
Quantum Chebyshev’s Inequality and Applications
Yassine Hamoudi
Université de Paris, IRIF, CNRS, F-75013 Paris, France
hamoudi@irif.fr

Frédéric Magniez
Université de Paris, IRIF, CNRS, F-75013 Paris, France
magniez@irif.fr

Abstract
In this paper we provide new quantum algorithms with polynomial speed-up for a range of problems
for which no such results were known, or we improve previous algorithms. First, we consider
the approximation of the frequency moments Fk of order k ≥ 3 in the multi-pass streaming
model with updates (turnstile model). We design a P -pass quantum streaming algorithm with
memory M satisfying a tradeoff of P 2M = Õ

(
n1−2/k), whereas the best classical algorithm requires

PM = Θ(n1−2/k). Then, we study the problem of estimating the number m of edges and the number
t of triangles given query access to an n-vertex graph. We describe optimal quantum algorithms
that perform Õ

(√
n/m1/4) and Õ (√n/t1/6 +m3/4/

√
t
)
queries respectively. This is a quadratic

speed-up compared to the classical complexity of these problems.
For this purpose we develop a new quantum paradigm that we call Quantum Chebyshev’s

inequality. Namely we demonstrate that, in a certain model of quantum sampling, one can
approximate with relative error the mean of any random variable with a number of quantum
samples that is linear in the ratio of the square root of the variance to the mean. Classically the
dependence is quadratic. Our algorithm subsumes a previous result of Montanaro [47]. This new
paradigm is based on a refinement of the Amplitude Estimation algorithm of Brassard et al. [11] and
of previous quantum algorithms for the mean estimation problem. We show that this speed-up is
optimal, and we identify another common model of quantum sampling where it cannot be obtained.
Finally, we develop a new technique called “variable-time amplitude estimation” that reduces the
dependence of our algorithm on the sample preparation time.
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1 Introduction

Motivations and Background. Randomization and probabilistic methods are among the
most widely used techniques in modern science, with applications ranging from mathematical
economics to medicine or particle physics. One of the most successful probabilistic approaches
is the Monte Carlo Simulation method for algorithm design, that relies on repeated random
sampling and statistical analysis to estimate parameters and functions of interest. From
Buffon’s needle experiment, in the eighteenth century, to the simulations of galaxy formation
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69:2 Quantum Chebyshev’s Inequality and Applications

or nuclear processes, this method and its variations have become increasingly popular to tackle
problems that are otherwise intractable. The Markov chain Monte Carlo method [35] led for
instance to significant advances for approximating parameters whose exact computation is
#P-hard [39, 37, 20, 36].

The analysis of Monte Carlo Simulation methods is often based on concentration in-
equalities that characterize the deviation of a random variable from some parameter. In
particular, the Chebyshev inequality is a key element in the design of randomized methods
that estimate some target numerical value. Indeed, this inequality guarantees that the
arithmetic mean of ∆2/ε2 independent samples, from a random variable with variance σ2

and mean µ satisfying ∆ ≥ σ/µ, is an approximation of µ under relative error ε with high
probability. This basic result is at the heart of many computational problems, such as
counting via Markov chains [35, 54], estimating graph parameters [16, 25, 28, 22], testing
properties of classical [29, 8, 15, 13] or quantum [12, 7] distributions, approximating the
frequency moments in the data stream model [2, 46, 4].

Various quantum algorithms have been developed to speed-up or generalize classical Monte
Carlo methods (e.g. sampling the stationary distributions of Markov-chains [55, 51, 19, 53, 17],
estimating the expected values of observables or partition functions [41, 56, 51, 47]). The
mean estimation problem (as addressed by Chebyshev’s inequality) has also been studied
in the quantum sampling model. In this model, a distribution is represented by a unitary
transformation (called a quantum sampler) preparing a superposition over the elements of
the distribution, with the amplitudes encoding the probability mass function. A quantum
sample is defined as one execution of a quantum sampler or its inverse. The number of
quantum samples needed to estimate the mean of a distribution on a bounded space [0, B],
with additive error ε, was proved to be O (B/ε) [32, 10], or Õ (σ̄/ε) [47] given an upper-bound
σ̄2 on the variance. On the other hand, the mean estimation problem with relative error ε can
be solved with O

(√
B/(ε√µ)

)
quantum samples [11, 56]. Interestingly, this is a quadratic

improvement over σ2/(εµ)2 if the sample space is {0, B} (this case maximizes the variance).
Montanaro [47] posed the problem of whether this speed-up can be generalized to other
distributions. He assumed that one knows an upper bound1 ∆ on 1 + σ/µ, and gave an
algorithm using2 Õ

(
∆2/ε

)
quantum samples (thus improving the dependence on ε, compared

to the classical setting). This result was reformulated in [43] to show that, having bounds
L ≤ µ ≤ H, it is possible to use Õ (∆/ε ·H/L) quantum samples. However, it is usually the
case that the only upper-bound known on µ is H = B. In this situation, the latter algorithm
is less efficient than previous works [11, 56].

Quantum Chebyshev’s Inequality. Our main contribution (Theorem 10 and Theorem 11)
is to show that the mean µ of any distribution with variance σ2 can be approximated with
relative error ε using Õ (∆ · log(H/L) + ∆/ε) quantum samples, given an upper bound ∆ on
1 + σ/µ and two bounds L,H such that L < µ < H. This is an exponential improvement in
H/L compared to previous works [43]. Moreover, if log(H/L) is negligible, this is a quadratic
improvement over the number of classical samples needed when using the Chebyshev inequality.
A corresponding lower bound is deduced from [50] (Theorem 12). We also show (Theorem
14) that no such speed-up is possible if we only had access to copies of the quantum state
representing the distribution.

