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Abstract
The OPRA∗ calculus family, originally suggested by Frank Dylla, adds parallelism to the OPRA
calculus family which is very popular in Qualitative Spatio-temporal Reasoning (QSTR). Adding
parallelism enables the direct representation of parallel moving objects, which is relevant in many
applications like traffic monitoring. However, it turned out that it is hard to derive a sound geometric
analysis. So far no sound spatial reasoning was supported. Our new generic analysis based on
combining condensed semantics lower bounds with upper bounds from algebraic mappings of related
calculi already leads to a close and sound approximization. This approximization can be easily
augmented with a manual analysis of few geometrically underconstrained cases and then yields a
complete analysis of possible configurations in this oriented point framework. This for the first time
enables sound standard QSTR constraint reasoning for the OPRA∗ calculus family.
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1 Introduction

Qualitative spatial representations provide mechanisms which characterize essential properties
of objects or configurations and only make relatively coarse distinctions between spatial
relations and configurations, and typically rely on relative comparisons rather than measuring.
The concept of qualitative space then can be characterized by the following quotation from
Galton [7]: “The divisions of qualitative space correspond to salient discontinuities in our
apprehension of quantitative space”. Qualitative spatial and temporal calculi as formally
defined and investigated in the research area of qualitative spatio-temporal reasoning (QSTR)
aim at modeling this human commonsense reasoning about space and time using qualitative
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relations for different spatial aspects such as topology (e.g., “included in”), direction (“to
the left of”), and position as a combination of direction and distance, holding between
elementary spatial entities such as points or regions. Coarse spatial knowledge can be used
to represent incomplete and underdetermined knowledge systematically. This is especially
useful if the task is to describe features of classes of configurations rather than features of
individual configurations. For example, the observation that the goal keeper usually stands
in front of the goal is true for a variety of ball games. A more specific expression about
their position typically would have to refer to the corresponding configuration of a specific
sport. Similarly, descriptions of allowed or desired spatial behavior are abstractions mapping
infinite sets of possible quantitative configurations or trajectories to a single qualitative
description. If qualitative spatial divisions serve as knowledge representation in a reasoning
system, deductive inferences can be realized as constraint-based reasoning. Qualitative spatial
calculi of relative directions are important for applications such as human-robot interaction,
volunteered geographic information, scene understanding, outdoor robotic navigation [10].

A qualitative calculus consists of a set of base relations and a composition table; the
latter enables spatial reasoning. There is a wide range of qualitative spatial/temporal calculi,
and they are understood to varying levels of detail, see, e.g., the recent survey [3].

The calculi from the DRA [12, 11] and OPRA [9, 14] families are prominent examples
of calculi of relative directions. They are available at varying granularities: DRA admits
three granularities (variants DRAc, DRAf , DRAfp, i.e., “coarse-grained”, “fine-grained”
and “with parallelism and anti-parallelism”). In particular, DRAfp extends DRAf with the
ability to capture parallelism, anti-parallelism, and positive and negative alignment. The
OPRA family admits arbitrarily fine granularities, indicated by a subscript n. Already for
small n, OPRAn has a large number of base relations (72 for n = 2), which prohibits a
manual computation of the composition table. For this reason, Moratz and Mossakowski [14]
performed a systematic geometric analysis of oriented points in the 2D plane, resulting in a
generic algorithm for computing the composition table in OPRAn for any n.

Dylla and Lee [1, 2] extended OPRA in a way that is analogous to the way how DRAfp
extends DRAf . The resulting OPRA∗ family refines OPRA with the ability to capture
(anti-)parallelism and positive/negative alignment. It later turned out that the original
algorithm for computing the composition table does not provide a sound geometric analysis,
nor has an alternative algorithm been found yet. It is also far from obvious how to extend
Moratz and Mossakowski’s analysis to incorporate parallelism. For this reason, we develop
an approach to compute the composition table of OPRA∗n that relies on homomorphic
embeddings into other calculi, geometric constraints on realizable triples of oriented points,
and an enumeration of canonical configurations of triples of oriented points.

