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Abstract
We formally introduce a foundation for computer verified proofs based on higher-order Tarski-
Grothendieck set theory. We show that this theory has a model if a 2-inaccessible cardinal exists.
This assumption is the same as the one needed for a model of plain Tarski-Grothendieck set theory.
The foundation allows the co-existence of proofs based on two major competing foundations for
formal proofs: higher-order logic and TG set theory. We align two co-existing Isabelle libraries,
Isabelle/HOL and Isabelle/Mizar, in a single foundation in the Isabelle logical framework. We do
this by defining isomorphisms between the basic concepts, including integers, functions, lists, and
algebraic structures that preserve the important operations. With this we can transfer theorems
proved in higher-order logic to TG set theory and vice versa. We practically show this by formally
transferring Lagrange’s four-square theorem, Fermat 3-4, and other theorems between the foundations
in the Isabelle framework.
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1 Introduction

Various formal proof foundations combine higher-order logic with set theory [10,24,34,35].
Such a combination offers a familiar mathematical foundation, while at the same time offering
more powerful automation present in HOL. All the combinations have been presented without
a model, even though models for the two separate foundations are well known and studied.
In this paper we will give a model of such a combination and show some consequences of the
existence of the model for practical formalizations.

Today the libraries of proof assistants based on the two separate foundations are among
the largest proof libraries available. The library of higher-order logic based Isabelle/HOL [44]
together with the Archive of Formal Proofs consist of more than 100,000 theorems [9], while
the Mizar Mathematical Library (MML) [6,16] based on set theory contains 59,000 theorems.
A number of results in the libraries are incomparable, for example among the theorems
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9:2 Higher-Order Tarski Grothendieck

present in Wiedjik’s list of 100 important theorems to formalize Isabelle has 16 theorems not
formalized in Mizar, while Mizar has 5 theorems absent in Isabelle (64 are formalized in both).
The Mizar library includes results about lattice theory [7], topology, and manifolds [39] not
present in the Isabelle library.

A model for the higher-order Tarski-Grothendieck allows merging the results in the
two libraries. This merging will be performed mostly manually. The reason for this is
that definitions for isomorphic concepts may be quite different in the usual approaches in
these system. Consider the real numbers. In the MML their definition is performed in
multiple steps. First, natural numbers are introduced using the set-theoretic successor. Next,
positive rationals are created by adding fractions as pairs of irreducible naturals 〈n, k〉 (with
k > 1). Finally, Dedekind cuts are used to obtain positive reals. The Isabelle approach is
fundamentally different. Natural numbers are a subtype of the axiomatic type of individuals.
Pairs of naturals are quotiented into integers and rationals. Finally, Cauchy sequences of
rationals grant reals. The differences in the construction also imply differences in their
behaviours. Every Mizar natural number is also an integer or real, while in Isabelle coercions
are required. It is similar when it comes to mathematical structures (used by over 70% of
the Mizar library). Their semantics [22] in Mizar is close to partial functions specified on
named fields, which enables for example inheritance and this is used to realize the main
algebraic structures. Isabelle records are quite similar, but it is type classes that are used to
express algebra.

We will propose a way to lift the merged elementary concepts to the more involved ones.
By associating the Isabelle number 0 and the empty set and the corresponding successor
operations, we will show a homomorphism between the set theoretic and higher-order natural
numbers and later integers. We will show that this homomorphism preserves the basic
operations, which will allow transporting basic number theorems, including Lagrange, and
Bertrand, and cases of Fermat’s last theorem.

We will also show that it is possible to show a mapping between the Isabelle type classes
and the set theoretic structures corresponding basic algebra. This will allow merging the
formalizations of groups and rings in the two libraries. We again use some merged basic
concepts, namely functions and binary operators. This brings us to Euclidean spaces where
we transport the Brouwer theorem for n-dimensional case (the fixed point theorem [37], the
topological invariance of degree, and the topological invariance of dimension [38]) that are
essential to define and develop topological manifolds.

The rest of the paper is structured as follows. In Section 2 we review the higher-order logic
foundations used later. Section 3 gives an axiomatization of higher-order Tarski-Grothendieck
(HOTG). We first define it in a higher-order setting and then relate to the actual proof
assistants based on this foundation. Section 4 presents our model of HOTG. Next, in Section
5 we show the implications of the existence of the model for practical formalization: we align
the proof libraries of Isabelle/HOL and Isabelle/Mizar by building isomorphisms between the
various concepts present in these libraries and by translating theorems via the isomorphism.
Section 6 discusses related work.

2 Preliminaries

We begin by reviewing the syntax and semantics of higher-order logic. The original presenta-
tion of higher-order logic using simple type theory was due to Church [12] with a corresponding
notion of semantics due to Henkin [19] (with an important correction by Andrews [2]). We
largely follow the notation and presentation style used in [5].
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Let B be a set of base types. We use β to range over the types in B. We next define types
and use σ, τ to range over types. The set T of types is given by inductively extending B to
include the type o (of truth values) and the type σ ⇒ τ (of functions from σ to τ) for all
σ, τ ∈ T . We assume o /∈ B and that types are freely generated.

For each type σ let Vσ be a countable set of variables of type σ, where we assume
Vσ ∩ Vτ = ∅ whenever σ 6= τ . We use x, y, z to range over variables. For each type σ let Cσ
be a set of constants of type σ, where again Cσ ∩ Cτ = ∅ whenever σ 6= τ . Furthermore, we
assume Vσ ∩ Cτ = ∅. We use c, d to range over constants. A name is either a variable or a
constant. We use ν to range over names.

