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—— Abstract

The need to share and integrate heterogeneous geospatial data has resulted in the development
of geospatial data standards such as the OGC/ISO standard Simple Feature Access (SFA), that
standardize operations and simple topological and mereotopological relations over various geometric

features such as points, line segments, polylines, polygons, and polyhedral surfaces. While SFA’s
supplied relations enable qualitative querying over the geometric features, the relations’ semantics
are not formalized. This lack of formalization prevents further automated reasoning — apart from
simple querying — with the geometric data, either in isolation or in conjunction with external purely
qualitative information as one might extract from textual sources, such as social media. To enable
joint qualitative reasoning over geometric and qualitative spatial information, this work formalizes
the semantics of SFA’s geometric features and mereotopological relations by defining or restricting
them in terms of the spatial entity types and relations provided by CODIB, a first-order logical
theory from an existing logical formalization of multidimensional qualitative space.
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1 Introduction

The need to share and integrate the large amounts of heterogeneous geospatial data has
resulted in the development of geospatial data standards, such as the OGC’s GeoSPARQL
standard [27] and the shared OGC/ISO standards Geography Markup Language (GML)
[23] and Simple Feature Access [22]. All of these standards include some types of simple
and complex geometric features — often simply referred to as geometries — for representing
geographic objects. The most commonly used features include points, line segments and
aggregations into polylines, and polygons and aggregations into polyhedral surfaces. Primarily
concerned with interoperability across spatial databases and geographic information systems,
these standards also prescribe a number of common spatial operators, e.g., for calculating
intersections, differences, buffers, or distances between features.

Many of these standards have further incorporated a number of simple mereotopological
relations (with Boolean values), such as intersects, contains, overlaps, meets, or crosses.
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These are based on results from the Region Connection Calculus (RCC) [28] and the
almost equivalent topological relations defined by the 9-intersection method [8, 9] and its
dimensionally extended refinements (DE-9I) [5, 6] and further extensions [26, 29].

The Simple Feature Access (SFA) model [22], an OGC and ISO standard for vector-
based encoding of 2D geometric data, is one of the most widely implemented standards for
facilitating geospatial data interoperability. It is at least partially implemented by a wide
range of geographic information systems and spatial database systems, including ArcSDE (the
spatial database system that ArcGIS uses), PostGIS, and the spatial extensions of MySQL,
Oracle, and IBM Db2. Other geospatial standards, like GeoJSON! and GeoSPARQL [27],
also build on SFA.

However, the mereotopological relations provided by SFA and similar standards use them
as query operators only2. This enables more natural access to geometric data but without
formalizing the relationships between geometric representations and the mereotopological
or other qualitative relations, these approaches cannot support qualitative reasoning over
the queried information. Moreover, storing “native” topological information — for example
as provided from textual sources where precise locations or spatial extents are unknown
or unknowable — is currently not possible without having to invent geometric objects. For
example, the spatial content of the two statements “Lot A is for sale and abuts Broadway.
and “Lot B that does not border Broadway is not for sale.” cannot be represented in GIS
without assigning geometries to the named objects.

i

Frameworks for qualitative spatial representation and reasoning (see, e.g., the overview
in [7]) such as the RCC support direct reasoning about topological and other kinds of
qualitative spatial information (e.g., direction), but cannot easily mix geometric data sources
(e.g., the precise location of “Broadway”) and qualitative information (the fact that “Lot A”
and Broadway are connected) to infer which lots on a property map may be for sale. Similar
interpretation of qualitative spatial information on a geometric dataset is needed during
natural disasters, when interpreting human reports (e.g., from social media or news reports)
on road networks, elevation data, and hydrological data, to help answer simple queries, such
as “is any part of the historic center flooded?”.

The presented work is a step in this direction by developing a first-order logical theory®
that treats geometric features (e.g., polylines, polygons) and relations between them as
specializations of more general types of features (e.g., any kind of 2D regions or 1D features)
and mereotopological relations between them. Key to this endeavour is the use of a mul-
tidimensional theory of space wherein, unlike traditional logical theories of mereotopology
(including the RCC), spatial entities of different dimensions can co-exist and be related. We
choose the theory CODIB (based on CODI [17, 16] with an extension by boundary/interior
distinctions [15]) as suitable multidimensional theory of qualitative space and test to what
extent geometric features from SFA [22] can be treated as specializations of CODIB’s more
general non-geometric spatial feature types from CODIB. For example, SFA’s line segments or
polylines should specialize the general one-dimensional spatial features, called “curves”, from
CODIB. Specifically, we want to leverage the detailed formal semantics encoded in CODIB
to capture the semantics of SFA’s various geometric feature types and mereotopological
relations in greater detail. Currently, much of these semantics are described in natural
language and mathematical notation in the standard, but are not accessible to automated

-

http://geojson.org/

Most GIS support the RCC or DE-9I relations, with recent progress on storing the computed relations

more efficiently [24]. There has also been a call to extend this to a larger set of qualitative relations [11].
” W

The term “theory” refers throughout the paper to a logical theory. The terms “theory”, “ontology” and
“axiomatization” are used synonymously.
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reasoning. Wherever possible, we logically define SFA’s geometric features in terms of
CODIB’s spatial concepts and, where that is not possible, treat them as specializations with
suitable constraints.

Our specific contributions are: (1) develop a first-order logic axiomatization, called
SF-FOL, of SFA; (2) in the process, show that all of the geometric feature types from SFA
specialize or map to types of spatial entities definable in CODIB; (3) fully define SFA’s
mereotopological relations in CODIB and thus provide computer-interpretable semantics
of these qualitative relations; and (4) verify the consistency of SF-FOL. This makes both
SFA’s and CODIB’s mereotopological relations applicable to geometric and qualitative data
alike and allows using automated first-order logic theorem provers (ATPs) for integrated
mereotopological reasoning over combinations of qualitative and geometric data from any
sources that adhere to the SFA standard.