2 Qualitative Spatial and Temporal Reasoning

Objects and locations can be represented as simple, featureless points. In contrast, the
OPRAn calculus uses more complex basic entities: It is based on objects which are represented
as oriented points. It is related to a calculus which is based on straight line segments (dipoles)
[12]. Conceptually, the oriented points can be viewed as a transition from oriented line
segments with concrete length to line segments with infinitely small length [11]. In this
conceptualization the length of the objects no longer has any importance. Thus, only the
orientation of the objects is modeled. Opoints, our term for oriented points, are specified as
pair of a point and a orientation on the 2D-plane.

In a coarse representation, a single opoint induces the sectors depicted in Figure 1a.
“Front”, “Back”, “Left”, and “Right” are linear sectors. “Left-Front”, “Right-Front”, “Left-
Back”, and “Right-Back” are quadrants. The position of the point itself is denoted as “Same”.
This qualitative granularity corresponds to Freksa’s double cross calculus [5].
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Figure 1 (a) An opoint and its qualitative spatial relative orientations. (b) and (c) Qualitative
spatial relation between two opoints at (b) different positions, here A leFr

riFr B, and (c) the same
position, here A riFr

same B.

A qualitative spatial relative direction relation between two opoints is represented by
the sector in which the second opoint lies with respect to the first one and by the sector in
which the first one lies with respect to the second one. For the general case of the two points
having different positions we use the following relation symbols:

front
front, leFr

front, left
front, leBa

front, back
front, riBa

front,
right
front, riFr

front, front
leFr , leFr

leFr, . . ., riFr
riFr.

The abbreviated sector name for the sector where the second opoint position is located
from the perspective of the first opoint is the lower part of the relation symbol. Conversely,
the sector name for the relative position of the first opoint location using the second opoint as
a reference is put atop the other abbreviated sector name. We thus obtain 8×8 base relations
for two opoints having different positions. The configuration in Figure 1b is expressed via
the relation A leFr

riFr B. If both opoints share the same position, the lower relation symbol part
is the word “same” and the upper part denotes the orientation of the second opoint w.r.t.
the first; see Figure 1c. Altogether we obtain 72 different atomic relations (8 × 8 general
relations plus 8 with the opoints at the same position). These relations are jointly exhaustive
and pairwise disjoint (JEPD). The relation front

same is the identity relation. The granularity of
the OPRA version we just described is n = 2, so this calculus version is called OPRA2.
The general schema for arbitrary m is described below.

The OPRA∗2 calculus [1, 2] is similar to OPRA2. The important extension is a refinement
of the relations by marking them with letters ’+’ or ’−’, ’P’ or ’A’, according to whether
the two orientations of the oriented points are positive (e.g. turning the first opoint in the
direction of the second opoint would need a mathematically positive turn), negative, parallel
or anti-parallel.

A comprehensive simulation using the OPRA calculus for an important subtask was
built by Dylla et. al. [16]. Their system SailAway simulates the behaviour of different vessels
following declarative (written) navigation rules for collision avoidance. This system can be
used to verify whether a given set of rules leads to stable avoidance between potentially
colliding vessels. The different vessel categories that determine their right-of-way priorities are
represented in an ontology. The vessel’s movement is described by a method called conceptual
neighborhood-based reasoning (CNH reasoning). CNH reasoning describes whether two
spatial configurations of objects can be transformed into each other by small changes [6]. A
CNH transformation can be an object movement in a short period of time.

Instead of using OPRA4, like in the original SailAway system, we use this domain to
show how the OPRA∗2 calculus can model parallel movement like in a typical overtake
(e.g. catch up with and pass while travelling in the same direction) event. Fig. 2 shows a
CNH transition diagram which represents relative trajectories of two vessels during such
an overtake event (for an earlier version of qualitative navigation simulation, see [4]). The
depicted sequence between two vessels A and B is: A leBa

riFr P B → A left
rightP B → A leFr

riBaP B .