1 More precisely, ∆ is an upper bound on φ/µ where φ2 is the second moment, which satisfies σ/µ ≤
φ/µ ≤ 1 + σ/µ.

2 We use the notation Õ (x) to indicate O (x · polylog x).
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Our algorithm is based on sequential analysis. Given a threshold b ≥ 0, we will consider
the “truncated” mean µ<b defined by replacing the outcomes larger than b with 0. Using
standard techniques, this mean can be encoded in the amplitude of some quantum state√

1− µ<b/b|ψ〉 +
√
µ<b/b|ψ⊥〉 (Corollary 4). We then run the Amplitude Estimation al-

gorithm of Brassard et al. [11] on this state for ∆ steps (i.e. with ∆ quantum samples),
only to see whether the estimate of µ<b/b it returns is nonzero (this is our stopping rule).
A property of this algorithm (Corollary 4 and Remark 7) guarantees that it is zero with
high probability if and only if the number of quantum samples is below the inverse

√
b/µ<b

of the estimated amplitude. The crucial observation (Lemma 9) is that
√
b/µ<b is smaller

than ∆ for large values of b, and it becomes larger than ∆ when b ≈ µ∆2. Thus, by
repeatedly running the amplitude estimation algorithm with ∆ quantum samples, and doing
O (log(H/L)) steps of a logarithmic search on decreasing values of b, the first non-zero value
is obtained when b/∆2 is approximately equal to µ. The precision of the result is later
improved, by using more precise “truncated” means.

This algorithm is extended to cover the common situation where one knows a non-
increasing function f such that f(µ) ≥ 1 + σ/µ, instead of having explicitly ∆ ≥ 1 + σ/µ.
For this purpose, we exhibit another property (Corollary 4 and Remark 6) of the amplitude
estimation algorithm, namely that it always outputs a number smaller than the estimated
value (up to a constant factor) with high probability. This shall be seen as a quantum
equivalent of the Markov inequality. Combined with the previous algorithm, it allows us to
find a value f(µ̃) ≥ 1 + σ/µ, with a second logarithmic search on µ̃. This result is detailed
in the full version of the paper [31].

Next, we study the quantum analogue of the following standard fact: s classical samples,
each taking average time Tav to be prepared, can be obtained in total average time s·Tav. The
notion of “average preparation time” is adapted to the quantum setting using the framework
of variable-time algorithms introduced by Ambainis [3]. This captures the situation where
the superposition prepared by the quantum sampler has different parts taking different
times to be computed. We develop a variable-time amplitude estimation algorithm that
approximates the target value efficiently in this case. We use it in place of the standard
amplitude estimation technique to obtain an algorithm whose complexity depends on the
average, instead of worst-case, sample preparation time. This result is detailed in the full
version of the paper [31].

Applications. We describe two applications that illustrate the use of the above results.
We first study the problem of approximating the frequency moments Fk of order k ≥ 3 in
the multi-pass streaming model with updates. Classically, the best P -pass algorithms with
memory M satisfy PM = Θ

(
n1−2/k) [46, 57]. We give a quantum algorithm for which

P 2M = Õ
(
n1−2/k) (Theorem 18). This problem was studied before in [48], where the

author obtained quantum speed-ups for F0, F2 and F∞, but no significant improvement for
k ≥ 3. Similar tradeoff results are known for Disjointness (P 2M = Θ̃ (n) in the quantum
streaming model [42] vs. PM = Θ (n) classically), and Dyck(2) (P 3M = Ω (

√
n) [49] vs.

PM = Θ̃ (
√
n) [45, 14, 34]).

Our construction starts with a classical one-pass linear sketch streaming algorithm [46, 4]
with memory polylogn, that samples (approximately) from a distribution with mean Fk and
variance O

(
n1−2/kF 2

k

)
. We implement it with a quantum sampler, that needs two passes for

one quantum sample. The crucial observation is that the reverse computation of a linear
sketch algorithm can be done efficiently in one pass (whereas usually that would require
processing the same stream but in the reverse direction).

ICALP 2019
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As a second application, we study the approximation of graph parameters using neigh-
bor, vertex-pair and degree queries. We show that the numbers m of edges and t of
triangles, in an n-vertex graph, can be estimated with Θ̃

(
n1/2/m1/4) (Theorem 19) and

Θ̃
(√
n/t1/6 +m3/4/

√
t
)
(Theorem 21) quantum queries respectively. This is a quadratic

speed-up over the best classical algorithms [28, 22]. The lower bounds (Theorems 20 and 22)
are obtained with a property testing to communication complexity reduction method.

The number of edges is approximated by translating a classical estimator [52] into a
quantum sampler. The triangle counting algorithm is more involved. We need a classical
estimator [22] approximating the number tv of adjacent triangles to any vertex v. The average
sample preparation time of this estimator being small, we obtain a quadratic speed-up for
estimating tv using our mean estimation algorithm for variable-time samplers. We then
diverge from the classical triangle counting algorithm of [22], that requires to set up a data
structure for sampling edges uniformly in the graph. This technique seems to be an obstacle
for a quadratic speed-up. We circumvent this problem by adapting instead a bucketing
approach from [21] that partitions the graph’s vertices according to the value of tv. The size
of each bucket is estimated using a second quantum sampler.

2 Preliminaries

2.1 Computational Model
In this paper we consider probability distributions d on some finite sample spaces Ω ⊂ R+.
We denote by d(x) the probability to sample x ∈ Ω in the distribution d. We also make the
assumption, which is satisfied for most of applications, that Ω is equipped with an efficient
encoding of its elements x ∈ Ω. In particular, we can perform quantum computations on the
Hilbert space HΩ defined by the basis {|x〉}x∈Ω. Moreover, given any two values 0 ≤ a < b,
we assume the existence of a unitary Ra,b that can perform the Bernoulli sampling (see
below) in time polylogarithmic in b. In the rest of the paper we will neglect this complexity,
including the required precision for implementing any of those unitary operators.

I Definition 1. Given a finite space Ω ⊂ R+ and two reals 0 ≤ a < b, an (a, b)-Bernoulli
sampler over Ω is a unitary Ra,b acting on HΩ ⊗ C2 and satisfying for all x ∈ Ω:

Ra,b(|x〉|0〉) =
{
|x〉
(√

1− x
b |0〉+

√
x
b |1〉

)
when a ≤ x < b,

|x〉|0〉 otherwise.