2 Background and Related Work

Mereotopological relations are among the most common qualitative spatial relations [25],
and have been incorporated into virtually all upper ontologies [14]. They include purely
topological relations such as contact/connection or disconnection, and purely mereological
relations such as parthood, containment, or inside, as well as relations that describe the
interaction of topology and mereology such as overlap (i.e., contact via sharing a part). Simple
mereotopological relations have also been included in popular geospatial data standards
thanks to seminal work on the 9-intersection method [8, 9], its dimension-extended refinement
(DE-9I) [5] and extensions thereof [6, 26, 29]. However, the 9-intersection method determines
these relations from geometric data by computing a matrix of values that indicate the pairwise
intersections of two object’s interior (o), boundary (9), and complement (). Each of the nine
pairs have either Boolean values — empty nor non-empty intersection — as in the original
9-intersection framework, or have dimensional values — either -1 (empty intersection), 0,
1, or 2 — as in the dimension-extended method. This way of determining the qualitative
relations requires an underlying geometric representation, with associated operations for
determining their boundary and interior, for all involved objects. Moreover, the semantics of
the mereotopological relations, especially their interaction (e.g. parthood specializes overlap
or a whole is in contact with everything any of its parts is on contact with), are never

explicitly captured and thus not available for qualitative reasoning with the underlying data.

Moreover, the relations cannot be used for reasoning where geometric data models are not
the only source of qualitative information.

This is in sharp contrast with axiomatic treatments of mereotopology, which constrain
the interpretations of one or two primitive relations, such as contact and/or parthood, and

define other relations, such as overlap or external contact, in terms of the primitive ones [3].

By explicitly formalizing relationships between the relations, axiomatic frameworks permit
reasoning with qualitative information even in the absence of geometric information. The most
well-known axiomatic theory is the RCC [28] that defines eight mereotopological relations
similar to the ones from the basic 9-intersection model. The variety of existing axiomatic
theories are more thoroughly reviewed in [20]%. However, axiomatic theories of mereotopology

4 Qualitative spatial calculi (see, e.g., the overview in [7]) are yet another approach to qualitative spatial
reasoning, but they can only incorporate qualitative information and cannot make use of geometric
information without first translating it to qualitative information. A hybrid reasoning system utilizing
a constraint network reasoning approach for reasoning with both geometric and qualitative information
has been presented in [10]. This work here goes a step further by explicitly formalizing the semantic
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have, in the philosophical tradition of Whitehead, been often married to strict region-based
conceptualizations of space wherein extended spatial entities — typically called regions — are the
only first-class entities of the domain, while points and other lower-dimensional entities are not
entities in the domain. This prevents full integration with geometric data standards, such as
SFA, that permit entities of different dimensions. The idea of multidimensional mereotopology
[12, 13, 17, 30] aims to overcome this restriction by axiomatically formalizing mereotopological
relations not just between entities of equal dimensions but also between entities of different
dimensions. This work utilizes the multidimensional mereotopology CODIB [17, 16, 15],
which has been specifically developed to qualitatively generalize geometric data models, as
basis for formalizing SFA’s semantics. CODIB is based on the three primitive relations of
COntainment, relative DImension, and Boundary containment [15], which give the theory
its name. CODIB builds on and extends the theory CODI (without any notion of boundaries)
[17, 16] by the additional relation of boundary containment. Unlike other multidimensional
theories [12, 30], CODIB allows entities of lower dimensions to exist independent of entities of
higher dimension, similar to how such entities (e.g., polylines or points) are used in geometric
data standards. [12, 30] require each line or curve to be part of the boundary of some 2D
region and each point to be the endpoint of some curve in a model. The INCH calculus [13],
on the other hand, does not model boundaries at all. Another alternative formalization of
multidimensional mereotopology is provided by the space ontology (GFO space) [1] that is
part of the General Formal Ontology (GFO). However, GFO space is primarily concerned
with physical, phenomenal space (i.e., the space of material objects), which is different from
the kind of abstract, extensional space that geometric data models describe®[15, 1].

3 Preliminaries

We now review and formalize the relevant aspects of the SFA standard, namely its classes
of geometric features and its qualitative relations. In particular, Section 3.1 formalizes the
intrinsic semantics of the UML subclass hierarchy from the standards document in first-order
logic as starting point for its semantic enhancement. Subsequently, Section 3.2 reviews key
relations and concepts from the CODI and CODIB ontologies and provides definitions of
novel concepts that are necessary to draw some of the distinctions that SFA makes. These
concepts and relations will be used as basis for elaborating the SFA semantics and making
its geometric features available for integration with purely qualitative information and for
general qualitative reasoning.

All logical sentences throughout our exposition are assumed to be universally quantified.
They are labeled in the format ‘[theory]-[type][number]” (e.g. SFC-T1) where the first
letter(s) indicate the theory (e.g. SFC=simple features concept, SFR=simple features
relation, PO=partial overlap, D=dimension), while the type distinguishes axioms (A),
definitions (D: defining a concept or relation), theorems (T: a property provable from the
axioms and definitions), and mappings (M: an axiom that establishes some relationship
between SFA and CODIB). All theories are available in modularized form in the Common
Logic syntax from the COLORE repository®.

relationships between the two types of information for reuse with any logic-based reasoner.

For example, in phenomenal space, any road would be a 3D object, whereas in abstract space it is
typically modeled as a 1D spatial feature.

In https://colore.oor.net/. Note that all of axioms are specified using only the classical first-order
logic syntax of Common Logic and without use of any of Common Logic’s specialized features such as
restricted module import or use of sequence markers. This allows easy translation to pure first-order
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3.1 Semantics of Simple Feature Concepts and Spatial Relations

SFA [21] is an OGC and ISO standard for vector-based encoding of 0-2D geometric data that
aims to facilitate interoperability across GIS and spatial databases. SFA is at least partially
implemented by ArcGIS, PostGIS, and the spatial extensions of MySQL, Oracle, and IBM
Db2. Other standards, like GeoSPARQL [27] and GeoJSON, build on it.