COSIT 2019
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Figure 2 Representation of vessel navigation with conceptual neighbourhood in OPRA∗
2.

Preliminaries. A qualitative calculus A = (UA, RA) consists of a set UA called the universe
of A and a set RA of binary relations on UA called base relations that are JEPD (jointly
exhaustive and pairwise disjoint), i.e. r ∩ s = ∅ for r, s ∈ RA with r 6= s and

⋃
r∈RA

r =
UA × UA. Furthermore, if r is a base relation, then the converse r^ = {(a, b) | (b, a) ∈ r}
must be a base relation as well. A general relation is a union of base relations.

Every qualitative calculus A = (UA, RA) gives rise to an algebraic structure via weak
composition of relations from RA in the following way. If r, s ∈ 2RA are general relations,
then r � s = {t ∈ RA | r ◦ s ∩ t 6= ∅}, where r ◦ s is the usual set-theoretic composition.

We define the OPRAn and OPRA∗n families of calculi as introduced in [9, 2]. Their
universe is the set O = R× R× [0, 2π) of opoints in the 2D-plane. In the OPRAn, every
opoint p = (x, y, φ) is associated with n lines, all intersecting at (x, y) and pointing to the
directions {φ + i · πn | i = 0, . . . , n − 1}. These n lines partition R × R \ {(x, y)} into 2n
sections which are numbered 0 to 2n− 1: The ray which p points towards φ has number 0;
the other sections are numbered counter-clockwise, so 1-dimensional (2-dimensional) rays are
assigned even (odd) numbers. If (u, v) ∈ R2, we write pos(u, v, p) = i if (u, v) is in the i-th
section of p, and pos(u, v, p) = s if (u, v) = (x, y) (s = same).

The base relation between two opoints p1 = (x1, y1, φ1) and p2 = (x2, y2, φ2) is described
by the location of p2 relative to p1 and the location of p1 relative to p2. For i, j ∈ {0, . . . , 2n−1}
let ∠ji be the set of all pairs (p1, p2) of opoints p1 = (x1, y1, φ1) and p2 = (x2, y2, φ2) such
that i = pos(x2, y2, p1) and j = pos(x1, y1, p2). For i ∈ {0, . . . , 2n− 1} let ∠is be the set of all
pairs (p1, p2) of opoints p1 = (x1, y1, φ1) and p2 = (x2, y2, φ2) such that x1 = x2 and y1 = y2
and φ2 points into section i of p1. Now OPRAn is the qualitative calculus with universe O
and base relations {∠ji | 0 ≤ i, j ≤ 2n− 1} ∪ {∠is | 0 ≤ i ≤ 2n− 1}.

The calculus OPRA∗n refines OPRAn by adding information about parallelism. Let
α(p1, p2) = φ2 − φ1 if φ2 − φ1 ≥ 0 and α(p1, p2) = φ2 − φ1 + 2π otherwise. Every OPRAn
base relation ∠ji can be partitioned into four relations, some of which will be empty:

∠jiP = ∠ji ∩ {(p1, p2) | α(p1, p2) = 0} ∠ji+ = ∠ji ∩ {(p1, p2) | 0 < α(p1, p2) < π}

∠jiA = ∠ji ∩ {(p1, p2) | α(p1, p2) = π} ∠ji− = ∠ji ∩ {(p1, p2) | π < α(p1, p2) < 2π}

The base relations of OPRA∗n are all non-empty relations of the form ∠ji∗, where 0 ≤ i, j ≤
2n− 1 and ∗ ∈ {P,+,A,−} as well as all relations of the form ∠is, where 0 ≤ i ≤ 2n− 1.