We now inductively define a family of sets Λσ of terms, using s, t, u to range over terms.
For the base cases, Vσ ⊆ Λσ and Cσ ⊆ Λσ. There are two inductive cases: application
and abstraction. If s ∈ Λσ⇒τ and t ∈ Λσ, then (st) ∈ Λτ . If x ∈ Vσ and t ∈ Λτ , then
(λx.t) ∈ Λσ⇒τ . We often omit parenthesis with the convention that application associates to
the left, so that stu means ((st)u). Terms of type o are also called formulas.

We insist on the inclusion of certain constants called logical constants in the family C
of constants. For simplicity of presentation, we take every logical constant we will use as a
constant. In particular, we assume:
¬ is a logical constant in Co⇒o. We write ¬(st) as ¬st.
∧, ∨, −→ and ←→ are logical constants in Co⇒o⇒o. We use infix notation for ∧, ∨, −→
and ←→, with priority in this order, and each one associating to the right.
For each type σ Πσ and Σσ are a logical constants in C(σ⇒o)⇒o. We write ∀x1 · · ·xn : σ.t
to mean Πσ(λx1. · · ·Πσ(λxn.t)) and write ∃x1 · · ·xn : σ.t to mean Σσ(λx1. · · ·Σσ(λxn.t)).
For each type σ =σ is a logical constant in Cσ⇒σ⇒o. We write =σ s t in infix as s = t.
For each type σ εσ is a logical constant in C(σ⇒o)⇒σ.

It is well-known that smaller sets of logical constants would be sufficient. For example, it is
known that in (extensional) higher-order logic equality is sufficient to define the propositional
constants and connectives as well as the existential and universal quantifiers at each type [1].

We next turn to a review of Henkin semantics for our language [19] closely following the
presentation style in [5]. A frame is a family Dσ of nonempty sets such that Do = {0, 1} and
Dσ⇒τ ⊆ (Dτ )Dσ for each σ, τ ∈ T . A frame is called standard if Dσ⇒τ = (Dτ )Dσ for every
σ, τ ∈ T . An assignment is a function I mapping every name of type σ to an element in
Dσ. Given a variable x ∈ Vσ and element a ∈ Dσ let Ixa be the assignment agreeing with
I except possibly on x where Ixa (x) = a. An assignment I is logical if for each σ ∈ T the
following conditions hold:

for a ∈ Do I(¬)(a) = 1 if and only if a = 0,
for a, b ∈ Do I(∧)(a)(b) = 1 if and only if a = 1 and b = 1,
for a, b ∈ Do I(∨)(a)(b) = 1 if and only if a = 1 or b = 1,
for a, b ∈ Do I(−→)(a)(b) = 1 if and only if a = 0 or b = 1,
for a, b ∈ Do I(←→)(a)(b) = 1 if and only if a = b,
for f ∈ Dσ⇒o I(Πσ)(f) = 1 if and only if f(a) = 1 for all a ∈ Dσ,
for f ∈ Dσ⇒o I(Σσ)(f) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1,
for a, b ∈ Dσ I(=σ)(a)(b) = 1 if and only if a = b, and
for f ∈ Dσ⇒o f(I(εσ)(f)) = 1 if and only if there is some a ∈ Dσ such that f(a) = 1.

In other words, I is logical if it interprets the logical constants appropriately.
We lift an assignment I to be a partial function Î on terms as follows:
For names ν, Î(ν) = I(ν).
For s ∈ Λσ⇒τ and t ∈ Λσ, Î(st) = f(a) if Î(s) = f ∈ Dσ⇒τ and Î(t) = a ∈ Dσ.
For x ∈ Vσ and t ∈ Λτ , Î(λx.t) = f if f ∈ Dσ⇒τ and Îxa (t) = f(a) for all a ∈ Dσ.

Note that for all s ∈ Λσ if Î(s) is defined, then Î(s) ∈ Dσ. If Î is a total function with
domain

⋃
σ∈T , then I is called an interpretation.

ITP 2019
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A (Henkin) model is a pair (D, I) where D is a frame and I is a logical interpretation.
A model is called standard if the frame is standard. We say (D, I) satisfies a formula s if
Î(s) = 1 and say (D, I) is a model for a set A of formulas if (D, I) satisfies every s ∈ A.

To simplify the presentation above, some dependencies were left implicit. For each set B
of base types (with o /∈ B), we obtain a set T B of types. Additionally, for each set B of base
types and each family C of constants indexed by T B, we obtain a family ΛB,C of terms. The
definition of a frame above technically depends on the set B of base types and we say D is a
frame over B when this dependency needs to be explicit. Futhermore an assignment depends
on both B and C and we say I is an assignment over B for C when these dependencies need
to be explicit.

A theory is a triple (B, C,A) where B is a set of base types, C is a family of sets of
constants (which must include the logical constants) over the types T B and A ⊆ ΛB,C

o is a
set of formulas called the axioms of the theory. A pair (D, I) is a model of a theory (B, C,A)
if D is a frame over B, I is a logical interpretation over B for C and (D, I) is a model of the
set A of formulas.