3.1.1 Semantics of Concepts (Classes) from Simple Features

At the core of SFA lies a set of simple geometries such as individual points (sf_point),
polylines (sf_line_string: a sequence of straight line segments), and polyhedral surfaces
(sf_polyhedral__surface: a connected, possibly non-planar 2D area obtained by stitching
polygons together). Sf line_string and sf_polyhedral _surface specialize the general classes
sf _curve, which may include non-straight segments, and sf surface, which may include 2D
areas with non-straight boundary segments, respectively (SFC-A1,A2). These two classes
capture all kinds of 1D and 2D spatial objects. Note that at this point, we only formalize the
relationships between the classes as we cannot capture their detailed semantics. Only later
on, with the help of CODIB concepts and relations, can we formalize the classes in more
detail.

In addition to the three classes of simple features, collections of simple features can be
modeled using the sf geometry_ collection class. The four specializations of the abstract
class sf geometry are mutually disjoint (SFC-A3-A6) and jointly exhaustive (SFC-D1).
(SFC-D1) sf__geometry(z) <>

sf_point(z) V sf_curve(x) V sf__surface(x) V sf__geometry__collection(x)

(SFC-A1) sf_line_string(x) — sf__curve(x)

(SFC-A2) sf_polyhedral__surface(z) — sf__surface(z)
(SFC-A3) sf_point(x) — —sf__curve(x) A —sf _surface(
(SFC-A4) sf curve(z) — —sf__point(x) A —sf__surface(
(SFC-A5) sf__surface(x) — —sf__point(x) A —sf__curve(x) A —sf__geometry__collection

x) A —sf__geometry__collection(x)
(z)
(z)
(z)

x
(SFC-A6) sf__geometry__collection(x) — —sf__point(xz) A —sf__curve(x) A —sf__surface(z

) A\ —sf__geometry__collection

Sf_line__string is further specialized into sf line (SFC-AT7), which represents a single
straight line segment, and sf linear _ring (SFC-AR), a linear feature that is closed, that is,
its start and end points coincide and thus its boundary is empty. The intended semantics
of sf_line and sf_linear_ring will be more fully formalized in Section 4.1 by establishing
mappings to CODIB concepts that are more densely axiomatized. For example, SFC-M3, M4,
M8, and M9 together with CODIB’s formalization (including the definitions of AtomicS-D,
SimpleS-D, BranchedS-D, ConS-D, and the formalization of the predicate ICon from [15])
entail that any sf line is a connected curve with two distinct end points. Likewise, sf polygon
is a specialization of sf polyhedral surface (SFC-A9), capturing a planar 2D area with a
single closed polyline as exterior boundary”. Another specialization of sf_polyhedral surface

is sf tin (SFC-A10), a triangulated irregular network (TIN), which consists of triangles.

A single triangle, described by sf _triangle, is a polygon and the simplest kind of a TIN
(SFC-D2). It is bounded by a closed polyline (i.e., a sf linear ring) that consists of exactly
three line segments (i.e., sf _line) — this will be formalized by SFC-M13 in Section 4.1.

logic representations such as the TPTP format [31] supported by many theorem provers and model
finders.

7 SFA models sf_polygon and sf_polyhedral _surface as separate specializations of sf_surface, but permits
polyhedral surfaces to consist of a single polygon, in which case it is spatially a polygon.
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(SFC-AT7) sf__line(x) — sf__line__string(x)

(SFC-A8) sf_linear_ring(x) — sf__line__string(x)
(SFC-A9) sf_polygon(z) — sf__polyhedral__surface(z)
(SFC-A10) sf tin(x) — sf_polyhedral surface(x)
(SFC-D2) sf__triangle(z) <> sf__polygon(z) A sf__tin(x)

Sf_multi_point, sf _multi__curve and sf _multi _surface specialize sf geometry_ collection
(SFC-A11); they are aggregations of only sf points, sf _curves, or sf surfaces, respectively.
Sf_multi__curve and sf multi _surface are again abstract classes in SFA, with only the
specializations sf_multi_line_string (SFC-A12) and sf _multi_polygon (SFC-A13) being
instantiable. The latter two consist only of sf line strings and sf polygons, respectively, as
axiomatically captured in Section 4.2.

(SFC-A11) sf geometry_ collection(x) <>
sf_multi_point(x) V sf_multi_curve(x) V sf _multi_surface(z)

(SFC-A12) sf _multi_line__string(x) — sf_multi__curve(z)
(SFC-A13) sf__multi__polygon(x) — sf__multi__surface(x)

The axioms SFC-A1 to SFC-A13 together with SFC-D1,D2 form the ontology SFC-Core®
that serves as basis for our semantic elaboration of SFA in Section 4.

3.1.2 Spatial Relations in Simple Features

In addition to various geometric spatial operations (e.g., buffer, intersection, convexHull),
which are only well-defined on geometric features (e.g., on polygons rather than general
surfaces), SFA includes eight named qualitative spatial relations based on the dimensionally
extended 9-intersection method [5] that can equally be applied to generalizations of geometric
features such as arbitrary curves and surfaces. SFA’s relations include the five primitive
relations disjoint, touches, within, overlaps, and crosses, with three additional relations
contains (inverse of within), intersects (negation of disjoint), and equals (conjunction of
within and contains) being defined”. SFA expresses the semantics of these relations using
the interior, boundary, and exterior of the related objects [22], but does not formally relate
the relations to one another as we will do in Section 4.3. Three dimensional constraints are
explicitly mentioned in SFA: touches does not apply to points (or sf__multi_ points), overlaps
requires the involved entities to be of equal dimension, and crosses is not applicable to two
surfaces (or sf__multi__surfaces). These constraints will become provable as theorems of our
CODIB-based formalization of these relations.

3.2 Dimensional Features and Qualitative Spatial Relations in CODIB

This subsection reviews CODIB by first reviewing its core CODI and then additional relation
of boundary containment. A computer-readable encoding of the axioms are provided in the
Common Logic syntax in the COLORE repository to facilitate automated verification and
reasoning.

