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Abstract
Simulation models for pedestrian movement are valuable tools to support decision-making processes
in urban design. However, existing models of pedestrian behaviour are built on simplistic assumptions
regarding people’s representation of the urban space and spatial behaviour. In this work, a route-
choice algorithm that takes into account regionalisation processes and the hierarchical organisation
of geographical elements is adapted for pedestrian movement and incorporated into an agent-based
model. The macro-level patterns emerging from two scenarios, one employing an angular-change
minimisation algorithm and the other employing the regional algorithm here proposed, are compared
for a case study in London, UK. Our routing algorithm led agents to recur to a higher number of
street segments, i.e. routes were more diverse among agents. Though validation has not yet been
performed, we deem the patterns resulting from the regional algorithm more plausible.
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1 Introduction

The movement of people in cities, be them cyclists, pedestrians, drivers and transit users, has
proved to be one of the most challenging subjects of study in urban dynamics research [21].
Urban travellers interact with the city environment and its manifold phenomena, shaping
the city form as well as its economic and cultural structures. As such, gaining insights
into people’s movement and spatial behaviour may support cities in decision making as
concerns transport infrastructure, wayfinding signage design, service allocation and urban
configuration redevelopment.

In this context, geosimulation is considered a tool which “enhances our understanding of
how cities function and evolve in space-time” [8, p.V]. In particular, Agent-Based Model-
ling (ABM) allows researchers and experts to understand how individuals’ goals and choices
mould flows at the macro level [7]. However, the ability of these models to capture such
dynamics depends on the theoretical assumptions and design considerations of the modeller
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about how an agent formulates routes across the urban environment [12]. In most of the
existing representations, agents’ route selection processes are modelled as functions derived
from utility theory [1]. Herein, it is assumed that urban travellers make spatial choices and
thereby generate routes by assigning costs to different alternatives. A utility measure is
pursued and computed by the agent on the basis of time, distance or attractiveness [13, 17].

Simulation models for pedestrian movement in urban contexts are quite sporadic. Even
harder is to find exhaustive attempts to implement cognitive representations of space in
ABM. A set of works has been inspired by the Space Syntax approach and the idea that the
configuration of the street network guides pedestrian movement [9]. Penn and Turner [16],
integrating Space Syntax techniques and ABM, enriched agents with information regarding
visibility at junctions. Jiang [10] devised an ABM for pedestrian simulation whose main
postulate is that the interaction between agents and the street configuration alone may
account for the self-organisation of pedestrian patterns. More recently, Omer and Kaplan [15]
designed an ABM wherein agents choose destinations on the basis of a land-use attractiveness
measure, and employ different kinds of path-selection criteria (Euclidean distance, number of
turns and angular change minimisation).

These models mainly make use of street segments properties along the lines of utilitaristic
approaches to spatial behaviour and, furthermore, do not contemplate agents endowed with
symbolic representations of the urban space. Yet, other geographical elements are known
to be important. Kevin Lynch [11] and successive research in cognitive geography widely
suggest that individuals’ representations of the city are built upon multiple categories of
urban elements – nodes, paths, districts, landmarks and edges –, which are significant with
respect to spatial behaviour, navigation and human-environment interaction. Moreover,
several studies have gathered empirical evidence on the hierarchical organisation of these
elements in human knowledge [14, 20], a type of structure which reflects the “degree of
recognition and the idiosyncratic relevance of individual objects” [4, p. 257] in the urban
environment. These findings may prompt a more realistic and complete representation of
individuals’ spatial behaviour in simulation models [6, 13].

The aim of this work is to advance an ABM for simulating pedestrian movement which
embraces a cognitively-grounded, hierarchical routing framework. We include in the simula-
tion a route-choice model built upon the framework presented in [13], adjusted for pedestrian
movement. Therein, the author advances a bounded-decision making approach to route-choice
behaviour in light of findings on the hierarchical organisation of spatial knowledge relative
to urban elements, and regionalisation processes. In our ABM, we introduce a scenario in
which agents are equipped with a simple cognitive, two-level hierarchical representation of
the urban space, which comprises a coarse regional division of the city and fine-grained
information about main street segments and junctions. Macro-level patterns emerging from
the inclusion of such elements in the simulation are compared to the outcomes emerging
from a scenario in which agents use a single-level cost-minimisation approach.

2 Methodology

In the ABM for pedestrian movement simulation here introduced, agents – representing
walkers – complete trips through the environment – the street network of the case-study area
– between pairs of origins and destinations (OD). Two different scenarios are designed: in the
first case, agents use the common single-level utility approach, minimising angular change –
AC scenario –, in the second, they employ the routing model presented below, here called
regional routing algorithm – RR scenario.
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The model proposed by Manley [13] embodies different planning levels in the route-choice
process by representing an initial rough global plan, subsequently refined at higher granularity
levels. This framework was designed and validated with taxi driver routing data and it is
here adjusted and integrated into an ABM for pedestrian movement.