It is known that the notion of a Henkin model provides a sound and complete semantics
for a variety of proof calculi [5, 8, 11]. Our concern in this article is not with proof calculi
directly, but with consistency of certain axiom sets for higher-order set theory. In this paper
we will only consider one axiomatization of higher-order Tarski Grothendieck set theory.
Soundness implies it is sufficient to find models of these axiom sets to infer consistency, and
for this purpose constructing a standard model is enough. In future work we plan to consider
different axiomatizations of higher-order Tarski Grothendieck (e.g., the one in [24]) and plan
to use soundness and completeness with respect to Henkin models to prove the two versions
of Tarski Grothendieck are equivalent.

3 An Axiomatization of Higher-Order Tarski Grothendieck

In this section we give a formulation of higher-order Tarski Grothendieck (HOTG) set theory
by giving a theory HOTG. The theory is identical to the one implemented by the first
author in the Egal system [10]. In particular, the theory specifies an operator that explicitly
gives the Grothenieck universe of a set [17]. In the presence of the axiom of choice, this
is equivalent to specifying that such a universe exists for every set, which is the approach
used in the Mizar system as specified by Trybulec [43]. In the below axiomatization and in
the model in the next section, we will use the explicit universe operation, as it makes the
presentation simpler, but our intention is to use it both for explicit universes and implicit
ones, as specified in Isabelle/Mizar by Kaliszyk and Pąk [24] using Tarski’s Axiom A [42]
and used in Section 5.

We first describe the theory HOTG as given by the triple (B, C,A). Here B be the
singleton {ι} and the base type ι is intended to be the type of sets. The typed constants C
consists precisely of the logical constants and the following additional constants:

In in Cι⇒ι⇒o. We write In s t in infix as s ∈ t.
Empty in Cι.
Un in Cι⇒ι.
Pow in Cι⇒ι.
Repl in Cι⇒(ι⇒ι)⇒ι.
Univ in Cι⇒ι.
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To state the axioms, we will use three abbreviations. Let Subq be the term

λX.λY.∀z : ι.z ∈ X −→ z ∈ Y

of type ι⇒ ι⇒ o. We write Subq s t as s ⊆ t. Let TransSet be the term

λU.∀X : ι.X ∈ U −→ X ⊆ U

of type ι⇒ o. Let ZFclosed be the term

λU. (∀X : ι.X ∈ U −→ Un X ∈ U) ∧ (∀X : ι.X ∈ U −→ Pow X ∈ U)
∧(∀X : ι.∀F : ι⇒ ι.X ∈ U −→ (∀x : ι.x ∈ X −→ F x ∈ U) −→ Repl X F ∈ U)

of type ι⇒ o.
The set A of axioms consists of the following formulas:

Extensionality: ∀XY : ι.X ⊆ Y −→ Y ⊆ X −→ X = Y .
∈-Induction ∀P : ι⇒ o.(∀X : ι.(∀x : ι.x ∈ X −→ Px) −→ PX) −→ ∀X : ι.PX.
Empty: ¬∃x : ι.x ∈ Empty.
Union: ∀X : ι.∀x : ι.x ∈ Un X ←→ ∃Y : ι.x ∈ Y ∧ Y ∈ X.
Power: ∀XY : ι.Y ∈ Pow X ←→ Y ⊆ X.
Replacement: ∀X : ι.∀F : ι⇒ ι.∀y : ι.y ∈ Repl X F ←→ ∃x : ι.x ∈ X ∧ y = Fx.
UnivIn: ∀N : ι.N ∈ UnivN
UnivTransSet: ∀N : ι.TransSet (UnivN).
UnivZF: ∀N : ι.ZFclosed (UnivN).
UnivMin: ∀N U : ι.N ∈ U −→ TransSet U −→ ZFclosed U −→ UnivN ⊆ U .

4 A Model of Higher-Order Set Theory

We will make heavy use of the von Neumann hierarchy (see for example [28]). By ordinal
induction we define the set Vα for ordinals α as V∅ = ∅, Vα+1 = ℘(Vα) and Vλ =

⋃
α<λ Vα.

Since we work in a well-founded set theory, for every set X there is some ordinal α such that
X ⊆ Vα (and so X ∈ Vα+1).

A cardinal κ is inaccessible if it is regular and λ < κ implies 2λ < κ. A cardinal κ is
2-inaccessible if it is a regular limit of inaccessible cardinals. Note that if κ is 2-inaccessible,
then for every λ < κ there is some inaccessible κ′ with λ < κ′ < κ. It easily follows every
2-inaccessible is also inaccessible.

The following proposition can be found in Kanamori (see Proposition 2.1 in [27]).

I Proposition 1. Let κ be inaccessible.
1. x ⊆ Vκ implies x ∈ Vκ iff |x| < κ.
2. Vκ |= ZFC

We define universes following Grothendieck [17].

I Definition 2. Let U be a set. We say U is a universe if four conditions hold:
U is transitive.
If x, y ∈ U , then {x, y} ∈ U .
If X ∈ U , then ℘(X) ∈ U .
If I ∈ U and Xi ∈ U for each i ∈ I, then

⋃
i∈I Xi ∈ U .

The fact that every inaccessible yields a universe follows easily from Proposition 1.

I Proposition 3. If κ is inaccessible, then Vκ is a universe.

ITP 2019
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The following proposition will ensure that universes satisfy the properties in the definition
of ZFclosed.

I Proposition 4. Let U be a universe.
1. If X ∈ U , then

⋃
X ∈ U .

2. If X ∈ U and f : X → U , then {f(x)|x ∈ X} ∈ U .

Proof. Suppose X ∈ U . We know
⋃
X ∈ U since

⋃
X =

⋃
x∈X{x}. Now suppose X ∈ U

and f : X → U . We know {f(x)|x ∈ X} ∈ U since {f(x)|x ∈ X} =
⋃
x∈X{f(x)}. J

To interpret the constant Univ we will not only need universes, but a global function
uniformly giving the least universe containing a given set.