8 Available from https://colore.oor.net/simple_features.
9 See the definitions provided in SFR-M6-M8. We have only decided to map contains to CODIB’s Cont
relation and then define within as its inverse.
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3.2.1 CODI

Core to the multidimensional mereotopology CODIB is the theory CODI'C of containment
and dimension that axiomatizes mereotopological relations in a dimension-independent way
using two primitive relations: (1) the mereological notion of containment, Cont(z,y)*!, and
a relation <gim (x,y), read as “x has the same or a lower dimension than y”, to compare the
dimension of two entities [16, 17]. In addition, the primitive unary predicate S(z) is used
to denote spatial regions, which capture mathematical regions of space whose existence is
independent of whether an actual physical object occupies a spatial region or not. Cont is
reflexive, symmetric, and transitive (Cont-A1-A3) and allows defining the zero (i.e., null)
region denoted by the unary predicate ZEX (ZEX-D). Containment requires the contained
entity to be of the same or a lower dimension than the entity it is contained in (CD-A1).

The relative dimension <gin, (,y) alone can define additional relations of equal dimension
=dim (7, ), lesser dimension <gim (z,y), minimal dimension MinDim(x) (i.e., the dimension
of a point; D-D6), and next-lower dimension <gim (z,y) (D-D7). The relation <gim (z,y) is
axiomatized to form a discrete (i.e., there is a next-lower dimension for every non-minimal
entity) and bounded (i.e., a lowest and highest dimension exists) pre-order over all spatial
regions. That also implies that every spatial region must be of uniform dimension, i.e., all
components (i.e. parts) thereof are of the same dimension, precluding objects such as a region
consisting of a 2D region and a separate, isolated point or linear feature. Spatial regions
can still contain lower-dimensional entities (e.g., a 2D region containing 1D features and
points). Using the relative dimension of the involved entities, we can specialize containment to
parthood (i.e., equidimensional containment; EP-D) and proper parthood (EPP-D). Minimal
spatial entities have no proper parts (ME-D2), that is, they are indivisible. There can be
minimal entities within each dimension.

(Cont-Al) S(z) A ~ZEX(x) <> Cont(x,x)

(containment is reflexive for all nonzero spatial regions)

(Cont-A2) Cont(z,y) A Cont(y,z) > x =1y (containment is antisymmetric)
(Cont-A3) Cont(z,y) A Cont(y,z) — Cont(x, z) (containment is transitive)
(ZEX-D) ZEX(z) +> S(z) AVy[—-Cont(z,y) N = Cont(y, x)] (zero region)
(CD-A1) Cont(z,y) = = <dim ¥ (interaction between Cont and <dim)

(D-D6) MinDim(z) <> ~ZEX(z) AVy [~ZEX(y) — = <daim y] (minimal-dimensional entities)
(D-D7) 2 <dim ¥ < (Zdim ¥ A (¥ <dim ) AV2[2 <dim VY <dim 2]  (next-lower dimension)

(EP-D) P(z,y) <> Cont(z,y) N =dim Yy (parthood: equidimensional containment)
(EPP-D) PP(z,y) <> P(z,y) ANz #vy (proper parthood)
(ME-D2) Min(x) <> =ZEX(xz) AVy [~ PP(y,z)] (minimal entities within a dimension)

Contact, C(z,y), as the most general topological relation is definable as « and y sharing
some contained object (C-D) and is provably reflexive and symmetric. Specialized types
of contact can be distinguished based on the relative dimension: partial overlap PO(z,y)
holds only between entity of equal dimension and requires them to share a part (PO-D);
incidence Inc(x,y) holds between entities of different dimension and requires a part of
the lower-dimensional entity to be shared with the higher-dimensional entity (Inc-D); and
superficial contact SC(z,y) requires the shared entity to be of a lower dimension than both
of the entities in contact (SC-D).

10 ¢olore. oor. net/multidim_mereotopology_codi/codi.clif
1 The relation Cont is the qualitative generalization of SFA’s contains relation.
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(C-D) C(z,y) +> 3z[Cont(z,z) A Cont(z,y)] (contact)

(PO-D) PO(z,y) <> 3z[P(z,xz) A P(z,y)] (overlap in a part)

(Inc-D) Inc(z,y) <> 3z[(Cont(z,x) A P(z,y) A z <aim ) V (P(z,2) A Cont(z,y) A z <dim Y)]
(incidence)

(SC-D) SC(z,y) <> 3z[Cont(z,z) A Cont(z,y)] AVz[Cont(z,z) A Cont(z,y) = 2z <dim A2 <dim Y|

(superficial contact)

While CODI does not distinguish different primitive types of entities, they can be defined:
PointRegions (which encompass individual points and sets of points) are of minimal dimension,
Curves are of next higher dimension, and so forth [19]. All of these primitive classes specialize
the class S of abstract spatial regions.

(PR-D) PointRegion(x) <> S(z) A MinDim(z) AN =ZEX (x) (point sets)
(Point-D) Point(x) <> PointRegion(z) A Min(x) (individual points)
(Curve-D) Curve(z) <+ S(x) A Vy[PointRegion(y) — y <dim ] (curves as 1D entities)
(AR-D) ArealRegion(z) <+ S(z) A Vy[Curve(y) = y <dim ] (areal regions as 2D entities)

3.2.2 CODIB

CODIB!? is a logical extension of CODI that introduces an additional primitive relation
of boundary containment, BCont(x,y). BCont specializes containment by requiring the
contained entity to be of a lower dimension than the containing entity (BC-A1), though the
contained entity does not need to be of the next-lower dimension. For example, an areal
(i.e., 2D) region can contain both curves and points in its boundary. Additional axioms
(BC-A2-A5) that constrain the interaction of BCont with other relations, including incidence,
parthood, partial overlap and containment are not shown here, they are documented in [15].
BCont is primitive because it cannot be defined in CODI, that is, in some models of CODI
it cannot be determined whether a contained entity is actually contained in the boundary or
interior of some containee.

(BC-Al) BCont(x,y) — Cont(x,y) AN x <dim Y

3.2.3 Refined Spatial Region Concepts in CODIB

In order to express the SFA concepts in detail, we further refine the basic dimensionally
defined classes from CODIB based on whether and how their parts are connected, resulting
in the subclass hierarchy shown in Figure 1. A connected region is one that is internally
connected (ConS-D), while a region that is not internally connected is called a multipart
region (MS-D). The property of Internal connectedness (ICon-D) from CODI requires each
proper part y of an entity x to be connected to its complement x — y such that the shared
entity (denoted by the intersection of y and = — y) is of exactly one dimension lower than z'3.
For example, two polygons that share a line segment as boundary are internally connected,
but if they only share a point, they are not.