Let r, s, t be base relations. We say that the triple (r, s, t) is realizable, if r � s 3 t and that
the triple is impossible otherwise. For a realizable triple (r, s, t), we say that (p1, p2, p3) ∈ O3

realizes (r, s, t), if r(p1, p2), s(p2, p3) and t(p1, p3). Computing the composition table of a
calculus is the same as computing the set of realizable triples.

3 Composition table of OPRA∗2
We compute the OPRA∗2 composition table twice, using two different algorithms which
are performed independently of each other: (1) We enumerate realizable triples, using a
condensed semantics approach in the spirit of [9, 11]. Since every realizable triple (r, s, t)
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certifies that r � s 3 t, the enumeration yields a lower bound for the composition table, that
is, a subset of the set of all realizable triples. In contrast to [8], the condensed semantics
approach does not generate realizable triples randomly but via a systematic enumeration that
exploits the geometric properties of the underlying calculus. (2) Starting from the set of all
triples, we eliminate impossible triples by computing homomorphisms OPRA∗2 → OPRA2
and OPRA∗2 → OPRA∗1, and by observing angular, location, and permutation constraints.
This way we obtain an upper bound for the composition table.

The lower bound is obviously a subset of the upper bound. After computing both using
the algorithms described, it will turn out that, for OPRA∗2, the upper and lower bound
coincide. This implies that either of them computes the OPRA∗2 composition table.

3.1 Lower bound
Our aim in this section is to compute a lower bound for the composition table, i.e., a list (set)
of configurations of opoint triples that are guaranteed to be contained in the table. Using
the condensed semantics approach analogously to previous work on the Dipole calculus [11]
and the OPRA calculus [9], we found a qualitative abstraction in a discrete geometry that
has a mapping to the equivalence classes in the R2 plane of the original model domain.

We used a set of different qualitative triangles relevant for positions of three opoints. In
the first triangle all three opoints are on the same location. In the second location triple two
points are on the same position and the third point is at a different location. In a grid we
constructed specific configurations of opoints as vertices of the following list of triangles. The
first vertex is fixed at position (0, 0) the second vertex is fixed at position (8, 0). With a third
vertex at the positions (4, 0), (4, 2), (4, 3), (4, 4), (4, 8) we constructed five triangles. At each
vertex there are only limited qualitatively different options for opoints in our OPRA∗2 domain.
We used 32 orientations for opoints at each vertex. Then the exhaustive enumeration of all
opoint options (e.g. including permutations of the three arguments) for all three vertices for
all seven three location configurations generates a lower bound for the composition table.
With this approach there is no guarantee that every possible opoint triple w.r.t. the OPRA∗2
domain is constructed. So our condensed semantics method provides only a lower bound
without the guarantee that all entries in the composition table are complete. Therefore we
augmented our approach with an upper bound using a method based on abstract algebra [15]
presented next.

3.2 Upper bound
We describe the upper bound algorithm. We first introduce a homomorphism technique to
derive information about OPRA∗2 from OPRA2 and OPRA∗1, making use of the fact that
the composition tables for the latter calculi are known [14, 2]. Then we improve the upper
bound using two methods which we call angular constraints and location constraints. The
last two methods are then refined by considering permutations of relations in a triple.

Homomorphisms to OPRA2 and OPRA∗
1. Let (UA, RA) and (UB, RB) be qualitative

calculi. We observe that every map f : RA → RB with the condition (∗) f(r � s) ⊆ f(r)�f(s)
yields an upper bound for the composition table ofA by r�s ⊆ f−1(f(r�s)) ⊆ f−1(f(r)�f(s)),
so for every cell r � s in the table, f−1(f(r) � f(s)) is an upper bound that can be computed
using the composition in B. We give a sufficient condition for a map f to have condition (∗).

A function f : UA → UB is said to induce a map on base relations if for every base
relation r ∈ RA there exists a base relation s ∈ RB s.t. f(r) ⊆ s. In this case, we denote the
induced map RA → RB by f as well. The following lemma is proved in [13].