We say that Ω is Bernoulli samplable if any (a, b)-Bernoulli sampler can be implemented in
polylogarithmic time in b, when a, b have polylog-size encodings in b.

The Ra,b operation can be implemented with a controlled rotation, and is reminiscent of
related works on mean estimation (e.g. [56, 10, 47]). In what follows, we always use a = 0 or
a = b/2. Using these notions, we can now define what a quantum sample is.

I Definition 2. Given a finite Bernoulli samplable space Ω ⊂ R+ and a distribution d on
Ω, a (quantum) sampler S for d is a unitary operator acting on Hg ⊗HΩ, for some Hilbert
space Hg, such that

S(|0〉|0〉) =
∑
x∈Ω

√
d(x)|ψx〉|x〉

where |ψx〉 are arbitrary unit vectors. A quantum sample is one execution of S or S−1

(including their controlled versions). The output of S is the random variable v(S) obtained
by measuring the x-register of S(|0〉|0〉). Its mean is denoted by µS , its variance by σ2

S , and
its second moment by φ2

S = E
[
v(S)2].
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Given a non-negative random variable X and two numbers 0 ≤ a ≤ b, we define the
random variable Xa,b = ida,b(X) where ida,b(x) = x when a ≤ x < b and ida,b(x) = 0
otherwise. If a = 0, we let X<b = X0,b. Similarly, X≥b = id≥b(X) where id≥b(x) = x when
x ≥ b and id≥b(x) = 0 otherwise.

We motivate the use of a Bernoulli sampler Ra,b by the following observation: for any
sampler S and values 0 ≤ a < b, the modified sampler Ŝ = (IHg

⊗ Ra,b)(S ⊗ IC2) acting
on Hĝ ⊗ HΩ̂, where Hĝ = Hg ⊗ HΩ and Ω̂ = {0, 1}, generates the Bernoulli distribution
d(0) = 1− p, d(1) = p of mean p = E

[
v(Ŝ)

]
= b−1E [v(S)a,b] (see the proof of Corollary 4).

This central result will be used all along this paper.

Other Quantum Sampling Models. Instead of having access to the unitary S, one could
only have copies of the state

∑
x∈Ω

√
d(x)|ψx〉|x〉 (as in [5] for instance). However, as we

show in Theorem 14, the speed-up presented in this paper is impossible to achieve in this
model. On another note, Aharonov and Ta-Shma [1] studied the Qsampling problem, which
is the ability to prepare

∑
x∈Ω

√
d(x)|x〉 given the decription of a classical circuit with

output distribution d. This problem becomes straightforward if a garbage register ψx can be
added (using standard reversible-computation techniques). Bravyi, Harrow and Hassidim
[12] considered an oracle-based model, that is provably weaker than Qsampling, where a
distribution d = (d(1), . . . , d(N)) on Ω = [N ] is represented by an oracle Od : [S] → [N ]
(for some S), such that d(x) equals the proportion of inputs s ∈ [S] with Od(s) = x. It
is extended to the quantum query framework with a unitary Od such that Od|s〉|0〉 =
|s〉|Od(s)〉. It is not difficult to see that applying Od on a uniform superposition gives∑
x∈[N ]

√
d(x)

(
1√
d(x)S

∑
s∈[S]:Od(s)=x |s〉

)
|x〉, as required by Definition 2 (where |ψx〉 =

1√
d(x)S

∑
s∈[S]:Od(s)=x |s〉). Finally, Montanaro [47] presented a model that is similar to ours,

where he replaced the x-register of S(|0〉|0〉) with a k-qubit register (for some k) combined
with a mapping φ : {0, 1}k → Ω where x = φ(s) is the sample associated to each s ∈ {0, 1}k.

2.2 Amplitude Estimation
The essential building block of this paper is the amplitude estimation algorithm [11], combined
with ideas from [56, 10, 47], to estimate the modified mean b−1E [v(S)a,b] of a quantum
sampler S to which a Bernoulli sampler Ra,b has been applied. We will need the following
result about amplitude estimation.

I Theorem 3. There is a quantum algorithm AmplEst, called Amplitude Estimation, that
takes as input a unitary operator U , an orthogonal projector Π, and an integer t > 2. The
algorithm outputs an estimate p̃ = AmplEst (U,Π, t) of p = 〈ψ|Π|ψ〉, where |ψ〉 = U |0〉, such
that{

|p̃− p| ≤ 2π
√
p

t + π2

t2 , with probability 8/π2;
p̃ = 0, with probability sin2(tθ)

t2 sin2(θ) .

and 0 ≤ θ ≤ π/2 satisfies sin(θ) = √p. It uses O
(
log2(t)

)
2-qubit quantum gates (independent

of U and Π) and makes 2t+ 1 calls to (the controlled versions of) U and U−1, and t calls to
the reflection I − 2Π.

We now present an adaptation of the algorithms from [56, 10, 47] to estimate b−1E [v(S)a,b].

ICALP 2019



69:6 Quantum Chebyshev’s Inequality and Applications

Input: a sampler S acting on Hg ⊗HΩ, two values (a, b), an integer t, a failure parameter
0 < δ < 1.
Output: an estimate p̃ = BasicEst (S, (a, b), t, δ) of p = b−1E [v(S)a,b]

1. Let U = (IHg ⊗Ra,b)(S ⊗ IC2) and Π = IHg ⊗ IHΩ ⊗ |1〉〈1|.
2. For i = 1, . . . ,Θ (log(1/δ)): compute p̃i = AmplEst (U,Π, t).
3. Output p̃ = median{p̃1, . . . , p̃Θ(log(1/δ))}.

Algorithm 1 The Basic Estimation algorithm BasicEst.