In summary, at first, nodes are extracted from a multilayer network and ranked by a
centrality measure. Afterwards, functional regions are identified from the street network by
means of a community detection technique, and finally employed within the route-choice
model. Therefore, in the ABM, a spatial hierarchy is built at two levels: nodes are classified
by salience and manipulated accordingly for the extraction of OD pairs; concurrently, a
containment hierarchy is represented by a two-steps decision process, from the urban- to the
street-level, when formulating a route.

Nodes and districts identification
Cognitive salient nodes are anchoring points, easy to remember and associated with the
procedural component of the spatial knowledge. Centrality measures have proven to be able
to differentiate between primary and secondary nodes [5]. In [6], betweenness centrality is
employed to extract main nodes from the street network. However, we claim that the transit
network should also be taken into account to capture meaningful urban nodes. Considering
different urban layers, their interactions and their structure, allows to better understand how
places are connected [19]. Therefore, the betweenness centrality of a node is here computed
through a multilayer representation of the urban system [3] composed of two layers, the road
network and the transit network (see figure 1 a).

Euclidean distance is used to weight links in the two networks as well as transfer edges
(i.e. the distance between the street junction and the public transport station).

Destination

Current Location

Valid Gateways

Street Junctions

a) London City Center - Multiplex Representation b) Gateway selection

Figure 1 a) A multilayer-representation of the central area of London, UK: transit (below) and
street (above) networks. b) Identification of possible gateways based on the location and the final
destination of the agent.

The modularity optimisation algorithm [2] is employed to identify functional regions
from the street layout. This algorithm is a community detection technique which optimises
modularity, namely the robustness of a possible division in communities of a network. The
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community membership of the street segments is derived from topological ties existing
in a dual graph representation, namely a graph wherein nodes represent street segments,
links represent connections amongst them. Afterwards, each street junction is assigned to
its region.

Modelling route-choice behaviour
To begin with, when a trip is formulated, the origin and destination nodes are randomly
chosen with a probability based on their betweenness centrality value, i.e. the betweenness
centrality values are linearly re-scaled to probabilities, such that the node with the highest
betweenness centrality has the highest probability to be selected as an origin or destination.
Furthermore, the destination is picked drawing from nodes located outside the origin’s region.

The route-choice approach adopted here [13] follows the hierarchical structure in which
the urban environment is decomposed: the agents’ decisions shift from the regional- to
the street-level. In other words, it is assumed that a walker, before conceiving a detailed
street-segment path, decides upon a sequence of regions to traverse to reach the destination.
At this initial stage, the algorithm moves from one region to another until the destination
region is found. The selection of each next region is performed making use of gateways,
namely pairs of exit and entry nodes located at boundaries between regions. Such gateways
are roughly evaluated every time a new region is entered on the basis of the following
rules [13]:

The Euclidean distance between the destination and the possible exit node must be
shorter than the distance separating the current location from the destination node.
The exit node should be in the direction of the destination node: the angle formed by
the current location and the possible exit is supposed to be between the one formed
by the current location and the destination ±α degrees on each side. In this work, we
subjectively set the α parameter to 70°, instead of 90° as in [13], to coerce the agent to
exclude gateways with a high deviation from the destination, assuming that pedestrians
are less inclined to take large detours compared to drivers (see figure 1 b).
The entry node belonging to the next possible region should be in the direction of the
destination as well.

The current location either corresponds to the origin of the route, or, across the com-
putation, to an entry node. In a nutshell, such criteria constrain the gateway selection
process to candidates that are towards the destination region, relative to the position of the
agent. When multiple choices satisfy the minimum requirements, the gateway with the lowest
deviation from the destination is selected. The search process moves to the next region until
the destination region is reached.

At the street decision level, the agent formulates a more precise path, selecting nodes
between each pair of gateways. Decisions are based on an intra-region cost-minimisation
approach. Angular change minimisation is used as a criterion [18] for its ability to predict
peoples’ movement and account for cognitive heuristics. The series of regional-nodes are
merged and the complete path is generated. Figure 2 presents a summary of the steps
described above within the ABM environment.

The case study
London (UK) is chosen as a case study. The road network and the urban railway network
(Underground, Overground and Docklands Light Railway lines) are used to generate the
multilayer representation. In each ABM scenario, agents are set to perform 1000 trips across
the city, between pairs of OD separated by a maximum distance of 4000 meters.
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Figure 2 Summary of the methodology steps: nodes and paths between origin (red) and
destination (green) are coloured in yellow, blue (RC scenario) or light red (AC scenario); graphics
adapted from [13].