A connected region that contains at least three non-overlapping proper parts that share
an entity of lower dimension is called a branched region (BranchedS-D). A simple region is
one that is connected and not branched (Simple-D). An atomic region is a simple region
without any proper parts (Atomic-D).

12 colore. oor. net/multidim_mereotopology_codib/codib.clif
13 See [16] for the full axiomatization of the intersection and complement operations in CODI.
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Figure 1 Taxonomy of refined CODIB spatial region concepts classified based on presence/absence
of boundaries, connectedness, branching and parts.

(ICon-D) ICon(x) <> Vy[PP(y,z) — C(y,x —y) ANy - (£ — y) <dim ] (internally connected)
(ConS-D) Connected_S(z) <+ S(z) A ICon(x) (connected spatial region)
(MS-D) Multipart_S(x) <> S(xz) A ~Connected__S(z) (multipart spatial region)

(BranchedS-D) Branched_S(x) < Connected_S(z) A 3p,q,r,s[PP(p,z) A PP(q,x) A PP(r,z) A
—PO(p,q) AN=PO(p,r) A=PO(q,7) A's <dim P A S <dim ¢ A s <aim 7 A Cont(s,p) A Cont(s,q) A
Cont(s, )] (A branched spatial
region is a connected region that has three distinct non-overlapping parts p,q,r that
all share a common lower-dimensional entity s. For example, a branched curve has
three non-overlapping segments that all share a point.)

(SimpleS-D) Simple__S(x) <+ Connected__S(z) A = Branched__S(x) (simple spatial region)
(AtomicS-D) Atomic_S(x) <> Simple_S(z) A Min(z) (an atomic spatial region is a simple
spatial region that is minimal, i.e., has no proper parts)
These properties are now used to define specialized classes of curves and areal regions.
(SCS-D) SimpleCurveSegment(x) <> Curve(z) A Simple__S(z) A Ip, q[BCont(p,x) A
BCont(q,z) N p # q] (Simple curve segment has two distinct end points)
(SLC-D) SimpleLoopCurve(x) <> Curve(z) A Simple_S(x) A Vy[Point(y) — =BCont(y, )]
(Simple loop curve is closed: it does not contain any point in its boundary)
(ACS-D) AtomicCurveSegment(x) <> SimpleCurveSegment(x) A Atomic_S(x)
(ALC-D) AtomicLoopCurve(x) <+ SimpleLoopCurve(x) A Atomic__S(z)
(SAR-D) SimpleArealRegion(x) <> ArealRegion(x) A Simple__S(z)
(MC-D) Multipart Curve(zx) <> Curve(z) A Multipart S(x)
(MAR-D) Multipart__ArealRegion(x) <> ArealRegion(z) A Multipart_S(x)
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4 Axiomatization of Simple Feature as Extension of CODIB

In this section we present the core of our formalization that elaborates the semantics of the
concepts in the skeleton axiomatization of SFA from Section 3.1 using qualitative concepts
and relations from CODI(B). This results in two new ontologies that logically extend
SFC-Core and CODIB: SFC-FOL, which includes the more detailed axiomatization of SFA’s
concepts, and SFR-FOL, which axiomatizes SFA’s mereotopological relations. Figure 2
summarizes the taxonomic relationships between the SFA and CODI(B) concepts, but the
real contribution are the detailed axiomatic mappings.

4.1 Axiomatization of Simple Feature’s Simple Geometric Features

SFA’s most general spatial entity is the class sf geometry, which can be mapped to CODI’s
(and CODIB’s) most general class of a spatial region S (SFC-M1). Sf point and sf _surface
map one-to-one to CODI’s Point and ArealRegion (SFC-M2,M6), respectively. CODI’s
Curve captures any kind of one-dimensional features, that may be bounded segments (e.g., a
CurveSegment), closed (e.g., a LoopCurve), infinite (e.g., a ray or a line in the mathematical
sense), or branching with more than three endpoints. Sf curve is much more restricted
in scope in that it explicitly requires a start and an end point, though the points may
coincide as in a closed curve. SFA’s definition of sf curve rules out infinite or branching
curves. Thus, sf curve maps to the union of SimpleCurveSegment and SimpleLoopCurve
(SFC-M3). SFC-M4 and SFC-MS5 elaborate the two cases in more detail. A sf curve that
is a Simple CurveSegment has distinct start and end points (SFC-M4), while one that is a
SimpleLoopCurve has identical'* start and end points (SFC-M5) and does not contain any
points in its boundary (SFC-T1). The axioms SFC-M1 to M6 tie in SFA’s simple features
with the qualitative spatial ontologies CODIB and allows using CODIB’s mereotopological
relations in conjunction with SFA features.

(SFC-M1) sf geometry(x) <> S(z)
(sf_geometry is equivalent to CODIB’s Spatial Region class)
(SFC-M2) sf_point(z) <+ Point(x) (sf_point is equivalent to CODIB’s Point)
(SFC-M3) sf_curve(x) <> SimpleCurveSegment(x) V SimpleLoop Curve(x)
(an sf_curve is either a SimpleCurveSegment or SimpleLoopCurve in CODIB)

(SFC-M4) sf curve(x) A SimpleCurveSegment(x) — 3pl, p2[sf__point(pl) A sf__point(p2) A
sf__start__point(pl,z) A sf__end__point(p2,x) A BCont(pl,z) A BCont(p2,x) A pl # p2]

(an sf_curve that is a simple curve segment has distinct start and end points that are
boundary contained)