I Corollary 4. Consider a quantum sampler S and two values 0 ≤ a < b. Denote p =
b−1E [v(S)a,b]. Given an integer t > 2 and a real 0 < δ < 1, BasicEst (S, (a, b), t, δ) (see
Algorithm 1) uses O (t log(1/δ)) quantum samples and outputs p̃ satisfying all of the following
inequalities with probability 1− δ:

(1) |p̃− p| ≤ 2π
√
p

t
+ π2

t2 , for any t; (2) p̃ ≤ (1 + 2π)2 · p, for any t;

(3) p̃ = 0, when t < 1
2√p ; (4) |p̃− p| ≤ ε · p, when t ≥ 8

ε
√
p

and 0 < ε < 1.

Proof. We show that each p̃i satisfies the inequalities stated in the corollary, with probability
8/π2. Since p̃ is the median of Θ (log 1/δ) such values, the probability is increased to 1− δ
using the Chernoff bound.

For each x ∈ Ω, denote νx = x
b if a ≤ x < b, and νx = 0 otherwise. Since p =

∑
x∈Ω νxd(x),

observe that

U(|0〉|0〉|0〉) =
∑
x∈Ω

√
d(x)|ψx〉|x〉

(√
1− νx|0〉+

√
νx|1〉

)
=
√

1− p|ψ′0〉|0〉+√p|ψ′1〉|1〉

where |ψ′0〉 = 1√
1−p

∑
x∈Ω

√
d(x)
√

1− νx|ψx〉|x〉 and |ψ′1〉 = 1√
p

∑
x∈Ω

√
d(x)√νx|ψx〉|x〉

are unit vectors. Thus, the output p̃i of the AmplEst algorithm applied on U and Π is
an estimate of p satisfying the output conditions of Theorem 3. Therefore |p̃i − p| ≤
2π
√
p

t + π2

t2 with probability 8/π2, for any t. By plugging t ≥ 8
ε
√
p into this inequality we

have |p̃i − p| ≤ ε · p. By plugging t ≥ 1
2√p we also have |p̃i − p| ≤ (4π + 4π2)p, and thus

p̃i ≤ (1 + 2π)2 · p. Finally, if t < 1
2√p , denote 0 ≤ θ ≤ π/2 such that sin(θ) = √p and observe

that θ ≤ π
2
√
p ≤ π

4t (since 2
πx ≤ sin(x) ≤ x, for x ∈ [0, π/2]). The probability to obtain

p̃i = 0 is sin2(tθ)
t2 sin2(θ) ≥

sin2(tπ/(4t))
t2 sin2(π/(4t)) ≥

sin2(π/4)
t2(π/(4t))2 = 8/π2, since x 7→ sin2(tx)/(t2 sin2(x)) is

decreasing for 0 < x ≤ π/t. Moreover, when t < 1
2√p , the first two inequalities are obviously

satisfied if p̃i = 0. J

The four results on p in Corollary 4 lie at the heart of this paper. We make a few
comments on them.
I Remark 5. Consider a sampler S over Ω = {0, 1} for the Bernoulli distribution of parameter
p. Using the Chebyshev inequality, we get that O

(
(1− p)/(ε2p)

)
classical samples are

enough for estimating p with relative error ε. The inequality (4) of Corollary 4 shows that
t = O

(
1/(ε√p)

)
quantum samples are sufficient. Our main result (Section 3) generalizes

this quadratic speed-up to the non-Bernoulli case.

I Remark 6. The inequality (2) shall be seen as an equivalent of the Markov inequality3,
namely that p̃ does not exceed p by a large factor with large probability.

3 The Markov inequality for a non-negative random variable X states that P(X ≥ kE [X]) ≤ 1/k for any
k > 0. Here, although we do not need this result, it is possible to prove that P(p̃ ≥ kp) ≤ C/

√
k, for

some absolute constant C.
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Input: a sampler S, an integer ∆S , two values 0 < L < H, two reals 0 < ε, δ < 1/2.
Output: an estimate µ̃S of µS .

1. Set M = 8H and p̃ = 0
2. While p̃ = 0 and M ≥ 2L:

a. Set M = M/2.
b. Compute p̃ = BasicEst

(
S, (0,M∆2

S), 25∆S , δ′
)
where δ′ = δ

2(3+log(H/L)) .

3. If M < 2L then output µ̃S = 0.

4. Else, compute q̃ = BasicEst
(
S, (0, ε−1M∆2

S), 352ε−3/2∆S , δ/2
)

and output µ̃S =
(ε−1M∆2

S) · q̃.

Algorithm 2 ε−approximation of the mean of a quantum sampler S.

I Remark 7. If p 6= 0, inequalities (3) and (4) imply that, with large probability, t < 8/√p
when p̃ = 0, and t ≥ 1/(2√p) when p̃ 6= 0. This phenomenon, at t = Θ(1/√p), is crucially
used in the next section.

3 Quantum Chebyshev’s Inequality

We describe our main algorithm for estimating the mean µS of any quantum sampler S,
given an upper bound ∆S ≥ φS/µS (we recall that φ2

S = E
[
v(S)2] and σS/µS ≤ φS/µS ≤

1 + σS/µS). The two main tools used in this section are the BasicEst algorithm of Corollary
4, and the following lemma on “truncated” means. We recall that X<b (resp. X≥b) is defined
from a non-negative random variable X by substituting the outcomes greater or equal to b
(resp. less than b) with 0. Note that X = X<b +X≥b for all b > 0.

I Fact 8. For any random variable X and real numbers 0 < a ≤ b, we have E [Xa,b] ≤
E[X2

a,b]
a

and E [X≥b] ≤
E[X2

≥b]
b .

