b) is completely

analogous as follows. Let m = 4, n = 7.
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I Lemma 3.9. Let λ̄ := (λ2, λ3, . . .) denote λ without its first row. If λ is an m-partition
of dn and λ̄ ∈ Y for Y := {(1), (1, 1), (1, 1, 1), (2, 1), (2, 1, 1), (2, 2, 1), (3, 1), (3, 1, 1),
(3, 2, 1), (3, 3), (3, 3, 1), (3, 3, 2), (3, 3, 3), (4, 1, 1), (4, 3, 3), (5, 1, 1), (5, 5, 5), (6, 1, 1)}, then
aλ(d[n]) = 0.

Proof. This is proven exactly like Lemma 3.5. J

The semigroup of 4-partitions λ that have aλ(d[7]) > 0 has 948 generators, listed in the
full version of this paper. They form a set that we call X.

We again use a direct computation with the LiE software to verify aµ(d[7]) > 0 for all
µ ∈ X \ {(49, 49), (24, 24, 23, 23)}. For both the remaining partitions µ ∈ {(49, 49), (24, 24, 23,
23)} we prove multµ(C[Ch7

4]d) > 0 using our computer calculations which also implies
aµ(d[7]) > 0.

To prove those are all the generators we use the following proposition which is proved
completely analogously to Proposition 3.7.

I Proposition 3.10. If λ is a 4-partition of 7d, d ≥ 14, and λ̄ /∈ Y , then λ is a sum of
partitions from X.

For the next finite case (n = 7, k = d = 8, m = 5) we reached the computational limit of
our implementation. Here we were able to find 5016 generating partitions of the semigroup
of 4-partitions µ that have aµ(d[7]) > 0. Unfortunately these do not generate everything
excluding the exceptions yet. We were able to verify for 5000 generating partitions µ that
multµ(C[Chnm]d) > 0. For the remaining ones, we used up to 200 GB of RAM, but this was
not sufficient.

Some occurrence obstructions

As we degenerate the parameter settings and let n get closer to m, multiplicity obstructions
tend to become occurrence obstructions. More precisely, for m = 3 and values of n < 6, and
for (m,n) = (4, 6), some multiplicity obstructions are actually also occurrence obstructions,
as the following proposition shows.

I Proposition 3.11. The following partitions give occurrence obstructions that show
Pownm,d 6⊆ Chnm.

m n λ d aλ(d[n]) aλ(n[d])
3 2 (2, 2, 2) 3 1 0
3 3 (7, 3, 2) 4 1 0
3 4 (11, 9, 8) 7 1 0
3 5 (12, 9, 9) 6 1 0
4 6 (14, 14, 13, 13) 9 11 0

Proof. The plethysm coefficient computations were performed with the LiE software.
Lemma 3.3 implies that multλ(C[Chnm]d) ≤ aλ(n[d]) = 0. Proposition 3.2 implies
multλ(C[Pownm,d]d) > 0. J

See [4, Prop. 4] for additional occurrence obstructions in the case n = 3.
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4 Plethysm inequalities

We are interested in the plethysm coefficients aλ(d[m]) for certain values of λ and d,m.
Here we compute such values for infinite families of parameters and in particular, prove
Theorem 3.4.

We will work over the ring of symmetric functions Λ, defined as the ring of formal power
series (in finitely or infinitely many variables) which are invariant under any transposition
of the variables. For the definitions and main identities see e.g. [29]. Plethysms of sym-
metric functions are described also there in Appendix 2 of Chapter 7, here we review the
necessary definitions.