During the simulation, every single street segment records the number of times that it is
traversed by an agent. In order to account for the randomness introduced by the selection of
OD pairs, the scenarios are executed ten times; the mean of the flow of pedestrians across
the different runs is calculated per segment and used thereby to compare the macro-level
patterns emerging from the AC and RR scenario.

3 Results

The angular change shortest-path appears to bring about a low spatial variability of pedestrian
segment usage across the case-study area (see figure 3). Most of the agents in this scenario
made use of major roads to reach the city centre from the outer districts or vice versa. The
A201 artery (including Farringdon Road and Blackfriars Bridge), in particular, was often
traversed and emerged as the main link between the south and the north (some segments go
to a maximum of 2400 crossings), from Elephant and Castle up to King’s Cross. Likewise,
the A40, along with the north bank of the Thames, was used to move from west to east.
Many street segments were never crossed by the agents in this scenario (see figure 3 and 4).

Figure 3 Street segments usage for 1000 trips in the ABM scenarios. Street segments are coloured
by district membership; brightness and width indicate the number of agents’ crossings.

COSIT 2019
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Figure 4 Frequency distribution of pedestrian density values across street segment features in
the two scenarios.

Even though the A201 played a big part in the RR scenario as well, the agents exploited
a wider range of minor roads to reach their destinations, leading to a more diversified
pattern. The central districts, coloured in orange and yellow, exhibit a higher number of
street segments with relatively high agents densities: 545 street segments were crossed more
than 200 times in the RR scenario, against 434 in the AC scenario. The district coloured in
red, although displaying a quite defined pattern, was traversed slightly more regularly by
agents in the RR scenario (168 and 145 segments respectively above 200 counts); as a link
between the north and the south, street segments in this region were probably used as an
alternative to the A201. Indeed, in the RR scenario, along this road, the highest number
of crossing is between 800 and 1000, almost 60% less in comparison with the AC scenario.
The South Bank (blue district) shows a higher spatial variability, in contrast to the other
scenario. Visible paths along the southern riverfront even emerge towards the east, probably
as a result of the recourse to the Millennium and the Southwark Bridges (coloured in red),
nearly invisible in the routes of agents in the AC scenario.

Figure 4 summarises these observations: while the AC scenario displays a larger number of
segments that were rarely or not even traversed, the RR scenario presents higher frequencies
at almost each crossing category higher than 10. At the same time, the AC scenario also
presents a higher number of segments crossed more than 200 times, further suggesting a more
extreme distribution of the flows. Out of 1335946 kilometres of street network, considering
an average distance per journey of 1648 (RR) and 1529 (AC) meters, 58095 km of street
segments were featured by more than 200 crossings in RR, 49400 km in the AC scenario.
1047528 km were crossed at least once in the RR scenario, 977006 km in the AC scenario.

On the whole, the south and the central areas are the ones where most differences
between the scenarios arise. Generally speaking, the outer regions of the case-study area
are less traversed. This may be attributable to an edge-effect deriving from the centrality
computation. The central-eastern part of the city seems to be the most preferred in both
conditions, whereas the north-western street segments of the city centre do not exhibit
relevant differences between the scenarios.
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4 Discussion

When compared to a single-level cost-minimisation scenario, the results of the regional
routing scenario seem more plausible both at the agent- and the macro-level. Regional
routing led agents to take advantage of different streets and diversify routes, believably
in relation to the gateways’ positions. By travelling across alternative paths to major
roads, regional routing agents spread out through the street network and determined more
balanced flow patterns. Moreover, at the micro-level, the spatial constraints introduced by the
morphological structure of the regions and their reciprocal connections reduced behavioural
uniformity amongst agents.

In light of these preliminary results, the methodology here presented could be further
developed, at different levels. The node hierarchy employed to manipulate the selection
of OD pairs could be adapted to prevent agents to wander primarily in the central area,
almost avoiding segments along the case-study boundaries. Concerning districts, the selection
of gateways could be better tuned by taking into account the cognitive salience of nodes.
Furthermore, individual differences between agents can be explicitly included in the simulation,
assuming that urban explorers traverse specific junctions based on their knowledge of the
environment. Finally, a validation of the ABM with observational-data could provide insights
regarding the performance of the model and/or the routing algorithm. Such step will be
carried out in the next phases of the model’s development by comparing the distribution of
pedestrian across the street networks, per each segment, with densities obtained by pedestrian
GPS trajectory data.
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