(SFC-M5) sf curve(x) A SimpleLoopCurve(z) — [3p1,p2[sf7point(p1) A sf__point(p2) A
sf__start__point(y,x) A sf__end__point(z, x)]] —Sy=z
(an sf_curve that is a simple loop curve has the same start and end point)
(SFC-T1) sf__curve(z) A SimpleLoop Curve(z) — —3y[sf__point(y) A BCont(y, x)]
(an sf_curve that is a loop curve does not contain any point in its boundary)
(SFC-T2) sf_curve(z) — Vy[PP(y,z) A Min(y) — AtomicCurveSegment(y)]
(any sf_curve has AtomicCurveSegments as only minimal parts)
(SFC-M6) sf surface(x) <+ ArealRegion(x)
(sf_surface is equivalent to CODIB’s ArealRegion)

M Note that in CODIB, two points are identical if they are co-located.
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The SFA concepts at the next, more refined level of the hierarchy in Figure 2 use
CODIB’s distinctions between (1) open and closed, (2) atomic, simple (atomic or not),
and branched. For example, the SFA concept sf line_string refines the union of CODIB’s
Simple CurveSegment and SitmpleLoop Curve and sf_line refine AtomicCurveSegment, respect-
ively (SFC-T3,M7). The only added constraints are that each segment is a linear approxima-
tion between two points — a fact that cannot be expressed within a qualitative representation
of space. Sf linear ring is a sf line_string that is closed and thus a SimpleLoopCurve
(SFC-MB8).

(SFC-T3) sf_line_string(x) — SimpleCurveSegment(x) V SimpleLoop Curve(x)
(from SFC-A1, SFC-M3)
(SFC-MT7) sf_line(xz) — AtomicCurveSegment(x)
(sf_line specializes CODIB’s AtomicCurveSegment)
(SFC-M8) sf_linear_ring(z) — SimpleLoop Curve(z)

(sf_linear__ring specializes CODIB’s SimpleLoop Curve)

Sf_polygons are simple areal regions with a single exterior boundary and with each
boundary piece being a sf linear ring (SFC-M9). A sf polyhedral _surface is a simple
areal region formed by “stitching” together sf polygons along their common boundaries
(SFC-M10). Such surfaces in a 3-dimensional space may not be planar as a whole. An
sf_triangle is a sf_polygon (SFC-M11) with exactly three non-overlapping lines forming their
boundary. The exterior boundary defines the “top” of the surface which is the side of the
surface from which the exterior boundary appears to traverse the boundary in a counter
clockwise direction. The interior boundary will have the opposite orientation, and appear as
clockwise when viewed from the “top”. Sf_tin is a sf__polyhedral__surface whose minimal
parts are sf__triangles (SFC-M12).

(SFC-M9) sf_polygon(z) — SimpleArealRegion(x) A y, z[sf__linear__ring(y) A BCont(y,z) A
boundary(z) = y A P(z, z)] AVv [BC’ont(v, z) — Jw[P (v, w) A BCont(w,x) A sfilinearim'ng(w)]]

(sf_polygon specializes CODIB’s SimpleArealRegion such that some linear ring in
its boundary bounds a region z of which x is part. This accommodates polygons with
and without holes. For polygons with holes, some linear ring describes the polygons
“outer boundary”, whereas for polygons without holes z = x can be chosen such that
z is the entire boundary of r. The second condition expresses that every entity v in
the boundary of r must be part of some linear ring that that describes a continuous
piece of internal or external boundary of ©’s entire boundary.)

(SFC-M10) sf polyhedral _surface(z) <+ SimpleArealRegion(x) A ICon(z) AVy[P(y, z) A Min(y) —
sf__polygon(y)] (sf_polyhedral _surface is equivalent to CODIBs SimpleArealRegion
that is internally-connected and is an aggregation of sf__polygons)

(SFC-M11) sf_triangle(x) <> sf_polygon(x) A Ip,q,r[-PO(p,q) A =PO(p,r) A =PO(q,r) A
sf__line(p) A sf_line(q) A sf__line(r) A BCont(p, ) A BCont(q,x) AN BCont(r, z) AVs(sf__line(s) A
BCont(s,z) > s=pVs=qVs=r)]

(sf_triangle is a sf_polygon with exactly three non-overlapping lines bounding it)
(SFC-M12) sf_tin(z) +> sf__polyhedral__surface(z) A Vy[Min(y) A PP(y,z) — sf__triangle(y)]

(sf_tin is a polyhedral surface consisting only of sf_triangles as minimal parts)
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Figure 2 Hierarchy of SF-FOL indicating subclass relationships among SFA concepts, among
CODI and CODIB concepts and between SFA and CODI(B) concepts.

4.2 Axiomatization of Simple Feature’s Simple Feature Collections

Sf_geometry__collection includes all multipart or branched spatial regions (SFC-M13).
Its subclasses map to CODIB’s PointRegion (SFC-M14) or refine its Multipart_Curve
(SFC-M15) or Multipart_ArealRegion (SFC-M16), respectively, which exhaustively classify
sf_geometry__collection (SFC-T4). These mappings are not one-to-one because unlike the
corresponding CODIB concepts, the SFA concepts restrict how the components can be spa-
tially configured. For example, SFA does not include “branching”, non-planar constructions
consisting of multiple 2D regions (e.g., three 2D regions meeting in a single line segment)
or non-planar arrangements of points. Sf_multi line_string and sf _multi_polygon refine
sf_multi_curve and sf_multi_surface (SFC-M17,M18) in that they are constituted only
from line strings (i.e., linearly approximated curves) and polygons (i.e., surfaces with linear
approximated boundaries).

(SFC-M13) sf__geometry__collection(x) — Multipart__S(z) V Branched__S(x)
(sf_geometry__collection specializes CODIB’s multipart or branched spatial region)

(SFC-M14) sf multi_point(xz) — PointRegion(x)

(SFC-M15) sf multi curve(x) — Multipart_ Curve(x)

(SFC-M16) sf__multi__surface(z) — Multipart__ArealRegion(x)

(SFC-T4) sf_geometry__collection(x) — PointRegion(x) V Multipart_ Curve(z) V
Multipart__ArealRegion(x) (SFA’s geometry collection is either a PointRegion,
Multipart__Curve or Multipart__ArealRegion)

(SFC-M17) sf_multi_line__string(z) < sf_multi__curve(z) AVy[P(y,z) A Min(y) —
sf__line__string(y)]
(sf_multilinestring is a sf_multicurve with minimal parts that are sf_line__strings)
(SFC-M18) sf__multi__polygon(z) <> sf_multi__surface(x) AVy[P(y,x) A Min(y) — sf__polygon(y)]

(sf_multipolygon is a sf_multisurface with minimal parts that are sf_polygons)
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Table 1 SFA’s mereotopological relations, their equivalent Egenhofer relations, and the developed
mappings to CODIB’s relations. The relations in the bottom part are all defined in terms of the top
five relations.