I Definition 5. Let α > 0 be an ordinal. A universe function for α is a function U : Vα → Vα
such that for all A ∈ Vα we have A ∈ U(A), U(A) is a universe and U(A) ⊆ U for all
universes U ∈ Vα with A ∈ U .

I Definition 6. Let α > 0 be an ordinal and U be a universe function for α. Let Dαι be Vα,
Dαo = {0, 1} and Dασ⇒τ = (Dατ )Dα

σ for each σ, τ ∈ T B. Note that Vα 6= ∅ since α > 0 and
so Dα is a standard frame over B. We call Dα the standard set-theoretic frame for α. An
assignment I over B for C into Dα is called a standard set-theoretic interpretation for α
and U if I is a logical interpretation and the following properties hold:
I(In)(a)(A) = 1 if and only if a ∈ A for a,A ∈ Dαι .
I(Empty) = ∅
I(Un)(A) =

⋃
A for every A ∈ Dαι .

I(Pow)(A) = ℘(A) for every A ∈ Dαι .
I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Dαι and f ∈ Dαι⇒ι.
I(Univ) = U .

I Theorem 7. Let α > 0 be an ordinal, U be a universe function for α and Dα be the
standard set-theoretic frame for α. If I is a standard set-theoretic interpretation for α and
U , then (Dα, I) is a model of the theory HOTG.

Proof. Assume I is a standard set-theoretic interpretation for α and U . We only need to
prove I maps every formula in A to 1.
Extensionality: The fact that

I(∀XY : ι.X ⊆ Y −→ Y ⊆ X −→ X = Y ) = 1

follows easily from the fact that A = B whenever A ⊆ B and B ⊆ A for A,B ∈ Vα.
∈-Induction: In order to prove

I(∀P : ι⇒ o.(∀X : ι.(∀x : ι.x ∈ X −→ Px) −→ PX) −→ ∀X : ι.PX) = 1

it suffices to prove that C = Vα for every C ⊆ Vα such that A ∈ C for every A ∈ Vα with
A ⊆ C. Let C ⊆ Vα be given and assume A ∈ C for every A ∈ Vα with A ⊆ C. Consider
Vα \ C. Assume Vα 6= C. In this case Vα \ C must be nonempty. By regularity there is
an element A ∈ Vα \ C such that A ∩ (Vα \ C) = ∅. Since Vα is transitive A ⊆ Vα and
so A ∩ (Vα \ C) = ∅ implies A ⊆ C. By our assumption about C, we must have A ∈ C,
contradicting A ∈ Vα \ C.

Empty: We know I(¬∃x : ι.x ∈ Empty) = 1 since I(Empty) = ∅.
Union: We know I(∀X : ι.∀x : ι.x ∈ Un X ←→ ∃Y : ι.x ∈ Y ∧ Y ∈ X) = 1 since
I(Un)(A) =

⋃
A.
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Power: We know I(∀XY : ι.Y ∈ Pow X ←→ Y ⊆ X) = 1 since I(Pow)(A) = ℘A.
Replacement: We can easily prove I(∀X : ι.∀F : ι⇒ ι.∀y : ι.y ∈ Repl X F ←→ ∃x : ι.x ∈

X ∧ y = Fx) = 1 using the fact that I(Repl)(A)(f) = {f(a)|a ∈ A} for every A ∈ Vα and
every f : Vα → Vα.

UnivIn: Since U is a universe function we know A ∈ U(A) for every A ∈ Vα. Hence
I(∀N : ι.N ∈ UnivN) = 1.

UnivTransSet: Since U is a universe function, U(A) is a universe (and hence transitive) for
every A ∈ Vα. Hence I(∀N : ι.TransSet (UnivN)) = 1.

UnivZF: It is easy to see I(∀N : ι.ZFclosed (UnivN)) = 1 using Definitions 2 and 5 and
Proposition 4.

UnivMin: Suppose A,U ∈ Vα where A ∈ U , U is transitive and I(ZFclosed)(U) = 1. We
argue that U is a universe. We know U is transitive. The fact that ℘(X) ∈ U whenever
X ∈ U follows directly from I(ZFclosed)(U) = 1. In particular, since A ∈ U , we know
℘(A) ∈ U and ℘(℘(A)) ∈ U . Let x, y ∈ U be given. Let f : ℘(℘(A))→ U be the function

f(X) =
{
x if A ∈ X
y otherwise

Since f(A) = x and f(∅) = y, we know {x, y} = {f(X)|X ∈ ℘(℘(A))}. Using
I(ZFclosed)(U) = 1 we conclude {x, y} ∈ U . Now let I ∈ U and a family Xi ∈ U for
each i ∈ I be given. Let g : I → U be the function g(i) = Xi. Using I(ZFclosed)(U) = 1
we know {g(i)|i ∈ I} ∈ U and then

⋃
i∈I Xi =

⋃
{g(i)|i ∈ I} ∈ U . Hence U is a universe.

Since U is a universe with A ∈ U , we conclude U(A) ⊆ U from Definition 5. J

For a general ordinal α there will be no universe function U . For 2-inaccessible cardinals
there is a universe function and a corresponding standard set-theoretic interpretation.