I Lemma 9. Let X be a non-negative random variable and ∆ ≥
√
E [X2]/E [X]. Then, for

all c1, c2,M > 0 such that c1 · E [X] ≤M ≤ c2 · E [X], we have(
1− 1

c1

)
E [X] ≤ E [X<M∆2 ] ≤ E [X] and

√
c1 ·∆ ≤

√
M∆2

E [X<M∆2 ] ≤

√
c2

(
1− 1

c1

)
·∆

Proof. The first inequality is a consequence of E [X<M∆2 ] = E [X] − E [X≥M∆2 ] and 0 ≤
E [X≥M∆2 ] ≤ E

[
X2
≥M∆2

]
/(M∆2) ≤ E

[
X2] /(M∆2) ≤ (1/c1) · E [X] (using Fact 8). The

second inequality is a direct consequence of the left one, and of the hypothesis c1 · E [X] ≤
M ≤ c2 · E [X]. J

Our mean estimation algorithm works in two stages. We first compute a rough estimate
M ∈ [2µS , 2500µS ] with Õ (∆S · log(H/L)) quantum samples (where 0 < L < µS < H are
known bounds on µS). Then, we improve the accuracy of the estimate to any value ε, at
extra cost Õ

(
∆S/ε3/2

)
.

I Theorem 10. If ∆S ≥ φS/µS and L < µS < H then the output µ̃S of Algorithm 2
satisfies |µ̃S − µS | ≤ εµS with probability 1 − δ. Moreover, for any ∆S , L,H it satisfies
µ̃S ≤ (1 + 2π)2µS with probability 1 − δ. The number of quantum samples used by the
algorithm is O

(
∆S ·

(
log
(
H
L

)
log
(

log(H/L)
δ

)
+ ε−3/2 log

( 1
δ

)))
.

ICALP 2019
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Proof. Assume that ∆S ≥ φS/µS and L < µS < H. We denote p = (M∆2
S)−1 ·

E
[
v(S)<M∆2

S

]
. By Lemma 9, if M ≥ 2500µS then 25∆S ≤ 1

2√p , and if 2µS ≤ M ≤ 4µS
then 25∆S > 8√

p . Therefore, by Corollary 4, with probability 1− δ′, the value p̃ computed
at Step 2.(b) is equal to 0 when M ≥ 2500µS , and is different from 0 when 2µS ≤M ≤ 4µS .
Thus, the first time Step 2.(b) of Algorithm 2 computes p̃ 6= 0 happens forM ∈ [2µS , 2500µS ],
with probability at least (1− δ′)1+log(4H/(2µS)) > 1− δ/2.

Consequently, we can assume that Step 4 is executed with M ∈ [2µS , 2500µS ], and we
let M ′ = M/ε. According to Lemma 9 we have (1 − ε/2)µS ≤ E

[
v(S)<M ′∆2

S

]
≤ µS and

352ε−3/2∆S ≥ 8
(ε/2)√q , where q = (M ′∆2

S)−1 · E
[
v(S)<M ′∆2

S

]
. Thus, according to Corollary

4, the value q̃ satisfies |q̃− q| ≤ (ε/2)q with probability 1− δ/2. Using the triangle inequality,
it implies |(ε−1M∆2

S) · q̃ − µS | ≤ εµS .
If L ≥ µS this may only increase the probability to stop at Step 3 and output µ̃S = 0. If

Step 4 is executed we still have µ̃S ≤ (1 + 2π)2µS with probability 1− δ, as a consequence of
Corollary 4. J

In the full version [31], we improve Step 4 of Algorithm 2 to obtain the following result
with (nearly) optimal dependence on ε.

I Theorem 11. There is an algorithm that, given a sampler S, an integer ∆S , two values
0 < L < H, and two reals 0 < ε, δ < 1, outputs an estimate µ̃S of µS . If ∆S ≥ φS/µS and
L < µS < H, it satisfies |µ̃S − µS | ≤ εµS with probability 1− δ. Moreover, for any ∆S , L,H
it satisfies µ̃S ≤ (1 + 2π)2µS with probability 1− δ. The number of quantum samples used by
the algorithm is O

(
∆S ·

(
log
(
H
L

)
log
(

log(H/L)
δ

)
+ ε−1 log3/2(∆S) log

(
log ∆S
δ

)))
.

In Section 4, we describe an Ω((∆S −1)/ε) lower bound for this mean estimation problem.
Before, we present three kinds of generalizations of the above algorithms.

Higher moments. Given an upper-bound ∆2
S ≥ (E

[
v(S)k

]
/E [v(S)]k)1/(k−1) on the

relative moment of order k ≥ 2, one can easily generalize Facts 8, Lemma 9 and Theorem 11
to show that µS can be estimated using Õ

(
∆S · ε−1/(2(k−1)) log(H/L) log(1/δ)

)
quantum

samples.
Implicit upper bound on φS/µS . If instead of an explicit value ∆S ≥ φS/µS we are
given a non-increasing function f such that f(µS) ≥ φS/µS , we can still estimate the
mean µS using Õ

(
f(µS/c) · ε−1 log(H/L) log(1/δ)

)
quantum samples, where c > 1 is an

absolute constant. The proof is deferred to the full version [31] (it crucially uses the
Markov-like inequality “µ̃S ≤ (1 + 2π)2µS” of Corollary 4 and Remark 6).
Time complexity and variable-time samplers. The time complexity (number of
quantum gates) of all above algorithms is essentially equal to the number of quantum
samples multiplied by the time complexity Tmax(S) of the considered sampler. However,
Tmax(S) is often much larger than the more desirable `2-average running time T`2(S)
defined by Ambainis [3] in the context of variable-time algorithms, where some branches
of computation may stop earlier than the others. In the full version [31], we develop a new
technique called variable-time amplitude estimation that improves the time complexity of
our algorithm to Õ

(
∆S · ε−2T`2(S) · log4(Tmax(S)) log(H/L) log(1/δ)

)
.

The last two results are combined together in the algorithm of Theorem 21 to approximate
the number of triangles in any graph.
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4 Optimality and Separation Results

Using a result due to Nayak and Wu [50] on approximate counting, we can show a correspond-
ing lower bound to Theorem 11 already in the simple case of Bernoulli variables. For this
purpose, we define that an algorithm A solves the Mean Estimation problem for parameters
ε,∆ if, for any sampler S satisfying φS/µS ∈ [∆, 4∆] (the constant 4 is arbitrary), it outputs
a value µ̃S satisfying |µ̃S − µS | ≤ εµS with probability 2/3.