SFA 9IM ‘ Definition in terms of CODIB relations and additional theorems ‘

disjoint disjoint (SFR-M1) sf_disjoint(z,y) <> S(x) A S(y) A =C(z,y)

touches meet (SFR-M2) sf_touches(z,y) <« S(z) A S(y) A Vz[Cont(z,z) A
Conit(z,y) — BCont(z,z) N BCont(z,y)]

(SFR-T1) sf__touches(z,y) — SC(z,y)

(SFR-T2) sf__touches(z,y) — sf__point(z) A —sf__point(y)

crosses - (SFR-M3) sf__crosses(z,y) <> S(z)AS(y)A [[]nc(x, y)A-Cont(z,y)A
= Cont(y,x)] V Vz[Cont(z,z) A Cont(z,y) — Curve(z) A Curve(y) A
(z <dim T A z <dgim y A 7 BCont(z,x) A 7 BCont(z, y)]}

(SFR-T3) = <daim Yy A sf_crosses(x,y) — Inc(x,y) A ~Cont(z,y)
(SFR-T4) = =daim y N sf__crosses(x,y) — SC(z,y)
(SFR-T5) sf_crosses(z,y) A sf__curve(x) A sf__curve(y) — SC(z,y)

overlaps | overlap (SFR-M4) sf_overlaps(z,y) <> S(x) A S(y) A PO(z,y) A —~P(x,y) A
~P(y,z)
tains V
contains | ool (SFR-M5) sf_contains(z,y) <> S(z) A S(y) A Cont(z,y)
covers
L inside V o .
within (SFR-MS6) sf__within(x,y) <> sf__contains(y, x)
coveredBy
equals equal (SFR-MY) sf__equals(z,y) <> sf__contains(z,y) A sf_within(z,y)

intersects | — disjoint | (SFR-MS8) sf _intersects(x,y) < —sf__disjoint(z,y)

(SFR-T6) sf_intersects(x,y) <> sf__touches(x,y) V sf__crosses(x,y) V
sf__overlaps(x,y) V sf__contains(z,y) V sf_within(z,y)

(SFR-T7) sf__intersects(z,y) <> S(z) A S(y) A C(z,y)

relate - (SFR-M9) sf__relate(x,y) — sf__intersects(z,y) V sf__disjoint(z,y))
(any) (SFR-T8) sf_intersects(x,y) <> S(z) A S(y)

The axioms of SFC-Core together with the mappings SFC-M1 to SFC-M18 form the
ontology SFC-FOL'®. The theorems SFC-T1 to SFC-T4 can be proved from SFC-FOL.

4.3 Axiomatization of Simple Feature’s Qualitative Spatial Relations

So far we have focused on elaborating the semantics of SFA’s feature types using CODIB.

But SFA’s mereotopological relation can, likewise, be expressed using CODIB’s relations as
summarized in Table 1, similar to the mapping between the DE-I9 relations and CODIS
[18]. All SFA relations, except for sf__disjoint, are specializations of contact (C'). Sf_disjoint
is the negation of contact (SFR-M1), which places no dimensional restriction on the involved
entities. The relation sf touches relates two connected features who share parts of their
boundaries (i.e., 9z N dy # 0) but no parts of their interiors (z° Ny° = @). This specializes
CODIB’s superficial contact relation SC that holds for objects that are in contact but do not
share a part of either object. But SC' is not sufficient as it allows the lower-dimensional entity
to share part of its interior with the higher-dimensional entity (e.g., a curve segment tangential

15 Available from https://colore.oor.net/simple_features.
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to a region). Instead, sf_touches needs to express that any shared entities are boundary
contained in both of the participating entities (SFR-M2). Then, SC becomes provable from
it (SFR-T1). From the definition of SC' it can further be inferred that sf_touches applies to
entities of any dimension except between two points (SFR-T2).

Sf_crosses is a specialization of one of two of CODIB’s relation: (1) incidence Inc for
two entities of different dimension, where a part of the lower-dimensional entity is contained
in the higher-dimensional one (e.g., a curve being incident with a polygon by a segment of
the curve being contained in the polygon), or (2) superficial contact SC for two entities of
equal dimension that share only a lower-dimensional entity (e.g., two curves intersecting in a
point) (SFR-M3).

Sf_overlaps is a stronger contact relation that only applies to two equidimensional entities
and is equivalent to CODIB’s partial overlap PO when neither entities is a part of the other
(SFR-M4). Full containment of an entity inside another entity of the same spatial dimension
is represented in CODI by its primitive containment relation, which maps to sf_ contains
(SFA-M5) and to sf__within for its inverse (SFR-M6). The special case of spatial equality is
captured by sf__equals (SFR-MT). sf__intersects is the negation of sf disjoint (SFR-MS),
which means it generalizes sf_touches, sf crosses, sf__overlaps, sf__contains, sf__within,
and, indirectly, sf__equals (SFR-T6) and is logically equivalent to CODIB’s contact relation
(SFR-T7). sf_relate describes any of SFA’s mereotopological relations (SFR-M9), which
maps to any pair of spatial entities in CODIB no matter how they are spatially related
(SFR-T8).

The axioms of SFC-Core together with the mappings SFR-M1 to SFR-M9 form the
ontology SFR-FOL'6. The theorems SFR-T1 to SFR-T8 can be proved from SFR-FOL.