The characters of the irreducible GLr–module Wλ are the Schur functions sλ(x1, . . . , xr),
where x1, . . . , xr correspond to the eigenvalues of the conjugacy class representative from
GLr. Their combinatorial interpretation is as the generating function over all semi-standard
Young tableaux with entries 1, ..., r, but we will use certain determinantal formulas as
described below. The complete homogeneous symmetric functions h` are defined as s(`)
and are the characters of the Sym` module. The Symd(Symn(Cr)) module is obtained as
the composition of the two representations. The image in Symn(Cr) of a diagonal matrix
from GLr with entries (i.e. eigenvalues) x1, . . . , xr on the diagonal has eigenvalues all the
N :=

(
n+r−1
r−1

)
degree n monomials in x1, . . . , xr. Hence, the character of the representation

Symd(Symn(Cr)) of GLN can be obtained by evaluating the character hd of Symd at the
monomials, i.e. the eigenvalues above. This gives us the definition of the symmetric function
plethysm hd[hn(x1, . . . , xr)], that is, the evaluation of hd on the variables consisting of all
degree n monomials, i.e. hd[hn(x1, . . . , xr)] := hd(xn1 , xn−1

1 x2, x
n−1
1 x3, . . . , x

α1
1 · · ·xαrr , . . .),

where α = (α1, . . . , αr) runs over all compositions of n.
In general, knowing the character of a representation contains all the information to obtain

the multiplicities of the irreducible decomposition via the inner product of characters. As
the Schur functions sλ are the irreducible characters for GLr, the inner product is equivalent
to an inner product in the ring Λ, where {sλ}λ is an orthonormal basis. In other words, the
multiplicity of the Weyl module of weight λ is given by the multiplicity of the Schur function
sλ in the expansion of hd[hm]. We will now compute this via the inner product in the ring Λ
of symmetric functions, using some basic properties of this ring as found in [29] and [21].

We have that aλ(d[n]) is the multiplicity of {λ} in SymdSymn, translated into characters
this is also the coefficient at sλ of the expansion of hd[hn] in Schur function. By their
orthonormalitiy, this is the same as

aλ(d[n]) = 〈sλ, hd[hn]〉 (7)

We now invoke various symmetric function identities in order to compute the above inner
product. The Schur functions sλ can be expressed via the Jacobi-Trudi formula (see again [29,
Ch. 7]) as a signed sums of homogeneous symmetric functions, namely

sλ = det [hλi−i+j ]
`(λ)
i,j=1 , (8)

the inner product (7) can then be computed via a signed sum of inner products of the
form 〈hµ, hd[hn]〉. We remark that the orthogonal dual basis for the complete homogeneous
symmetric functions is the monomial symmetric functions, i.e. 〈hµ,mν〉 = δµ,ν , so we need
to express hd[hn] in terms of the monomial symmetric functions, defined by

mν(x1, . . . , xr) :=
∑

σ∈Sr(ν)

x
νσ(1)
1 x

νσ(2)
2 · · ·xνσ(r)

r ,
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where the sum ranges over all distinct permutations of (ν1, ν2, . . . , νr) and ν is completed
with 0s to the length r. Since he monomial symmetric functions form a basis for Λ, we can
expand any symmetric function in it uniquely. Let hd[hm] =

∑
ν cνmν , for some constants

cν (i.e. the coefficients in this expansion). Since each mν has a unique leading monomial (in
the lexicographic order) xν1

1 x
ν2
2 · · · , finding cν is equivalent to extracting the coefficient at

the single monomial xν1
1 · · · from the monomial expansion of the corresponding symmetric

function as a polynomial, i.e. cν = (xν1
1 x

ν2
2 . . .)@hd[hn(x1, x2, . . .)], where to avoid confusion

with the plethysm notation we denote by (X)@f the coefficient of the monomial X in the
monomial expansion of the polynomial f .

Let ν be a partition of length `. By the above remarks we need to consider only the
truncated expansion hd[hn(x1, . . . , x`)] as only the monomials in x1, . . . , x` will be relevant.

We have the following formula for the h’s, see e.g. [29]:

hN (x1, . . . , xr) =
∑

(b):b1+b2+···=N

xb1
1 x

b2
2 · · · ,

where (b) = (b1, b2, . . . , br) runs over all (weak) compositions of N . Hence, assuming some
total ordering for compositions αi of n, we have

hd[hn(x1, . . . , xr)] = hd[. . . , xα
i

, . . .] =
∑

(b):|b|=d

x
∑

i
biα

i

.