I Theorem 12. Any algorithm solving the Mean Estimation problem for parameters 0 < ε <

1/5 and ∆ > 1 on the sample space Ω = {0, 1} must use Ω ((∆− 1)/ε) quantum samples.

Proof. Consider an algorithm A solving the Mean Estimation problem for parameters
0 < ε < 1/5, ∆ > 1 using N quantum samples. Take two integers 0 < t < n large enough
such that

√
2∆ ≤

√
n/t ≤ 4∆ and εt > 1. For any oracle O : {1, . . . , n} → {0, 1}, define

the quantum sampler SO(|0〉|0〉) = 1√
n

∑
i∈[n] |i〉|O(i)〉 and let tO = |{i ∈ [n] : O(i) = 1}|.

Observe that µSO = φ2
SO = tO/n, and one quantum sample from SO can be implemented

with one quantum query to O.
According to [50, Corollary 1.2], any algorithm that can distinguish tO = t from tO = d(1+

4ε)te makes Ω
(√

n/(εt) +
√
t(n− t)/(εt)

)
= Ω

(
(
√
n/t− 1)/ε

)
= Ω ((∆− 1)/ε) quantum

queries to O. However, given the promise that tO = t or tO = d(1 + 4ε)te we can use A with
input SO, ε, ∆ to distinguish between the two cases using N samples, that is N queries to O.
Indeed, φSO/µSO =

√
n/tO ∈ [∆, 4∆] for such samplers (since d(1 + 4ε)te ≤ (1 + 5ε)t ≤ 2t).

Thus, A must use N = Ω ((∆− 1)/ε) quantum samples. J

One may wonder whether the quantum speed-up presented in this paper holds if we only
have access to copies of a quantum state

∑
x∈Ω

√
d(x)|ψx〉|x〉 (instead of access to a unitary

S preparing it). Below we answer this question negatively. For this purpose, we define that
an algorithm A solves the state-based Mean Estimation problem for parameters ε,∆ if, using
access to some copies of an unknown state |d〉 =

∑
x∈Ω

√
d(x)|x〉 satisfying φd/µd ∈ [∆, 4∆]

(where µd =
∑
x d(x)x and φ2

d =
∑
x d(x)x2), it outputs a value µ̃d satisfying |µ̃d−µd| ≤ εµd

with probability 2/3.

I Lemma 13. Consider two distributions d, d′ represented by the states |d〉 =
∑
x∈Ω

√
d(x)|x〉

and |d′〉 =
∑
x∈Ω

√
d′(x)|x〉. The smallest integer T needed to be able to discriminate |d〉⊗T

and |d′〉⊗T with success probability 2/3 satisfies T ≥ ln(9/8)
D(d||d′) , where D(d||d′) is the KL-

divergence from d to d′.

Proof. According to Helstrom’s bound [33] the best success probability to discriminate
two states |ψ〉 and |φ〉 is 1

2 (1 +
√

1− |〈ψ|φ〉|2). Consequently, T must satisfy 1
2 (1 +√

1− 〈d|d′〉2T ) ≥ 2/3, which implies

T ≥ ln(9/8)
− ln(〈d|d′〉2) = ln(9/8)

−2 ln
(∑

x d(x)
√
d′(x)/d(x)

) ≥ ln(9/8)∑
x d(x) ln (d(x)/d′(x)) = ln(9/8)

D(d||d′)

where we used the concavity of the − ln function. J

I Theorem 14. Any algorithm solving the state-based Mean Estimation problem for para-
meters 0 < ε < 1/100 and ∆ > 1 on the sample space Ω = {0, 1} must use Ω

(
(∆2 − 1)/ε2

)
copies of the input state.
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Proof. Consider an algorithm A solving the state-based Mean Estimation problem for
parameters 0 < ε < 1/100, ∆ > 1 using N copies of the input state. Given any |d〉 =√

1− p|0〉+√p|1〉 with φd/µd ∈ [
√

6∆,
√

8∆] (notice that µd = φ2
d = p and 1−p ≥ 5/6 ≥ 12ε),

we show how to construct a state |d′〉 =
√

1− p′|0〉+
√
p′|1〉 such that

(1) (1+4ε)µd < µd′ < (1+24ε)µd ; (2) φd′/µd′ ∈ [∆, 4∆] ; (3) D(d||d′) ≤ (12ε)2/(∆2−1).

It is clear that A can be used to discriminate two such states. On the other hand, according
to Lemma 13, any such algorithm muse use N = Ω (1/D(d||d′)) = Ω

(
(∆2 − 1)/ε2

)
copies of

the input state.
The construction of d′ is adapted from [18, Section 7]. We set p′ = peα(1−p)/ψ where

α = 12ε/(1−p) < 1 and ψ = (1−p)e−αp+peα(1−p) (so that 1−p′ = (1−p)e−αp/ψ). We let
.
ψ

(resp.
..
ψ) denote the first (resp. second) derivative of ψ with respect to α. A simple calculation

shows that µd′ − µd =
.
ψ/ψ and D(d||d′) = lnψ. Moreover, σ2

d′ = Ex∼d′
[
(x− µd′)2] =

Ex∼d′
[
(x− µd)2]+ 2(µd − µd′)Ex∼d′ [x− µd] + (µd − µd′)2 = Ex∼d

[
(x− p)2eα(x−p)−lnψ]−

(µd − µd′)2 =
..
ψ/ψ − (

.
ψ/ψ)2.

Since ψ = Ex∼d
[
eα(x−p)], it can be deduced from the standard inequality 1 + u+ u2/3 ≤

eu ≤ 1 + u + u2 (when |u| ≤ 1) that 1 ≤ 1 + p(1−p)
3 · α2 ≤ ψ ≤ 1 + p(1 − p) · α2 ≤ 2.