I Theorem 8. Let κ be 2-inaccessible and Dκ be the standard set-theoretic frame for κ.
There is a universe function U for κ and there is a standard set-theoretic interpretation I
for κ and U .

Proof. We first construct the universe function. For each A ∈ Vκ, let A′ be

{U ∈ Vκ|U is a universe and A ∈ U}.

We argue A′ is always nonempty. Since A ∈ Vκ there must be some α < κ such that A ∈ Vα.
Since κ is 2-inaccessible there must be some inaccessible κ′ < κ with α < κ′. By Proposition 3
Vκ′ is a universe and so Vκ′ ∈ A′. Since A′ is a nonempty set,

⋂
A′ is well-defined and we

can take U(A) to be
⋂
A′. A simple inspection of Definition 2 reveals that the intersection

of a nonempty set of universes is itself a universe. Thus U(A) is the least universe with A as
a member and U is a universe function for κ.

Next we turn to the interpretation I. The axiom of choice states that there is a function
e : ℘(Vκ+ω)\{∅} → Vκ+ω such that e(A) ∈ A for every A ∈ ℘(Vκ+ω)\{∅}. An easy induction
on types shows Dκσ ∈ Vκ+ω for each σ ∈ T B. Hence Dκσ ∈ ℘(Vκ+ω) \ {∅} for each σ ∈ T B

since Vκ+ω is transitive. We can simply define I(x) = e(Dκσ) ∈ Dκσ for each variable x ∈ Vσ.
For the logical constants c other than εσ we take the obvious value I(c) so that I will be a
logical interpretation. In each case this value is in Dκσ since Dκ is a standard frame. We take
I(εσ) to be the function g ∈ Dκ(σ⇒o)⇒σ such that for f ∈ Dκσ⇒o we have

g(f) =
{

e({a ∈ Dκσ|f(a) = 1}) if f(a) = 1 for some a ∈ Dκσ
e(Dκσ) otherwise.

ITP 2019
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It only remains to give values I(c) for the nonlogical constants in C. For In, Empty, Un, Pow
and Repl there is at most one corresponding value that might possibly satisfy the conditions
in Definition 6. Since we know Dκι = Vκ is a universe, each of these values is in Dκσ in each
respective case. Finally we take I(Univ) to be the universe function U constructed above.
By the choice of I it is easy to see that I is a standard set-theoretic interpretation for κ. J

As an easy corollary of Theorems 7 and 8 we have the following relative satisfiability
result.

I Theorem 9. If there is a 2-inaccessible cardinal, then HOTG is satisfiable.

5 Proof Integration

The axiomatization together with the model defined in the previous section allows us to
use the higher-order library and set theoretic library simultaneously. We will do this in the
Isabelle logical framework, by importing various results from the two libraries in the same
environment and define transfer methods between these results. This will allow us to use
theorems proved in one of the foundations using the term language of the other.

All the definitions and theorems presented in this section have been formalized in Isabelle
and will be presented close to the Isabelle notation. The Isabelle environment will import
both Isabelle/HOL [33] and Isabelle/Mizar [24] object logics along with a number of results
formalized in the standard libraries of the two. Isabelle distinguishes between meta-level
implication (=⇒) and object-level implication (−→) and our notation in examples below
reflects this distinction. The remaining notations will follow first-order conventions. In
particular the symbols =H and =S will refer to the HOL and set-theoretic equality operations
respectively. Finally be is the Mizar infix operator for specifying the type of a set in the
Mizar intersection type system [25].

To combine two types we will first define bijections between these types. We will next
show that the bijection preserves various constants and operators. This will allow us to
transfer results using higher-order rewriting, in the style of quotient packages for HOL [20,26]
and the Isabelle transfer package [21]. In the MML set theory it is common to reason both
about the type of the natural numbers and the members of the set of natural numbers. This
is necessary, since the arguments of all operations must be sets, while the reasoning engine
allows more advanced reasoning steps for types [6]. We therefore define two operators, one
that specifies a bijection between a HOL type and a set theoretic set and one that specified
a bijection between a HOL type and a set theoretic type. The definitions are analogous and
we show only the latter one here. We will define an isomorphism between a type σ and a set
d ∈ Λι to be a pair (f, g) of functions (at the type theory level) where f maps sets to objects
of type σ and g maps objects of type σ to sets in such a way that objects of type σ (in the
type theory) correspond uniquely to elements of d (in the set theory).

I Definition 10. Let σ be a type, d ∈ Λι be a set and s2h ∈ Λι⇒σ and h2s ∈ Λσ⇒ι be
functions. The predicate beIsoS〈h2s, s2h, d〉 holds whenever all of the following hold:
∀x : σ.s2h(h2s(x)) =H x,
∀x : ι.x ∈ d −→ h2s(s2h(x)) =S x,
∀x : σ.s2h(x) ∈ d.