Thus for the coefficients cν we have:

cν(d, n) := (xν)@hd[hn] = 〈hν , hd[hn]〉 = #{(b) : |b| = d,
∑
i

biα
i = ν} (9)

By the Jacobi-Trudi identity (8) this gives a formula for computing the plethysm coeff. as

aλ(d[n]) = 〈det [hλi−i+j ]
`(λ)
i,j=1 , hd[hn]〉 =

∑
π∈S`(λ)

sgn(π)cλ+π−(1,2,...)(d, n), (10)

where the permutations π are viewed as vectors with entries 1, 2, . . . , `(λ)
We now turn towards the proof of Theorem 3.4 and consider sλ for λ = (λ1, λ2, 2) for

some k ≥ 2. By the Jacobi-Trudi identity (10) we need to compute only cν for ν having
at most 3 parts, with ν3 = 0, 1, 2. Let pr(a, b) denote the number of partitions of r which
fit inside an a× b rectangle, it’s generating function is the q-binomial coefficient (see [31]):(
a+b
a

)
q

= (1−q)···(1−qa+b)
(1−q)···(1−qa)(1−q)···(1−qb) =

∑ab
r=0 pr(a, b)qr

I Proposition 4.1. We have the following generating function identities for cν(d, n), where
`(ν) ≤ 3 and ν3 ≤ 2:

c(L,k,2) = (qk)@
((
n
1
)
q

(
n+d−2
n

)
q

+
(
n−1

1
)
q

(
n+d−1
n

)
q

+ q
(
n
2
)
q

(
n+d−2
n

)
q

)
c(L,k,1) = (qk)@

(
n
1
)
q

(
n+d−1
n

)
q

c(L,k,0) = (qk)@
(
n+d
n

)
q

= pk(n, d)

Proof. By formula (9), we have c(L,k,0) = #{(b) : |b| = d,
∑
biα

i = (L, k)}.
Hence, the only αi involved are of the form αi = (n− ai, ai), and after renumerating, we

can assume ai = i. So we are counting compositions b of d, s.t.
∑
i bii = k for i = 0 . . . n.

This is exactly the same as specifying an integer partition γ of k by the number of its parts,
i.e. γ = (0b0 , 1b1 , . . . , nbn), such that b0 + · · ·+ bn = d. These restrictions are equivalent to γ
fitting inside an n× d box, and the number of such γ is exactly pk(d, n).
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Next, when the second part in ν is 1, we have the following. Since ν3 = 1, the condition∑
i biα

i
3 = ν3 = 1 implies that there is a single i, such that biαi3 6= 0, and in fact must be 1,

so bi = αi3 = 1. After renumeration, we can assume that i = 0 (for separation purposes) with
b0 = α0

3 = 1 and α0 = (n−1− r, r, 1) for r = 0 . . . n−1. For the remaining bs and αs we have∑
i biα

i = (L, k)− (n− 1− r, r) = (L+ r − n+ 1, k − r) with b1 + · · · = d− 1, and |αi| = n.
This number is now, by the previous case, (qk−r)@

(
n+d−1
n

)
q
. The total number is thus

c(L,k,1) =
∑n−1
r=0 (qk−r)@

(
n+d−1
n

)
q

= (qk)@
∑n−1
r=0 q

r
(
n+d−1
n

)
q

= (qk)@
(
n
1
)
q

(
n+d−1
n

)
q
.

Finally, when ν3 = 2 we have the following two distinct options:
Either there is an index i, such that biαi3 = ν3 = 2, or i < j with biαi3 = 1 and bjαj3 = 1.
In the first case we have biα3

i = 2 – either bi = 2, in which case αi = (n− 1− r, 1) and
the rest of the b’s sum to d− bi = d− 2, which brings us to the previous case (of (L, k, 1)),
so the number is

(qk)@
(
n
1
)
q

(
n+d−2
n

)
q
.