Consequently, 2p(1−p)
3 · α ≤

.
ψ ≤ 2p(1− p) · α and 2p(1−p)

3 ≤
..
ψ ≤ 2p(1− p). It implies that

4εp ≤ µd′ − µd ≤ 24εp and p(1− p)/3− (24εp)2 ≤ σ2
d′ ≤ 2p(1− p). Thus, (1 + 4ε)µd ≤ µd′ ≤

(1+24ε)µd ≤
√

2µd and 1
6σ

2
d/µ

2
d−(24ε/

√
2)2 ≤ σ2

d′/µ
2
d′ ≤ 2σ2

d/µ
2
d. Since σ2

d′/µ
2
d′ = φ2

d′/µ
2
d′−1

and φd/µd ∈ [
√

6∆,
√

8∆], we obtain that ∆ ≤ 1√
6φd/µd ≤ φd′/µd′ ≤

√
2φd/µd ≤ 4∆.

Finally, D(d||d′) = lnψ ≤ p(1− p) · α2 = (12ε)2p/(1− p) ≤ (12ε)2/(∆2 − 1). J

I Remark 15. An intermediate version of Theorem 12 can be deduced from Theorem 14,
when S is accessed via the reflection oracle OS = I − 2S(|0〉|0〉)(〈0|〈0|)S−1 only (observe
that this is the case for our algorithms). Indeed, according to [38, Theorem 4], for any
algorithm performing q queries to a reflection oracle O = I − 2|φ〉〈φ|, it is possible to remove
the queries to O by using ∼ q2 copies of |φ〉 instead.

5 Applications

We describe two applications of the Quantum Chebyshev Inequality. The first one (Section
5.1) concerns the computation of the frequency moments Fk of order k ≥ 3 in the streaming
model. We design a P -pass algorithm with quantum memory M satisfying a tradeoff of
P 2M = Õ

(
n1−2/k), whereas the best algorithm with classical memory requires PM =

Θ(n1−2/k). We then study (Section 5.2) the edge and triangle counting problems in the
general graph model with quantum query access. We describe nearly optimal algorithms
that approximate these parameters quadratically faster than in the classical query model.

5.1 Frequency Moments in the Multi-Pass Streaming Model
In the streaming model with update (turnstile model), the input is a vector x ∈ Rn obtained
through a stream ~u = u1, u2, . . . of updates. Initially, x(0) = (0, . . . , 0), and each uj =
(i, λ) ∈ [n]×R modifies the i-th coordinate of x(j) by adding λ to it. The goal of a streaming
algorithm T is to output, at the end of the stream, some function of the final vector x while
minimizing the number M � n of memory cells. In the multi-pass model, the same stream
is repeated for a certain number P of passes, before the algorithm outputs its result.



Y. Hamoudi and F. Magniez 69:11

Input: a stream ~u, an integer k ≥ 3, a real F̃2, an approximation parameter 0 < ε < 1.
Output: an estimate F̃k of the frequency moment of order k of ~u.

1. Compute i ∈ [n] using the streaming algorithm of Theorem 16 with input ~u, ε/4, F̃2.
2. Compute xi using a second pass over ~u.
3. Output F̃2 · |xi|k−2.

Estimator 3 Frequency moment Fk of a stream.

The frequency moment of order k is defined, for the final vector x = (x1, . . . , xn), as
Fk(x) =

∑
i∈[n] |xi|k. The problem of approximating Fk when k ≥ 3 has been addressed first

with the AMS algorithm [2], that uses O
(
n1−1/k) classical memory cells in the insertion-only

model (where uj ∈ [n]×R+). A series of works in the turnstile model culminated in optimal
one-pass algorithms with memory Θ

(
n1−2/k) [44, 26], and nearly optimal P -pass algorithms

with memory Θ̃
(
n1−2/k/P

)
[46, 4, 57]. In the quantum setting, Montanaro [48] obtained a

small improvement in terms of the approximation parameter ε only.
Our algorithm relies on a classical procedure for `2 sampling. Given x ∈ Rn, we let Dq,x

denotes the `q distribution that returns i ∈ [n] with probability |xi|q
Fq(x) . One can observe that

the (suboptimal) AMS algorithm [2] essentially samples i ∼ D1,x and computes F1 · |xi|k−1.
This is an unbiased estimator for Fk(x) with variance O

(
n1−1/kFk(x)2) (thus requiring to

compute O
(
n1−1/k) samples in one pass). Instead, we base our algorithm on the estimator

F2(x) · |xi|k−2 where i ∼ D2,x. It reduces the variance to O
(
n1−2/kFk(x)2) [46], but it

requires a procedure for `2 sampling. To this end, we use the following algorithm from [4] to
sample from an (ε, δ)-approximator to D2,x (meaning that each i ∈ [n] is sampled with a
probability pi satisfying (1− ε) |xi|2

F2(x) − δ ≤ pi ≤ (1 + ε) |xi|2
F2(x) + δ).

I Theorem 16 ([4]). There is a randomized streaming algorithm that, given a stream ~u with
final vector x, a real 0 < ε < 1/3 and a value F̃2 such that |F̃2 − F2(x)| ≤ (1/2) · F2(x),
outputs a value i ∈ [n] that is distributed according to an (ε, n−2)-approximator to D2,x.
The algorithm uses M = O

(
ε−2 log3 n

)
classical memory cells. Moreover, each element of

the stream is processed in time Tupd = O
(
ε−1 logn

)
, and the output is computed in time

Trec = O
(
ε−1n logn

)
after the last element is received.

I Proposition 17 ([46, 4]). If we let X denote the output random variable of Estimator 3,
then E [X] = (1± ε/2)Fk and Var [X] ≤ O

(
n1−2/kF 2

k

)
, when |F̃2 − F2| ≤ (ε/4) · F2.