In Isabelle the definition appears as follows:
definition beIsoS(h2 s,s2h,d) ←→ ((∀ Ly. s2h(h2 s(y)) =H y) ∧

(∀ x:Element-of d. h2 s(s2h(x)) =S x)∧ (∀ Ly. h2 s(y) in d))
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The existence of a bijection does not immediately imply the inhabitation of the type/set.
However, as types need to be non-empty in both formalisms, we can derive this result as
below. For space reasons we only present the statements, all the theorems have proofs in
our formalization.
theorem beIsoS-d:
beIsoS(h2 s,s2h,d) =⇒ d is non empty

5.1 Natural numbers and integers
The Isabelle/Mizar natural numbers are defined as the smallest limit ordinal. The existence
of this set is a consequence of the Tarski universe property. The formal definition is as follows:
mdef ordinal1-def-11 (omega) where
func omega → set means (λit.
0S in it ∧ it be limit-ordinal ∧ it be Ordinal ∧
(∀A:Ordinal. 0S in A ∧ A is limit-ordinal −→ it ⊆ A))

On the other hand, the Isabelle natural numbers are a subtype of the type of individuals.
In order to merge these two different approaches we specified a functor that preserves zero
and the successor. Note that the functor is specified only for the type of the natural numbers
which in Isabelle/HOL is implicit, but in the softly-typed set theory needs to be written and
checked explicitly. This is the reason for having an undefined case, which as we will see later,
still gives an isomorphism.

h2sN(n) =S

{
0S if n =H 0H,

SS(h2sN(k)) if n =H SH(k) for some H-natural k.

s2hN(n) =H


0H if n =S 0S ,

SH(s2hN(k)) if n =S SS(k) for some S-natural k,
undefined otherwise.

The functor and its inverse are formally defined in Isabelle as follows
fun h2sn :: nat ⇒ Set (h2 sIN(-)) where
h2 sIN(0 ::nat) =S 0S | h2 sIN(Suc(x)) =S succ h2 sIN(x)

function s2hn :: Set ⇒ nat (s2hIN(-)) where
¬x be Nat =⇒ s2hIN(x) =H undefined
| s2hIN(0S) =H 0
| x be Nat =⇒ s2hIN(succ(x)) =H Suc(s2hIN(x))

Note that h2 sIN is defined only on the HOL natural numbers (nat), while s2hIN is defined
on all sets and its definition is only meaningful for arguments that are of the type Nat. The
soft-type system of Mizar requires us to give this assumption explicitly here, but it can
normally be hidden in the contexts where the argument type is restricted appropriately.
Isabelle requires us to prove the termination of the definition, which can be done using the
proper subset relation defined on natural numbers in the Peano sense.

Using the two induction principles for natural numbers present in both libraries, we can
show that beIsoS(h2 sIN, s2hIN,NAT), where NAT is the set of all Nat. In particular it gives a
bijection (note the hidden type restriction to sets of type nat). We show also that the functors
preserve the basic operations on the natural numbers including addition, multiplication,
comparison operators, division, primality, etc. The formalized statement is as follows:

ITP 2019



9:10 Higher-Order Tarski Grothendieck

theorem Nat-to-Nat:
fixes x::nat and y::nat
assumes n be Nat and m be Nat
shows h2 sIN(x +H y) =S h2 sIN(x) +S

IN h2 sIN(y)
s2hIN(n +S

IN m) =H s2hIN(n) +H s2hIN(m)
h2 sIN(x ∗H y) =S h2 sIN(x) ∗S

IN h2 sIN(y)
s2hIN(n ∗S

IN m) =H s2hIN(n) ∗H s2hIN(m)
x < y ←→ h2 sIN(x) ⊂ h2 sIN(y)
n ⊂ m ←→ s2hIN(n) < s2hIN(m)
x dvd y ←→ h2 sIN(x) divides h2 sIN(y)

n divides m ←→ s2hIN(n) dvd s2hIN(m)
prime(x) ←→ h2 sIN(x) is primeS

n is primeS ←→ prime(s2hIN(n))

It is now possible to translate the Lagrange’s Four Squares theorem and Bertrand’s postu-
late between the libraries. We can prove the Isabelle/Mizar counterpart of the Isabelle/HOL
theorem only using higher-order rewriting and the above properties.
theorem LagrangeFourSquares:
∀n:Nat. ∃ a,b,c,d:Nat.
a ∗S

INa +S
IN b ∗S

INb +S
IN c ∗S

INc +S
IN d ∗S

INd =S n

theorem Bertrand:
∀n:Nat. 1S ⊂ n −→

(∃ p:Nat. p be primeS ∧ n ⊂ p ∧ p ⊂ (2S ∗S
IN n))

Integers can be handled in an analogous way: the definitions are again different but it is
straightforward to define a bijection between the two, and show that is preserves all the basic
operators. For operators that are missing in one of the libraries, it is possible to actually lift
their definitions. For example the exponentiation operation, which has not been considered in
the Isabelle/Mizar library so far, can be defined as TransformHS(s2hZZ,s2hIN,h2 sZZ,(^ )), where
definition TransformHS where
func TransformHS(s2hX1,s2hX2,h2 sY,HFun,x1,x2 ) → set equals

h2 sY (HFun(s2hX1 (x1 ),s2hX2 (x2 )))

This allows translating the proved Fermat’s last theorem for powers divisible by 3 and
4 from Isabelle/HOL to Isabelle/Mizar. The proof involved quite some computation and
therefore has not been attempted in Mizar so far.
theorem Fermat-divides-3-4 :
∀ x,y,z:Integer . ∀n:Nat.

(3S divides n ∨ 4S divides n) ∧ x |^ n +S
ZZ y |^ n =S z |^ n

−→ x ∗S
ZZ y ∗S

ZZ z =S 0S

5.2 Polymorphic types and lists
Isabelle/HOL lists are realized as a polymorphic algebraic datatype, corresponding to
functional programming language lists. MML lists (called finite sequences, FinSequence) are
functions from an initial segment of the natural numbers. Higher-order lists behave like
stacks, with access to the top of the stack, whereas for the set theoretic ones the natural
operations are the restriction or extension of the domain.