Otherwise, bi = 1 and αi3 = 2. As in the case ν3 = 1, let i = 0 and α0 = (n− 2− r, r, 2),
b0 = 1, so we are looking for the number of (b1, . . .) with |b| = d − 1 and such that∑
i biα

i = (L− n+ r + 2, k − r) for all possible r = 0, . . . , n− 2. So this is∑n−2
r=0 (qk−r)@

(
n+d−1
n

)
q

= (qk)@
(
n−1

1
)
q

(
n+d−1
n

)
q

Last, when there are i < j with biα
i
3 = 1 and bjα

j
3 = 1, let i = −1, j − 0 (again,

renumerating for simplicity), with α−1 = (n− 1− r1, r1, 1) and α0 = (n− 1− r2, r2, 1) with
0 ≤ r1 < r2 ≤ n − 1. We thus have for the remaining α and bs that b1 + · · · = d − 2, and∑
i biα

i = (L− (n− 1− r1)− (n− 1− r2), k − r1 − r2). By the first case, this is
(qk−r1−r2)@

(
n+d−2
n

)
q
. Summing over all possible 0 < r1 < r2 ≤ n− 1, we have

(qk) @
∑

0≤r1<r2≤n−1

qr1+r2

(
n+ d− 2

n

)
q

= (qk)@q
∑

0≤r1≤r2−1≤n−2

qr1+(r2−1)
(
n+ d− 2

n

)
q

= (qk)@q
(
n− 2 + 2

2

)
q

(
n+ d− 2

n

)
q

,

where the last identity follows from interpreting (r2 − 1, r1) as a partition in the 2× n− 2
rectangle. Summing over all the cases considered here, we get the desired total coefficient. J

I Proposition 4.2. The plethysm coefficient for λ = (L, r, 2) is equal to

aλ(d[n]) = (qr+1) @
((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2

+
(
n+d−1
n

)
q
(qn+1 − 1) + (1− q)

(
n+d
n

)
q

)
Proof. Following equation (10), we have that
aλ(d[n]) = c(L,r,2) − c(L,r+1,1) − c(L+1,r−1,2) + c(L+1,r+1,0) + c(L+2,r−1,1) − c(L+2,r,0).

Substituting the formulas for the c’s from Proposition 4.1, and observing that (qr+j) @ f =
(qr) @ q−jf for any j, we have that

aλ(d[n]) = (qr+1) @
(
(q − q2)

((
n
1
)
q

(
n+d−2
n

)
q

+
(
n−1

1
)
q

(
n+d−1
n

)
q

+ q
(
n
2
)
q

(
n+d−2
n

)
q

)
+(q2 − 1)

(
n
1
)
q

(
n+d−1
n

)
q

+ (1− q)
(
n+d
n

)
q

)
Simplifying the above expression by grouping terms for the same binomial coefficients together
we obtain
aλ(d[n]) = (qr+1) @

((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2 +

(
n+d−1
n

)
q
(qn+1− 1) + (1− q)

(
n+d
n

)
q

)
. J

ICALP 2019



51:12 On GCT: Multiplicity Obstructions Are Stronger Than Occurrence Obstructions

I Proposition 4.3. Let λ = (L, r, 2). We have that

aλ(d[n])− aλ(n[d]) = (qr) @
(
n+d−2
n−1

)
q
(qn − qd) (1−qd−1)(1−qn−1)

(1−qd)(1−qn) .