It is known that any deterministic computation can be made reversible, and therefore
implemented by a unitary map with a limited overhead on the time and space complexities [9].
Nonetheless, implementing naively the reverse computation of a streaming algorithm would
require processing the same stream but in the reverse direction, which may not be always
possible. This motivates our specific notion of reversible streaming algorithms. We say that a
streaming algorithm T with memory size M is reversible if there exists a streaming algorithm
T −1 with memory size M such that each computational steps of T and T −1 are reversible,
and in addition each pass of T can be undone by one pass of T −1 in the same direction. In
the full version [31] we show how to make the algorithm of Theorem 16 reversible (our result
is in fact more general and holds for any linear sketch streaming algorithm). We combine the
quantum sampler that is obtained from this result with the Quantum Chebyshev Inequality
(Theorem 11) to obtain the following tradeoff.
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I Theorem 18. There is a quantum streaming algorithm that, given a stream ~u, two integers
P ≥ 1, k ≥ 3 and an approximation parameter 0 < ε < 1, outputs an estimate F̃k such
that |F̃k − Fk| ≤ εFk with probability 2/3. The algorithm uses Õ

(
n1−2/k/(εP )2) quantum

memory cells, and it makes Õ
(
P · (k logn+ ε−1)

)
passes over the stream ~u.

Proof. We first compute, in one pass, a value F̃2 such that |F̃2 − F2| ≤ (ε/2)F2 with high
probability, using [2, 48] for instance. The complexity is absorbed by the final result. Then,
using the reversible streaming algorithm associated to Estimator 3, we can design a quantum
sampler S using memory M = Õ

(
ε−2 log3 n

)
such that S(|0〉|0〉) =

∑
r∈{0,1}M |r〉|ψr〉|fr〉

where each |r〉 corresponds to a different random seed for the linear sketch algorithm of
Theorem 16, |fr〉 is the output of Estimator 3, and |ψr〉 is some garbage state obtained when
making Estimator 3 reversible. According to Proposition 17, we have µS = (1± ε/2)Fk and
σS ≤ O

(√
n1−2/kFk

)
. Moreover one quantum sample can be implemented with two passes

over the stream.
We “concatenate” Q = n1−2/k/P 2 such samplers and compute the mean f̄ = Q−1 · (fr1 +

· · ·+ frQ
) of their results to obtain

S̄(|0〉|0〉) =
∑

r1,...,rQ∈{0,1}M
|r1, . . . , rQ〉|ψ1, . . . , ψQ〉|fr1 , . . . , frQ

〉|f̄〉.

This sampler satisfies µS̄ = µS and σS̄ = σS/
√
Q ≤ O (PFk), and it requires two passes and

memory M̄ = Õ
(
Q · ε−2 log3 n

)
to be implemented. Finally, we approximate Fk by applying

Theorem 11 on S̄, which uses Õ
(
P · (k logn+ ε−1)

)
quantum samples. J

5.2 Approximating Graph Parameters in the Query Model
In this section, we consider the general graph model [40, 27] that provides query access to a
graph G = (V,E) through the following operations: (1) degree query (given v ∈ V , returns
the degree dv of v), (2) neighbor query (given v ∈ V and i, returns the i-th neighbor of v if
i ≤ dv, and ⊥ otherwise), and (3) vertex-pair query (given u, v ∈ V , indicates if (u, v) ∈ E).
This is a combination of the dense graph model (pair queries) and the bounded-degree model
(neighbor and degree queries). We refer the reader to [27, Chapter 10] for a more detailed
discussion about it. It can be extended to the standard quantum query framework. A
quantum degree query is represented as a unitary Odeg such that Odeg|v〉|b〉 = |v〉|y ⊕ dv〉
where v ∈ V and y ∈ {0, 1}dlogne. The quantum neighbor Oneigh and vertex-pair Opair
queries are defined similarly. The query complexity of an algorithm in the quantum general
graph model is the number of times it uses Odeg, Onei or Opair.

In the following, we let n denote the number of vertices, m the number of edges and t
the number of triangles in G. We consider the problems of estimating m and t, for which we
provide nearly optimal quantum algorithms. The description and analysis of these algorithms
is deferred to the full version [31].

Edge counting. In the classical setting, Feige [25] showed that Θ(n/(ε
√
m)) degree queries

are sufficient to compute a factor (2+ ε) approximation of m, but no factor (2− ε) approxima-
tion can be obtained in sublinear time. Using both degree and neighbor queries, it is possible
to compute a factor (1 + ε) approximation with Θ (n/(

√
εm)) classical queries [28, 52, 23].

These results were generalized to k-star counting in [30, 23]. In the quantum setting, we
prove the following results.
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I Theorem 19. There is an algorithm that, given query access to any n-vertex graph G
with m edges, and an approximation parameter ε < 1, outputs an estimate m̃ of m such that
|m̃−m| ≤ εm with probability 2/3. This algorithm performs Õ

(
n1/2

εm1/4

)
quantum degree and

neighbor queries in expectation. Moreover, it does not use vertex-pair queries.

I Theorem 20. Any algorithm that computes an ε-approximation of the number m of edges
in any n-vertex graph, given query access to it, must use Ω

(
n1/2

(εm)1/4 · log−1(n)
)
quantum

queries in expectation.

Triangle counting. In the classical general graph model, the triangle counting problem re-
quires Θ̃(n/t1/3 +min(m,m3/2/t)) queries in expectation [21, 22]. This result was generalized
to k-clique counting in [24]. In the quantum setting, we prove the following results.

I Theorem 21. There is an algorithm that, given query access to any n-vertex graph G with m
edges and t triangles, and an approximation parameter ε < 1, outputs an estimate t̃ of t such
that |t̃− t| ≤ εt with probability 2/3. This algorithm performs Õ

(( √
n

t1/6 + m3/4
√
t

)
· poly(1/ε)

)
quantum queries in expectation.

I Theorem 22. Any algorithm that computes an ε-approximation to the number t of triangles
in any n-vertex graph with m vertices, given query access to it, must use Ω

(( √
n

t1/6 + m3/4
√
t

)
·

log−1(n)
)
quantum queries in expectation.

6 Open Questions

Is it possible to improve the complexity of our main result (Theorem 11) to O (∆S/ε)
exactly? Can we generalize it to sample spaces with negative values? What are other possible
applications? Two promising problems are minimum spanning tree weight [16] and arbitrary
subgraph counting [24, 6].
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