To build a bijection between these types, we note that the Cons operator corresponds
to the concatenation of a singleton list and the second argument. Since the list type is
polymorphic (in the shallow polymorphism sense used in HOL), in order to build this bijection,
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we also need to map the actual elements of the list. Therefore the bijection on lists will be
parametric on a bijection on elements:
fun h2sfs :: (a ⇒ Set) ⇒ a List.list ⇒ Set (h2 sL(-,-))where
h2 sL(h2 s, Nil) =S <∗>
| h2 sL(h2 s, Cons(h, t)) =S ((<∗h2 s(h)∗>) ^ (h2 sL(h2 s, t)))

The converse operation needs to separate the first element of a sequence from the rest
and shift it by one. We define this operation in Isabelle/Mizar and complete the definition.
Isabelle will again require us to show the termination of the function, which can be done by
induction on the length of the list/sequence:
function s2hl :: (Set ⇒ a) ⇒ Set ⇒a List.list (s2hL(-,-)) where
¬ x be FinSequence =⇒ s2hL(s2h,x) =H undefined
| s2hL(s2h,<∗>) =H Nil
| x be FinSequence =⇒ x 6= <∗> =⇒

s2hL(s2h,x) =H Cons (s2h(x.1S), s2hL(s2h,x/^1S ))

For the transformation introduced above, we can show that if we have a good homo-
morphism between the elements of the lists, then lists over this type are homomorphic with
finite sequences.

We can again show that this homomorphism preserves various basic operations, such as
concatenation, the selection of n-th element, length, etc.
theorem s2hL-Prop:
assumes p be FinSequence and q be FinSequence
and n be Nat and n in len p

shows size(s2hL(s2h,p)) =H s2hIN(len p)
s2hL(s2h,p^q) =H s2hL(s2h,p) @ s2hL(s2h,q)

s2hL(s2h,p) ! s2hIN(n) =H s2h(p. (succ n))

Another polymorphic type that we need to map are functions. Set theoretic functions
(sets of pairs) correspond to higher-order functions and this homomorphism preserves function
application.
theorem HtoSappl:
assumes beIsoS(h2 sd,s2hd,d) and beIsoS(h2 sr,s2hr,r)
shows h2 sf (s2hd,h2 sr,d,f ).h2 sd(x) =S h2 sr(f (x))

5.3 Algebra

The structure representations used in higher-order logic and set theories are usually different.
This will be particularly visible when it comes to algebraic structures. In the Isabelle/HOL
formalization algebraic structures are type-classes while in set theory a common approach
would be partial functions. We will illustrate the difference on the example of groups. A type
α forms a group when we can indicate a binary function on this type that will serve as the the
group operation satisfying the group axioms. On the other hand, in the usual set-theoretic
approach a group in set theory would consist of an explicitly given set (the carrier), and
the group operation. With an intersection type system, the fact that the given set with
an operation is a group is specified by intersecting the type of structures with the types
that specify their individual properties (i.e. a group is a non-empty associative Group-like
multMagma).
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There are two more differences in the particular formalizations we consider, that we
will not focus on, but we will only hint them in this paragraph and consider them only in
the formalization. First, the existence and uniqueness of the neutral element can be either
assumed in the group specification or derived from the axioms. Will not focus on that, as
this is only the choice of a group axiomatization. Second, in the Mizar library there are
two theories of groups: additive groups and multiplicative groups. Rings and fields inherit
the latter, while some group-theoretic results are derived only for the former. Even if the
Isabelle/HOL group includes a field for the unit, we will ignore it in the morphism, since
the set theoretic definition does not use one. The neutral element along with the other
properties is however necessary to justify that the result of the morphism is a group in the
set theoretic sense.
definition h2sg (h2 sG(-,-,-,-)) where
h2 sG(s2hc,h2 sc,c,g) =S [#
carrier 7→ c;
multF 7→ h2 sBinOp(s2hc,h2 sc,c,mult(g)) #]

definition s2hg (s2hG(-,-,-)) where
s2hG(s2hc,h2 sc,g) =H Igroup(

Collect(λx. h2 sc(x) in the carrier of g),
s2hBinOp(s2hc,h2 sc,the multF of g),
s2hc(1 .g))

For the dual morphism, we indicate the result of the operation selecting the neutral
element (1 .g) as the element needed in the construction of the type-class element. With its
help, we can justify that the fields of the translated structure are translation of the fields.
theorem s2hg-Prop:
assumes beIsoS(h2 sc,s2hc,c) and g be Group
and the carrier of g =S c
and x ∈ carrierI (s2hG(s2hc, h2 sc, g))

y ∈ carrierI (s2hG(s2hc, h2 sc, g))
shows one(s2hG(s2hc,h2 sc,g)) =H s2hc(1 .g)

x ⊗s2hG(s2hc,h2 sc,g) y =H s2hc(h2 sc(x) ⊗g h2 sc(y))
group (s2hG(s2hc,h2 sc,g))

A number of proof assistant systems based both on higher-order logic (including Isa-
belle/HOL) and set theory (including Mizar) support inheritance between their algebraic
structures. As part of our work aligning the libraries we also want to verify that such
inheritance is supported in the combined library. For this, we align the ring structures
present in the two libraries. The isomorphism between the structures is defined in a similar
way to the one for groups, we refer the interested reader to our formalization.