Proof. Set [a]!q := (1−q) · · · (1−qa), a variant of the usual factorial q-analogue but multiplied
by (1− q)a, and consider the desired difference via the formula in Proposition 4.2:

aλ(d[n])− aλ(n[d]) = (qr+1) @{ ((
n+d−2
n

)
q

q(1−qn)(1−q2+q−qn)
1−q2 +

(
n+d−1
n

)
q
(qn+1 − 1)

−
(
n+d−2

d

)
q

q(1−qd)(1−q2+q−qd)
1−q2 −

(
n+d−1

d

)
q
(qd+1 − 1)

)
= [n+d−2]!q

[n−2]!q [d−2]!q
q(qn−1−qd−1)

(1−qn−1)(1−qd−1) −
[n+d−1]!q

[n−1]!q [d−1]!q
(1−q)(qn−qd)
(1−qn)(1−qd)

=
(
n+d−2
n−1

)
q
(qn − qd)

(
1− (1−qn+d−1)(1−q)

(1−qn)(1−qd)

)
=
(
n+d−2
n−1

)
q
(qn − qd) q(1−qd−1)(1−qn−1)

(1−qd)(1−qn)

}
Finally, observe that the RHS is a polynomial divisible by q, so the coefficient at qr+1 is the
same as the coefficient at qr after dividing by q. J

We are now ready to prove Theorem 3.4 as a Corollary of the above computations:

I Corollary 4.4. [Theorem 3.4] Let d = n + 1 and λ = (n2 + n − 2 − r, r, 2). Then
aλ((n+ 1)[n])− aλ(n[n+ 1]) ≥ 0, with

aλ((n+ 1)[n])− aλ(n[n+ 1]) =


0, when r < n,

1, when r = n,

> 0, when r > n and n ≥ 7,

with the exception in the last case when n = 8, and r = 35 when a(35,35,2)(9[8]) =
a(35,35,2)(8[9]).

Proof. Then by the Proposition 4.3 we have

aλ(n+ 1[n])− aλ(n[n+ 1]) = (qr) @
(2n−1
n−1

)
q
(qn − qn+1) (1−qn)(1−qn−1)

(1−qn+1)(1−qn)

= (qr) @
(2n−1
n−1

)
q
(qn − qn+1) (1−qn−1)

1−qn+1 = (qr) @
(2n−1
n−2

)
q
(qn − qn+1)

The last line follows by absorbing the fraction into the q-binomial coefficient. It is now
evident, that since the q-binomial coefficient expands into a polynomial of q (with coefficients
given by p∗(n− 2, n+ 1)), multiplying it with qn or qn+1 gives two polynomials whose lowest
order terms are qn and qn+1 respectively. So if r < n, there is no term of such degree, and the
coefficient is 0. when r = n we see that such term can only come from the first polynomial’s
first (lowest order) term, which is exactly qn since

(2n−1
n−2

)
q
qn = qn(1 + q + 2q2 + · · · ) =

qn +O(qn+1). Therefore we obtain the case r = n.
Let now r > n, and set r = n+ k + 1 for some k ≥ 0. We have that

aλ((n+ 1)[n])− aλ(n[n+ 1]) = (qk+1) @
(2n−1
n−2

)
q
− (qk) @

(2n−1
n−2

)
q

= pk+1(n+ 1, n− 2)− pk(n+ 1, n− 2)
= g((n2 − n− 3− k, k + 1), (n+ 1)n−2, (n+ 1)n−2) > 0,
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where g denotes the Kronecker coefficient for the symmetric group Sn for the 3 given
partititons, and the last identity and the strict positivity are shown to hold for n ≥ 9 in [26],
and the other cases are verified by direct expansion of the q-binomial coefficients. In particular,
we have that p26(9, 6) = 227 = p27(9, 6) which gives the only exceptional 0 plethysm. J

5 Computer calculations

I Proposition 5.1. If X is defined as in Proposition 3.6, then for all µ ∈ X of length 3 we
have multµ(C[Ch6

3]) > 0.
If X is the set of generators of the semigroup of 4-partitions µ that have aµ(d[7]) > 0

(see full version of this paper), then for all µ ∈ X we have multµ(C[Ch7
4]) > 0.

Proof. Proposition 5.1 is proved by a computer calculation that is a refinement and speedup
of the computation performed in [9]. Indeed, a run of the method from [9] would take
significantly too long to prove Proposition 5.1 in any reasonable time. Our new method
makes extensive use of memory resources, while the method from [9] uses almost no memory.
The description of the computation can be found in the full version of this paper. J
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