COSIT 2019
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I Lemma 1. If f : UA → UB induces a map on base relations, then f(r � s) ⊆ f(r) � f(s).

Now we establish the first upper bound for the composition table of OPRA∗2. Since
OPRA∗2 combines features from two calculi, we obtain upper bounds from two natural
homomorphisms, namely the quotient homomorphisms f : OPRA∗2 → OPRA2 and g :
OPRA∗2 → OPRA

∗
1, which are both induced by the identity on O. Both f and g induce a

map on base relations, so by Lemma 1, they yield two upper bounds for the composition
table of OPRA∗2, which can be calculated from the known composition tables of OPRA2
and OPRA∗1. The homomorphism f forgets the information about parallelism, whereas g
maps the regions of OPRA∗2 to the coarser ones of OPRA∗1. Formally, f(∠ji∗) = ∠ji with
∗ ∈ {P,A,+,−}, and g(∠ji∗) = ∠ρ(j)

ρ(i)∗ with ∗ ∈ {P,A,+,−}, where ρ maps the number
of a section in OPRA2 to that of the corresponding section in OPRA1, so ρ(0) = 0,
ρ(1) = ρ(2) = ρ(3) = 1, ρ(4) = 2 and ρ(5) = ρ(6) = ρ(7) = 3.

Angular constraints. We describe the method of angular constraints, which excludes triples
that are impossible due to contradictory information about the angle of the third point
relative to the first point. Consider two opoints pi = (xi, yi, φi) ∈ O, where i ∈ {1, 2}. We
first describe how to obtain a constraint on α(p1, p2). Let the relative angle a(p1, p2) be the
number of the section in which φ2 points relative to p1. Precisely, let α = α(p1, p2), then

a(p1, p2) =



0 if α = 0
1 if 0 < α < π

2

2 if α = π
2

3 if π2 < α < π

4 if α = π

5 if π < α < 3π
2

6 if α = 3π
2

7 if 3π
2 < α < 2π

and if r is a base relation, we define a(r) = {a(p1, p2) | p1rp2}.
Now assume we have a triple (r, s, t) of base relations and want to know if it is realizable.

If the triple is realized by three opoints p1, p2, p3, then a(p1, p2) ∈ a(r), a(p2, p3) ∈ a(s)
and a(p1, p3) ∈ a(t). At the same time, a(r) and a(s) impose another constraint on a(t) by
composing the possible angles. If these two constraints on a(t) have an empty intersection,
then (r, s, t) is an impossible triple. Figure 3 shows an example.

The subroutine isAngleCombinationPossible gets as an input a triple (r, s, t) of base
relations and returns a Boolean indicating whether the triple is impossible due to contradictory
information about the relative angle. If at least one of ang(r, s) and ang(s, t) is even, then
the resulting constraint for ang(r, t) is the singleton set S = {(ang(r, s) + ang(s, t)) mod 8};
otherwise S = {(u−1) mod 8, u mod 8, (u+1) mod 8 | u = ang(r, s)+ang(s, t)}. If ang(r, t) /∈
S, then false is returned, otherwise true.

Location constraints. The next improvement is obtained by location constraints. Here
we exclude triples that are impossible due to contradictory information about the location
of the third point relative to the first. Figure 4 shows how to identify such impossible
triples. The algorithm isLocationCombinationPossible gets as input a triple (r, s, t) of
base relations and returns a Boolean indicating whether the triple is ruled out for the said
reason. To achieve this, we assume there is a triple (p1, p2, p3) realizing (r, s, t). From r and
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p1

p2

p3

Figure 3 If r = ∠7
7+, s = ∠3

6−, and t = ∠3
7P, then a(r) = {3}, a(s) = {7} and a(t) = {0}. At

the same time, a(r) and a(s) impose the constraint {1, 2, 3} on a(t), and since {1, 2, 3} ∩ {0} = ∅,
the triple (r, s, t) is impossible. The image shows opoints p1, p2, p3 such that r(p1, p2) and s(p2, p3).
Under these circumstances, it is impossible that p1 and p3 are parallel, so t(p1, p3) can be ruled out.

s, we compute a constraint on the location of p3 relative to p1, by systematically analyzing
all possible cases and exploiting symmetry. See [13] for a complete list of all cases with
visualizations.