4.4 Logical Verification

Our primary tool for evaluating the developed first-order ontology SF-FOL are different
variants of consistency checking summarized in Table 2. In its simplest form, consistency
checking verifies that an ontology is free of internal contradiction. This typically involves
constructing some small finite model using a finite model finder. A known problem with this
approach is that it aims to construct the smallest models, which are often trivial in the sense
that the extension of many classes and relations therein are empty or universal. For example,
one trivial model for CODIB consists of a set of isolated points, but without any curves or
areal regions. Moreover, most of the CODIB relations, such as BCont, SC, or Inc, may not
be used at all in a trivial model whereas other relations, such as Cont or P, may relate objects
only to themselves. Such a model does not prove that all classes may indeed be instantiated
(i.e., some curve, areal region, or more specialized defined subclasses such as a branched
curve) and all relation may apply to pairs of distinct entities. One can force the creation of
non-trivial models by adding existential axioms of the form JzP(x) and Jz, y[R(z, y) Ax # y)
to the theory. This approach has been implemented in the Macleod suite of tools'” and
previously been utilized to prove CODI’s and CODIB’s nontrivial consistency with the help
of the finite model finder Paradox3 [4]. Here, the same approach is used to prove SF-FOL’s
nontrivial consistency.

An additional way to verify an ontology is to prove its consistency with some sample
datasets. Rather than constructing an arbitrary model that satisfies certain constraints,
this external verification ensures that the ontology is actually consistent with the kind of

16 Available from https://colore.oor.net/simple_features.
7 https://github.com/thahmann/macleod
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Table 2 Overview of the employed consistency checking methods for verification of the developed
first-order logic ontology.

Type Task Description
Internal Consistency | Ascertains the ontology is free of internal contradictions
verification checking
Non-trivial Ascertains that a model exists that instantiates each class
consistency and each relation positively and negatively by pairs of
checking distinct objects
External Consistency | Ascertains that the ontology is consistent with a set of
verification checking assertions describing a dataset
with data

model encountered in the domain. This has not been done previously for CODI or CODIB
as real-world purely qualitative information is hard to come by. However, by mapping SFA
concepts to CODIB as qualitative generalization thereof, we can now exploit the abundance
of geometric data already stored in GIS or geospatial databases.

In this work SF-FOL is verified internally, nontrivially and externally with Paradox3.

Proving nontrivial consistency of SF-FOL ensures that instantiation of all the axiomatically
defined or restricted Simple Feature types and SFA’s mereotopological relations is possible
and the new mappings and axioms do not contain any contradictions. In addition, we
employed small subsets of data, consisting of samples of 20 to 40 geometric features, to
externally verify SF-FOL. The data is extracted from publicly hosted shapefiles'® that
includes polygon representations of counties and subdivisions, polyline representations of
major roads, and point representations of schools and other civic buildings within the state
of Maine. Only the type of geometry and the SFA relations to other, nearby geometries
are stored as assertions. The extracted assertions (i.e., the ABox) were added to SF-FOL
(i.e. the TBox) and handed to the model finder to construct a model. As an additional
step, we encoded sample queries, such as ’*What are the areal regions within Penobscot
county that intersect I-957°, which can be expressed logically in CODIB as ArealRegion(s) A
sf__within(s,’ PenobscotCounty') A sf__intersects(s,’ 195’). This allows retrieving possible
instantiations of s, which were manually inspected to identify any unintended models, such
as schools being returned as possible solutions, that helped refine the axiomatization.

Generally, the utilized ontology verification techniques are somewhat similar to software
testing techniques: they can help identify problematic models of an ontology that require
changing or adding axioms but do not prove that the ontology is fully correct. This would
require a full representation theorem describing the structure of all the models of SF-FOL,
which is beyond the scope of this paper. The completeness of SF-FOL is not verified as this
would require alternative characterization of all models.

5 Conclusion and Future Work

A core component of many geospatial data models and standards used to store and analyze
conventional GIS data are taxonomic classifications of geometric feature types and basic
mereotopological relations to support qualitative querying of the geometric data. However,
the semantics of the mereotopological relations are not explicitly formalized and thus not

B https://www.maine.gov/megis/catalog/
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Figure 3 The relationships between the developed and reused axiomatic theories.

accessible for further automated reasoning. Because of this limitation, purely qualitative
spatial information, i.e. spatial information that relates objects for which no geometric
information is available in the data store, cannot be easily reasoned over in conjunction
with existing geometric data. To address this challenge, this paper presents a semantically
augmented formalization, SF-FOL, of the basic geometric feature types (axiomatized in
SFC-Core) and qualitative spatial relations (axiomatized in SFR-Core) of the Simple Features
Access (SFA) standard. This augmented formalization is provided as an extension of the
CODIB theory, a qualitative axiomatization of mereotopological space in first-order logic.
The relationships between the developed theories is illustrated in Figure 3.

It is shown that all of SFA’s geometric features specialize the more general, only
dimensionally-constrained, classes of spatial entities from CODIB and its subtheory CODI.
The distinctions between “straight line segments” and “curve segments” and, analogously,
between “fully bounded regions” and “polygons” are the only ones that are not fully definable
in CODIB because they are inherently geometric'®.
irrelevant to mereotopological relations, all of CODIB’s spatial relations can be evaluated
over geometric features in SF-FOL. Likewise, all of SF A’s mereotopological relations are
fully defined in the SFR-FOL module of SF-FOL and thus can be employed for querying
over both geometric and qualitative data.

But because these distinctions are

Future Work: While the mereotopological approach of describing geometric concepts
and spatial relations enhances spatial reasoning capabilities, formalization in a language
such as first-order logic and relying on general-purpose automated theorem provers and
model finders for reasoning comes with the cost of intractability of reasoning. The number
of first-order logic (FOL) assertions explodes even when reasoning with a very small spatial
dataset. Preliminary experiments with Paradox, one of the best performing FOL model
finders, show that reasoning with data against a fairly complex ontology such as CODIB often
terminates without success except for the tiniest datasets. In ongoing work, we systematically
test how to improve model finding performance by explicitly using the qualitative abstractions
and “throwing away” geometric information and by converting data into logically equivalent
formats that are less taxing on a model finder.

19 One cannot distinguish a straight line from a curve without a metric in the space that defines the
shortest segment between two points, see the discussion of such issues in [2, 20]
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