We can show that the morphisms form an isomorphism and derive some basic preservation
properties. The most basic one is the fact that the isomorphism preserves being a ring.
theorem s2hr-Prop:
assumes beIsoS(h2 sc,s2hc,c) and r be Ring
and the carrier of r =S c
and x ∈ carrierI (s2hR(s2hc,h2 sc,r))

y ∈ carrierI (s2hR(s2hc,h2 sc,r))
shows zero(s2hR(s2hc,h2 sc,r)) =H s2hc(0 r)

one(s2hR(s2hc,h2 sc,r)) =H s2hc(1 r)
x ⊕s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊕r h2 sc(y))
x ⊗s2hR(s2hc,h2 sc,r) y =H s2hc(h2 sc(x) ⊗r h2 sc(y))

ring (s2hR(s2hc,h2 sc,r))
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Finally, we introduce the equivalent of the definition of the integer ring introduced in the
MML in [41]. We show that s2hR and h2 iR determine an isomorphism between the fields of
the rings developed in Isabelle/HOL and the Mizar Mathematical Library.
mdef int-3-def-3 (ZZ-ring) where
func ZZ-ring → strict(doubleLoopStr) equals [#
carrier 7→ INT ;
addF 7→ addint;
ZeroF 7→ 0S ;
multF 7→ multint;
OneF 7→ 1S#]

theorem H-Zring-to-S-Zring:
h2 sR(s2hZZ, h2 sZZ,INT,Z) =S ZZ-ring

s2hR(s2hZZ, h2 sZZ, ZZ-ring) =H Z

6 Related Work

As proof assistants based on plain higher-order logic lack the full expressivity of set theory,
the idea of adding set theory axioms on top of HOL (without a model) has been tried multiple
times. Gordon [15] discusses approaches to combine the power of HOL and set theory. Obua
has proposed HOLZF [34], where Zermelo-Fraenkel axioms are added on top of Isabelle/HOL.
With this, he was able to show results on partisan games, that would be hard to show in
plain higher-order logic. Later, as part of the ProofPeer project [35], the combination of
HOL with ZF became the basis for an LCF system, reducing the proofs in higher-order logic
part to a minimum (again, since there was no guarantee, that combining the results is safe).
Kunčar [30] attempted to import the Tarski-Grothendieck-based library into HOL Light.
Here, the set-theoretic concepts were immediately mapped to their HOL counterparts, but it
soon came out that without adding the axioms of set theory they system was not strong
enough. The first author, Brown [10] proposed the Egal system which again combines a
specification of higher-order logic with the axioms of set theory. The system uses explicit
universes, which is in fact the same presentation as given in this work. This work therefore
also gives a model for the Egal system. Finally, second and third authors [24] have specified
and imported [23] significant parts of the Mizar library into Isabelle. In this work we only
use the specification of Mizar in Isabelle and the re-formalized parts of the MML.

The idea to combine proof assistant libraries across different foundations also arose in the
Flyspeck project [18] formalizing the proof of the Kepler conjecture. There, the dependency
on Coq has been eliminated and an ad-hoc justification for the concepts moved between
Isabelle and HOL was specified. Logical frameworks allow importing multiple libraries at the
same time, again without a model. In the Dedukti framework, Assaf and Cauderlier [3,4]
have combined properties originating from the Coq library and the HOL library. Both were
imported in the same system, based on the λΠ calculus modulo, however the two parts of the
library relied on different rewrite rules. Krauss and Schropp [29] specified and implemented a
translation from Isabelle/HOL proof terms to set theoretic proved theorems. The translation
is sound and only relies on the Isabelle/ZF logic, however it is too slow to be useful in practice,
in fact it is not possible to translate the basic Main library of Isabelle/HOL into set theory
in reasonable time. It also possible to deep embed multiple libraries in a single meta-theory.
Rabe [40] does this practically in the MMT framework deep embedding various proof assistant
foundations and providing category-theoretic mappings between some foundations.

ITP 2019



9:14 Higher-Order Tarski Grothendieck

Most implementation of set theory in logical frameworks could implicitly use some higher-
order features of the framework, as this is already used for the definition of the object logic.
The definition of the Zermelo-Fraenkel object logic [36] in Isabelle uses lambda abstractions
and higher-order applications for example to specify the quantifiers. This is also the case in
Isabelle/TLA [31]. These object logics are normally careful to restrict the use of higher-order
features to a minimum, however the system itself does not restrict this usage.

The second author together with Gauthier [14] has previously proposed heuristics for
automatically finding alignments across proof assistant libraries. Such alignments, even
without merging the libraries can be useful for conjecturing new properties [32] as well as to
improve proof assistant automation [13].

7 Conclusion

We have defined a model of higher-order Tarski-Grothendieck. The model relies on a 2-
inaccessible cardinal, which is the same assumption as the one required for a model of a TG
set theory. This model shows that it is safe to combine higher-order features with the axioms
of set theory, which has already been done by a number of developments [10,24,34,35].

Moreover, thanks to the model we can safely combine results proved in TG set theory
with ones proved in plain higher-order logic. We benefit from this, by combining two of the
largest proof assistant libraries: the Mizar Mathematical library and the Isabelle/HOL library.
Above the theorems and proofs coming from both, we define a number of isomorphisms that
allow us to translate theorems proved in of these part of the library and use them in the
other part.

As part of the library merging we have formally defined and proved in Isabelle the
necessary concepts. This involved 18 definitions and 135 theorems, which amounts to 2667
lines of proofs.

Apart from higher-order and set-theoretic foundations, the third most commonly used
foundation is dependent type theory. The most important future work would be to investigate
the consistency of a theory that imports such foundations as well.
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