Permutation constraints. Let r, s, t be base relations. It is easy to see that the triples
(r, s, t), (r^, t, s), (s, t^, r^), (s^, r^, t^), (t, s^, r) and (t^, r, s^) are either all real-
izable or all impossible: if (x, y, z) realizes one of these triples, then its permutations
(x, z, y), . . . , (z, y, x) realize the other triples. Hence the final step of computing the upper
bound traverses all triples (r, s, t) ∈ B3; whenever one such triple has been excluded by some
homomorphism, angular constraint or location constraint, then its other five permutations
are excluded, too.

Upper bound algorithm. Algorithm 1 is the final algorithm for the upper bound. Recall
that f (g) is the homomorphism from OPRA∗2 to OPRA2 (to OPRA∗1).

3.3 Discussion
The lower bound from Section 3.1 is correct since it generates only realizable triples. The
upper bound from Section 3.2 is correct since it eliminates only impossible triples. Our
implementation shows that both bounds coincide for OPRA∗2, so our method computes the
correct composition table for this calculus.

In principle, our method can be applied to other members of the OPRA∗n family. However,
the approaches to computing both the lower and upper bound rely on heuristics, and it is
not reasonable to expect that the lower and upper bounds will always coincide. If they do
not, then the method will only yield a “range” of possible composition tables and, in order to
compute the table precisely, it would be necessary to find an appropriate refinement of the

p1

p2

Figure 4 (∠1
1−,∠1

5+,∠3
7−) is an impossible triple: the first 2 relations force the third opoint into

the green area, which is contained in sections 1,2,3 of p1, so p3 cannot be in section 7 of p1 (red).

COSIT 2019
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Algorithm 1 Upper bound for the OPRA∗
2 composition table.

Result: an upper bound U on the set of realizable triples
U ← all triples (r, s, t) of base relations
foreach triple (r, s, t) do

if t /∈ f−1(f(r) � f(s)) then remove (r, s, t) from U

if t /∈ g−1(g(r) � g(s)) then remove (r, s, t) from U

if not isAngleCombinationPossible(r,s,t) then remove (r, s, t) from U

if not isLocationCombinationPossible(r,s,t) then remove (r, s, t) from U

foreach triple (r, s, t) do
if (r,s,t) is not in U then

remove (r−, t, s), (s, t−, r−), (s−, r−, t−), (t, s−, r) and (t−, r, s−) from U
return U

upper bound (e.g., by observing further constraints) and/or the lower bound (by extending
the enumeration). An obvious candidate is OPRA∗6, in whose definition the quadrants from
OPRA∗2 are replaced by twelfth-planes enclosing an angle of 30◦. Since that angle cannot
be represented by integer ratios, our current enumeration, will no longer be complete, as it
relies on integer arithmetics.

The success of our method on OPRA∗2 is largely due to two properties: (a) point-based
calculi such as OPRA and OPRA∗ exhibit a relatively simple and regular structure, which
permits a complete geometric analysis such as to the one in [15]; (b) homomorphisms from
OPRA∗n to related calculi with established composition tables are easy to find. Whether our
method yields useful results for calculi beyond the OPRA and OPRA∗ families remains
speculative and requires a thorough investigation of the previous two properties.

4 Conclusion

We presented our new generic analysis of the OPRA∗ calculus family, which adds parallelism
to the OPRA calculus family. Our analysis is based on combining condensed semantics
lower bounds with upper bounds from algebraic mappings of related calculi. This for the
first time enables sound standard QSTR constraint reasoning for OPRA∗.
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